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Abstract

Motivation: The diversity and huge omics data take biology and biomedicine research and application

into a big data era. Most of the current statistical analyses required to analyze omic data are not designed

to deal with big data. Principal component analyses and multivariate methods to integrate multi-omic data

are one of those examples. Therefore, having efficient and scalable functions are required to exploit the

large amount of omic data which is currently available.

Results: We developed a library called BigDataStatMeth which includes functions to perform basic

matrix operations and linear algebra for big matrices using HDF5 and DelayedArray Bioconductor’s

infrastructure. We tested its performance by comparing the computational time with the one obtained

with R base functions. Our results showed that our implementation outperforms existing functions and

that the improvement increases when sample size is also increasing. This package can be the basis

for implementing statistical methods required in omic data with large number of samples or features. As

a proof-of-concept, we implemented PCA and Lasso regression within the same package and we also

created another Bioconductor package, mgcca, which implements Generalized Canonical Correlation

Analysis (GCCA) that is used in multi-omic data integration. We implemented an algorithm that allows the

possibility of having missing individuals in one or more tables. The implemented methods have been used

to analyze real omic data. We first used PCA to call genotype inversions of more than 400K individuals

from UKBiobank. Then, data from TCGA was used to integrate multiple omic layers using GCCA.

Availability: Both packages are available at BRGE’s GitHub repository: https://github.com/

isglobal-brge

Contact:juanr.gonzalez@isglobal.org

Supplementary information: We have four supplementary material files. One of them (Supp_Mat.pdf)

includes supplementary information about the methods used in this work as well as suplementary tables

and figures corresponding to the benchmarking. The other three files correspond to one vignete describing

BigDataStatMeth package another for mgcca and a last one having a real data example to integrate

multi-omic data using GCCA.
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1 Introduction

The diversity and huge omics data take biology and biomedicine research

and application into a big data era. Encouraged by constant cost reduction,

data-sharing initiatives, and availability of public data large amounts of

genomic, transcriptomic, and other omics data have become available

ready to be analyzed. Therefore, omics data analyses require scalable and

computationally efficient algorithms. These include methods to analyze a

single omic dataset as well as methods to get an integrated view from the

different samples and omic tables with the aim of getting an accurate and

comprehensive view about the diseases and different biological processes

(Subramanian et al., 2020).

Multivariate methods designed to analyze one or several high-

dimensional datasets are widely used in omics data analyses. For

instance, Principal Component Analysis (PCA) through Single Value

Decomposition (SVD) has been used in genomics to address population

stratification (Price et al., 2006)(Price et al., 2010a) or to genotype

polymorphic inversions (Cáceres and González, 2015a). In transcriptomics

and epigenomics SVD is used to estimate surrogate variables that is

required to correct for bath effect (Leek et al., 2012) or to estimate cell

proportions (Houseman et al., 2014)(Alquicira-Hernández et al., 2018).

On the other hand, Canonical Correlation Analysis (CCA) (Hotelling,

1936), Generalized Canonical Correlation (GCCA) (Kettenring, 1971),

multi factorial analysis (MFA) (Abdi et al., 2013), co-inertia analysis

(CIA) (Culhane et al., 2003) and Multi-Omics Factor Analysis (MOFA)

(Argelaguet et al., 2018) have been used to perform the multivariate

analysis of multiple omic tables (see (Subramanian et al., 2020) and

(Csala A, 2019) for a review of these methods applied to multi-omic data

integration).

Bioconductor includes several packages that are designed to performed

most of these multivariate methods such as BiocSinular (Lun, 2020),

PCAtools (Blighe and Aaron, 2020), SVA (Leek et al., 2019) for surrogate

variables and omicade4 (Meng et al., 2014) which implements multiple

co-inertia analysis. Most of these implementations, mainly those created

to integrate multiple tables, were not designed to be deal with big data sets,

and hence, they are not computationally efficient. Another limitation that

current multivariate methods have to integrate multi-oimc data is how to

handle missing data individuals. The presence of missing values in multi-

omics data is inevitable since, in most cases, omic data are obtained in

different time points and quality control can remove individuals form a

single omic dataset. Most of the currently implemented methods works

only with complete cases which is an underpowered approach (van de

Velden and Takane, 2012). missRows is a Bioconductor library based

on multi factorial analysis that addressed this issue (I and V, 2020) .

