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ABSTRACT 

Motivation: Plenty genome-wide datasets are produced from complex diseases by 

traditional GWAS studies, but they are limited. A new approach has emerged in the 

last decade, the Polygenic Risk Scores (PRS), to combine several SNP into a single 

predictor to try to explain the complex genetic behind diseases like Asthma or Autism 

Spectrum Disorders. 

Results: Here we analyse genome-wide data from these two diseases a compute PRS 

with three different approaches, PLINK’s method, a machine learning approach 

(biglasso) and a targeted-based method using SFARI database. We find that this kind of 

analysis are quite complex like the diseases they try to predict, and PRS only explain a 

very low percentage of the variance of the disease. The validation analysis we 

performed show us that the parameters used to compute the PRS have to be optimize 

using bigger datasets. We also used a machine learning approach (XGBoost) to impute 

the data in certain analysis. 

Reproducibility: github.com/isglobal-brge/master_thesis/tree/master/genetic_score 

Contact: laureano.tomas@uvic.cat 

1. INTRODUCTION 

A polygenic risk score (PRS) is an 

estimate of the cumulative contribution 

of genetic factors to a specific outcome 

of interest in an individual that takes 

into account the reported risk alleles1. 

Another more detailed definition could 

be a weighted sum of the number of 

risk alleles carried by an individual, 

where the risk alleles and their weights 

are defined by the loci and their 

measured effects as detected by 

genome wide association studies2. The 

idea behind of this concept came up as 

an attempt of extract hidden 

information from GWAS data which 

have become routine over the past 

decade. With this idea scientists tried 

to explain a considerable proportion of 

phenotypic variation by assembling 

markers not achieving significance3.   
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The main two purposes of PRS are: (1) 

predict the probability of an individual 

developing a disease based on some 

amount of available information, 

usually genetic and (2) to estimate the 

level of predictive power or variability 

explained that is captures by associated 

variants. The goal is to be able to 

predict if an outcome of interest, i.e. a 

disease, a reaction to a drug, etc., could 

appear in a person based on genetic 

data1. 

PRS were developed mainly to 

investigated deeper the genetic 

component of complex traits, that 

could not be explained by a few single 

nucleotide polymorphisms (SNP). Some 

of these complex traits are diseases as 

asthma and autism spectrum disorder 

(ASD). These diseases are highly 

heritable and recent GWAS have found 

that a portion of this heritability is 

attributable to common genetic 

variants4. 

Asthma a is a chronic disease of the 

airways defined by its symptoms, which 

include reversible airflow obstruction, 

inflammation, and bronchial 

hyperresponsiveness, which make it 

clinically heterogeneous. Also, asthma 

has a strong evidence of heritability as 

we mention above, but progress in 

defining its genetics however has been 

slow and hampered by issues of 

inconsistency. Recent advances in tools 

available for analysis, such as PRS, have 

substantially altered the landscape5. 

ASD is characterized by impairments in 

social interaction and stereotyped 

behaviours. For most individuals with 

ASD, the causes of the disorder remain 

unknown; however, in up to 25% of 

cases, a genetic cause can be identified. 

For those complex diseases whose 

genetic cause remains unknown, PRS 

could be a promising approach to 

decipher their genetic causes6. 

Due to all this unknown genetic 

information of complex diseases 

calculating PRS is now a common 

approach, but their