However, the analysis of large datasets cannot be performed using this

method. Actually, the authors recommend to filter out those features with

less variability to reduce the dimensionality (Voillet et al., 2016).

Most of the existing inefficient implementations are due to the fact

that developers use base R functions to perform basic matrix operations

or algebra. In order to overcome these difficulties and provide the

user with efficient and scalable functions to implement any statistical

method required to analyzed large omic dataset, we have developed

BigDataStatMeth Bioconductor library that uses C++ language with Rcpp

(Eddelbuettel and François, 2011) (Eddelbuettel and Balamuta, 2017) and

RcppEigen (Bates and Eddelbuettel, 2013) from R-CRAN that provides

an efficient tool for process and analyze omics data. BigDataStatMeth

also works with HDF5 file format (Koranne, 2011) (Fischer et al., 2019)

and Delayed Arrays (Pagès et al., 2020) directly from C++ using APIs

developed from Bioconductor and other specific to C++. The implemented

algorithms also use parallel methods that will make our functions scalable

using OpenMP - OMP (Dagum and Menon, 1998) This library will allow

us to implement a new package called mgcca that will allow us to analyze

multi-omic data using GCCA including a method that is designed to

analyze data with missing individuals (Velden and Bijmolt, 2006),(van de

Velden and Takane, 2012).

In order to demonstrate the usability and the good performance of

our proposed method, a benchmark analysis is performed to compare the

behavior of our functions with those implemented in base R. Our libraries

also include a vignette where the use of the functions is shown in a practical

way as well as a brief theoretical explanation. The practical use is illustrated

using data from two public databases: the UK Biobank (UKB) (Sudlow

et al., 2015) and The Cancer Genome Atlas (TCGA) (Tomczak et al.,

2015). The UKB data is used to perform inversion calling in about 500K

samples by using PCA. The TCGA dataset is used to illustrate how to

integrate different omic data when each table have information on different

individuals.

2 Methods

2.1 Databases

The Cancer Genome Atlas

The Cancer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov), is

a project, to catalogue genetic mutations responsible for cancer, using

genome sequencing and bioinformatics. TCGA began as a three-year pilot

in 2006 with an investment from the National Cancer Institute (NCI)

and National Human Genome Research Institute (NHGRI). The TCGA

pilot project proved that making the data freely available would enable

researchers anywhere around the world to make and validate important

discoveries. In our case, the TCGA data serves as an illustrative example of

how to analyze big genomic datasets using our scalable algorithms. TCGA

has one of the largest collections of multi-omics and clinical data sets for

more than 33 different tumour types chosen because of their poor prognosis

and availability of samples. The project contains molecular data from

multiple types of assays including DNA and RNA sequencing, array-based

expression and DNA methylation among others. Several pre-processed

omic data tables are available for each tumour. Clinical data along with
2 The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
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molecular tables can be used to decipher the role of different omics in

cancer survival, prognosis; to find biomarkers of treatment response; or to

determine individuals with different multi-omics profiles that can be used

in personalized medicine.

TCGA data was downloaded using TCGAutils package (Ramos et al.,

2020). Gene annotations were made using the Bioconductor package

biomaRt (Durinck et al., 2009), (Durinck et al., 2005) using the ensembl

database (Yates et al., 2020) and the hsapiens_gene_ensembl dataset. CpGs

annotations were made using 450K Human Illumina methylation dataset.

UK Biobank

UK Biobank (https://www.ukbiobank.ac.uk) is an international health

resource supported by the UK National Health Service (NHS). UK

Biobank aims to improve the prevention, diagnosis and treatment of a wide

range of serious and life-threatening illnesses – including cancer, heart

diseases, stroke, diabetes, arthritis, osteoporosis, eye disorders, depression

and forms of dementia.

The UK Biobank is a prospective cohort of 502,536 adults aged

between 40 and 69 years (229,182 men and 273,474 women). At

recruitment, participants provided electronic signed consent, answered

questions on socio-demographic, lifestyle and health-related factors, and

completed a range of physical measures. They also provided blood, urine

and saliva samples, which were stored in such a way as to allow many

different types of assay to be performed (for example, genetic, proteomic

and metabonomic analyses). Once recruitment was fully underway, further

enhancements were introduced to the assessment visit, including a range

of eye measures, an electrocardiograph test, arterial stiffness and a hearing

test. The baseline information has been, and will continue to be, extended in

several ways, for example, repeat assessments are planned to be conducted

in subsets of the cohort every few years. Here we are focusing on a total

of 488,377 individuals with European ancestry to whom inversion calling

will be performed using PCA (Cáceres and González, 2015a).

2.2 Library Implementation

In omics data, we used to deal with large datasets with thousands

of variables and a small/moderate number of samples. Currently, this

paradigm has become even more challenging since we also have

information for thousands of individuals. The analysis of this data requires

a great amount of computational resources and optimized algorithms.

Bioconductor is software project for the analysis and comprehension of

genomic data generated by wet lab experiments in molecular biology. It

is based primarily on the statistical R programming language, but does

contain contributions in other programming languages.

The challenges of dealing with big data sets in Bioconductor are those

found in R. By default, R runs only on data that can fit into your computer’s

memory that is the biggest issue that researchers face when trying to use

Big Data in R. Another big issue for doing Big Data work in R is that

data transfer speeds are extremely slow relative to the time it takes to

actually do data processing once the data has transferred. Finally, R is an

interpreted programming language which means that it is not translated

into machine language in a process prior to execution. R has a process that

interprets the code in real time, this affects the efficiency at execution time

and sometimes R code is not as fast as you would expect. Nevertheless,

there are effective methods for working with big data in R that will allow

the efficient and scalable implementation of omic data analyses. These

include methods to: 1) program in low level language (C or C++), 2) work

directly on disk and load in memory only the required data to be analyzed,

and 3) implement parallel algorithms.

We have developed a Bioconductor package, BigDataStathMeth, based

on previous methodologies that allows efficient and scalable computation

of matrix operations and basic algebra required to implement statistical

method in omic data analyses. First, in order to optimize the use of

available resources for data processing, we have use Eigen (Guennebaud

et al., 2010) which is a C++ template library for linear algebra, matrices,

vectors, numerical solvers, and related algorithms using RcppEigen

package (Bates and Eddelbuettel, 2013). In conjunction with eigen we

used LAPACK (Linear Algebra Package) which is a library for numerical

linear algebra with low-level functions (Anderson et al., 1999). Second,

in order to optimize memory usage, Hierarchical Data Format (HDF)

(Fortner, 1998) in its version 5 (HDF5) (Koranne, 2011) and Delayed

Array data objects (Pagès et al., 2020) were used. HDF5 and Delayed

arrays allow the effective management of extremely large and complex

omics data collections including genomic, RNA-seq, methylation, copy

number, mutations or microRNA among others. It also allows to deal with

other type of data and metadata associated with an assay like clinical or

pathological data. The link between Delayed Arrays and C++ functions

have been performed using beachmat library. Finally, in order to speed

up computation, OpenMP (Dagum and Menon, 1998) have been used

to implement parallel algorithms. Section 1 in Supplementary Material

provides a general overview of these methodologies including some figures

describing two methods to parallelize matrix multiplication and single

value decomposition (SVD) (Figures S1 and S2).

2.3 Omics data Analysis - Statistical methods

Methods implemented in BigDataStatMeth can be used to program

efficient and scalable statistical methods required in omics data analysis.

Principal Component Analysis (PCA) is one of the widely used methods

in several omic data analyses. PCA can serve, not only as a dimensional

reduction technique, but also to visualize cluster of individuals that are

created given a hidden structure. For instance, PCA has been used for a

long time in population genetics studies to produce maps summarizing

human genetic variation across geographic regions(Menozzi et al., 1978).

recently it can be used to explore the potential of disease identification

in high dimensional blood microRNA data (SL et al., 2020) or to

cluster subjects depending on their genomic inversion status (Cáceres and

González, 2015b). In BigDataStatMeth we have implemented an scalable

and efficient function to perform PCA using our parallel implementation of

SVD that allows, among other, to visualize cluster of individuals given their
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population of origin (Price et al., 2010b) to address population stratification

or to perform inversion calling (Cáceres and González, 2015b) in very large

datasets such as UK Biobank.

The study of multi-omics data and its integration with clinical data

has become an active line of research since it can provide useful insights

into the cellular functions and help understanding the complex underlying

biology (Canzler et al., 2020). There are different multi-omics data

integration methodologies, but these methodologies do not cover all

possible cases (Tarazona et al., 2020). Dimension reduction techniques

have been proposed as a promising tool for the integrative analysis of

multi-omics data (Meng et al., 2016). These methods include Generalized

Canonical Correlation (GCCA), Multi Factorial Analysis (MFA) or

Multiple Co-Inertia Analysis (MCIA) among others unsupervised methods

that are reviewed and evaluated in a recent paper (Pierre-Jean et al., 2019).

Multi-Omics Factor Analysis (MOFA) is a recent promising approach

based on a factor analysis model that provides a general framework for the

integration of multi-omics data sets (Argelaguet et al., 2018). Section 2 in

our Supplementary Material provides a global overview of these methods

along with key references, R/Bioconductor packages and reviews.

These methodologies used to integrate multi-omic data are not properly

implemented in R when dealing with big data. In order to overcome this

difficulty, we have created another package, mgcca which implements

GCCA using Delayed Arrays that allows the efficient access to multi-

omic data. It considers as input MultiAssayExperiment objects which

provides for the coordinated representation of, storage of, and operation

on multiple diverse omic data in Bioconductor (Ramos et al., 2017).

Additionally, the presence of missing information for some individuals in

multi-omics data is another important issue. It is normal to have individuals

with no information in some tables since each omic is normally obtained

independently and also because quality control may remove information

from some individuals in a given table. To our knowledge, there is only one

method to integrate multiple omic datasets using a MFA (MI-MFA) (Voillet

et al., 2016). This method generates multiple imputed datasets from a MFA

model, then the yield results are combined in a single consensus solution

but is extremely time consuming. Also, it is not properly implemented to

deal with large datasets. The authors state that before using MI-MFA it is

recommended to remove those variables with low variability in order to

reduce the computational burden. In mgcca we have implemented a version

of GCCA when having missing individuals that is a generalization of the

Test Equating method available for PCA that only requires to perform

matrix operations which are implemented in BigDataStatMeth (van de

Velden and Takane, 2012).

3 Results

3.1 Bioconductor libraries

We developed a library called BigDataStatMeth which includes functions

to perform basic matrix operations and linear algebra for big matrices using

HDF5 and DelayedArray Bioconductor’s infrastructure. This package can

be the basis for implementing statistical methods required in omic data

with large number of samples or features. As a proof-of-concept, we

implemented PCA and Lasso regression within the same package. We also

created another Bioconductor package, mgcca which implements GCCA

to be used in multi-omic data integration allowing the possibility of having

missing individuals in one or more tables.

BigDataStatMeth library

The methods described in previous section were used to implement

BigDataStatMeth library that allow us to work in a efficient manner with

omic data. BigDataStatMeth aims to be a practical, versatile and easy-

to-use tool for researchers and omic data analysts. In omics data we can

have different assays for the same set of samples with different omics data.

For that reason, BigDataStatMeth allows the user to store different omic

data in on same file. Additionally, BigDataStatMeth internally store all

the results obtained with omics data in the same file as original data in an

organized way. Figure 1 shows an example of how data is organized within

BigDataStatMeth using a hdf5 file.

Fig. 1. Data structure inside hdf5 file. Figure A shows how data can be stored inside hdf5
file where all omics data can be under the same group. Figure B shows how the results from
an omic datasets are stored using BigDataStatMeth. The results are saved in special groups
in the same file as the original omic data for ease of use and allow for reuse and sharing.
Here we have results stored in PCA and SVD folders and results for genomic inversions
are store at invs folder joint with the original data (geno)

As stated in methods section, due to large amount of information

associated with omic data, working with data blocks is a key issue. One

of the biggest challenges in implementing BigDataStatMeth has been

working with small blocks of data because: a) we have to take in to account

at each moment the precise coordinates where we have to start to read and

the exact block size to read; and b) not all operations can be performed in,

since existing algorithms are highly complex. To the challenge of working

in blocks we must add the complexity of working directly on files. It is

possible when working with data in memory compute calculations directly

with the complete dataset, but working with blocks of data from files only

allows to have in memory the last read block. This requires to know the

data we have on memory and which data we need to load or unload to
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Fig. 2. Summary table with the functions implemented in BigDataStatMeth and the methods and types of resources used to be implemented.

compute calculations. This is needed to avoid overloading memory and

worsening the overall performance of the function.

In BigDataStatMeth we have developed different functions to work

with omic data. The implemented functions can be classified into five

groups 1) basic functions with vectors and matrices; 2) linear algebra

functions 3) methods for omics data analyses; 4) pre-processing data

analyses; and 5) utilities to work with HDF5 data files that allows basic

omics data organization. Figure 2 provides a detailed summary with all

the implemented functions and methodologies for each group.

We have creates a reproducible vignette illustrating how to use

BigDataStatMeth that can be downloaded from (https://github.com/isglobal-

brge/BigDataStatMeth/blob/master/vignettes/). The vignette document

explains in detail how BigDataStatMeth operates. The vignette also

contains detailed examples using real datasets as well as some

benchmarking to compare its performance with other existing approaches.

mgcca library

BigDataStatMeth can be easily used to implement any statistical

method that requires any of the basic functions described in Figure 2

when analyzing omic data. As a proof-of-concept, we have implemented

functions to integrate multi-omic data using GCCA as well as an

algorithm that allow integrating multiple omic tables having missing

individuals (van de Velden and Takane, 2012). The library can be found

in (https://github.com/isglobal-brge/mgcca). The package also includes

a vignette having a complete pipeline to integrate transcriptomic and

epigenomic data from TCGA using MultiAssayExperiment object which

is the default method to handle with multi-omic data in Bioconductor.

3.2 Real data analyses

We have applied the implemented methods in BigDataStatMeth and

mgcca to analyze real omics data. We first used PCA to call genotype

inversions of more than 400K individuals from UKBiobank. Then, data

from TCGA was used to integrate multiple omic layers using GCCA.

PCA with UKBiobank omics dataset

The PCA implementation in BigDataStatMeth was used to call

polymorphic inversions in to well known inversions located at 8p23.1

and 17q21.31. We recall that a genomic inversion is a specific DNA

interval that runs backward with respect to a reference genome and that it

can be genotype from SNP data using bioinformatic tools based on PCA

methodologies (Cáceres and González, 2015a)

Genomic data between coordinates 8,055,789 to 11,980,649 in

chromosome 8 was obtained from UKB data. This data was downloaded

in Genomic Data Structure format (GDS), and treated with gdsfmt library

(Zheng et al., 2012)(Zheng et al., 2017). BigDataStatMetht has functions

to transform GDS data to hdf5 datasets. Initially, data for 1,591 SNPs

and 488,377 samples were available. We perform a quality control step

by removing those individuals having more than 10% of missing data

(n=1411) letting the total samples in 486966. The remaining missing

data were imputed using the observed allele frequency at each SNP. After
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Fig. 3. Inversion calling at 8p23.1 from UK Biobank data

removing individuals with high percentage of missing values, we impute

the rest of the missing values. Figure 3 shows the results of the calling

procedure where a perfect clustering is observed.

The same procedure was applied for inversion at 17q21.31.In that case,

we selected coordinates 43,661,775 to 44,372,665 from chromosome 17

that includes 462 SNPs. In this case, 15,147 samples were removed with

due to the large number of missing information letting the total samples

in 473230. Figure 4 depicts the results for this inversion.

Fig. 4. Inversion calling at 17q21.31 from UK Biobank data

GCCA with TCGA data

GCCA method with missing individuals was used to analyzed data

from TCGA. Our aim was to illustrate how to perform multi-omic data

integration with GCCA. Bioconductor library curatedTCGAData (Ramos

et al., 2018) was used to download the data, this library provides available

data from TCGA as a MultiAssayExperiment object. We illustrate how to

perform multi-omic data integration at a whole genome level and then, in

a region of interest given by a specific genomic coordinate range that the

researcher may be interested in.

We downloaded data from Adrenocorticoical carcinoma (ACC) which

is a rare endocrine malignancy. In particular, we analyzed RNA-

seq (Normalized) and Methylation data. One of our supplementary

materials also available at ((https://github.com/isglobal-brge/mgcca))

contains a complete description of how to get this data. The downloaded

MultiAssayExperiment encapsulates gene expression (RNA-seq) data for

79 samples and 20,501 genes, while methylation data has data from

80 samples and 485,577 CpGs. We first imputed missing values from

methylation data (gene expression did not have any). To this end, we

use impute function implemented in mgcca package that uses a knn

algorithm with 10 neighbours. This function is a wrapper of impute

package form Bioconductor adapted to MultiAssayExperiment objects.

GCCA analyses revealed a total of 3,906 genes and 6,335 CpGs associated

with either first or second global axis with a false discovery rate (FDR)

lower that 1% (Figure 5 A and B). In order to interpret the axes we can

project the scores of the individuals and color them using any illustrate

variable. Figure 5 C depicts the individuals given their vital status. We are

aware that this analysis would deserve another type of method (i.e. survival

analyses) but we are using it as an illustrative example. We can observe

as individuals who died are located in the top-right part of the figure.

Therefore, features associated with those axes will be important for

survival status. The top five genes related to survival are Protein Coding

genes. Main genes are shown in the top right part of the Figure 5 A.

These protein coding genes are the Lysine Demethylase 4B (KDM4B),

the Poly (ADP-Ribose) Polymerase 2 (PARP2), the Nicalin (NCLN),

the Autophagy Related 4D Cysteine Peptidase (ATG4D) and the RNA

Exonuclease 1 Homolog (REXO1). Three of the five most statistically

significant CpGs are located near a Protein Coding gene. These CpGs

are cg00161225, cg00330929 and cg00256231 that are near Purinergic

Receptor P2X 1 (P2RX1), Complement C1q Like 1 (C1QL1) and TBC1

Domain Family Member 16 (TBC1D16) respectively. The fourth CpG is

cg00362657 located near pseudokinase PEAK3/C19orf35 and the last is

cg00164949 with an unknown near gene. Section 3 (tables S1 and S2) in

our Supplementary Material provides an extended annotated list about top

significant genes and CpGs obtained with mgcca associated with either

first or second global axis. Figure 5 shows the main results of this analysis.

Adrenocortical tumors occur as sporadic tumors, as part of the

multiple endocrine neoplasia type 1 (MEN1), syndrome or as part of other

hereditary disorders (Heppner et al., 1999), (Griniatsos et al., 2011), (Wang



i
i

“manuscript” — 2020/9/15 — 8:47 — page 7 — #7 i
i

i
i

i
i

Tools Big Data Omics 7

Fig. 5. GCCA with Adrenocortical carcinoma results obtained with implemented mgcca package. Figures A, B and C refer to the analysis with complete data, in Figure A, in red we
observe the statistically significant genes at 10�9 significance level. In Figure B plot refers to significant CpGs detected 10�9 significance level. In Figure C we can observe how samples
are distributed in two clusters attending to clinical variable vithal status. Figures D and E refer to the data analysis performed on the genomic coordinates related to the MEN1 gene. In
figure D we show how samples are distributed taking in to account methylation level, high methylated samples are disperse distributed but major intermediate and low methylated samples
are centered, in figure E we show significant genes detected near MEN1 and his location on chormosome 11 we also show the p-values obtained for CpGs and genes location (MEN1 and
MAP4K2)

et al., 2019). Menin 1 gene (MEN1), is a tumor-suppressor gene located on

chromosome 11q13 with genomic coordinates (11:64570986-64578766).

Therefore, researchers may be interested in performing analyses in that

region to find new biomarkers of ACC. We use the MEN1 gene coordinates

with 2kb upstream and downstream for subsetting features in both RNA-

seq and methylation. We have data for MEN1 and mitogen-activated

protein kinase kinase kinase kinase 2 (MAP4K2), and 104 CpGs. The

GCCA analysis in that region ended up with 19 statistically significant

CpGs close to MEN1 genomic coordinates that are associated with the

two first global components (Figure 5 D and E). Figure 5 D depicts the

CpG methylation specific immunoprecipitation in each individual. We

can observe as individuals with CpG island methylator phenotype-low

(CIMP-low) are located in the top right part and slightly extended to

the left in figure. Individuals with CpG island methylator phenotype-

intermediate (CIMP-intermediate) are located in the top right part and

slightly extended to the bottom right. Finally, individuals with CpG island

methylator phenotype-high (CIMP-high) are located in the left part. The

significant CpGs related to CIMP-low and CIMP-intermediate are those

CpGs depict mainly in right part of Figure 5 C and those significant CpGs

related to CMP-high are those CpGs depict on left part in the figure.

Annotated list of genes and CpGs can be found in section 3 (tables S3

and S4) in our Supplementary Material.

3.3 Benchmarking

We tested the performance of some of the functions implemented

in BigDataStatMeth with respect to those implemented using the basic

functions or even more advanced in R. To perform the benchmark, we use

the microbenchmark function (Mersmann, 2019), a program or routine

to measure and test the performance of a single component or task, this

function is implemented in microbenchmark package available in CRAN.

The device used for the benchmark was an iMac with a quad-core i5

processor (I5-6500) at 3.2GHz, 24Gb 1867 MHz DDR3 of RAM and a

fusion disk dive (hybrid drive that combines a hard disk drive with a NAND

flash storage)
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Fig. 6. Graphic performance for different functions implemented in BigDataStatMeth and
R. Panel A compares matrix multiplication times using BigDataStatMeth’s functions that
uses C++ with basic R multiplication function and crossproduct function implemented in
R. Panel C compares the computing time using mgcca function implemented in R and in
BigDataStatMeth. The multiplications with R were carried out until reaching the data size
of 4500x4500, the operations implemented in BigDataStatMeth continued to be applied
until reaching a data size of 7500x7500. It was observed that the execution time with
BigDataStatMeth was still much lower than that obtained with the R functions

Figure 6 compares the performance for some of the implemented

method. More results can be found in Benchmarking in Section 4 in our

Supplementary Material. In general, our implementations outperformed

others available in R. We can also observe that the improvement increases

when data dimension increases.

4 Conclusion

Omics technologies are bringing a revolution in transforming the medicine

and the health care sector, especially with regard to personalized medicine.

This work is only a very basic approximation of the tool that can be

developed to support omics data analysis, and to advance in the field

of personalized medicine where are needed tools capable of analyzing

big data efficiently and accurately in a few seconds. With methods and

technologies applied in BigDataStatMeth it has been seen that there are

important improvements in terms of performance and system resource

management that can help in personalized medicine to obtaining the results

derived from omics data analysis with effectively and accurately results.

Considering that BigDataStatMeth is a scalable library, future

work would go through creating more functionalities adapted to new

requirements and methods in omic data analysis field that allow progress

in biomedicine and the personalized medicine. Some of these features

would be a) managing the missing data in different ways in order to

prevent distorted results in omics analysis, b) creating more statistical

methods able to analyze the distinct omics and multi-omics datasets from

distinct perspectives and c) generating complex plots from omics analysis

to help the scientific and medical community to understand the complex

underlying biology.
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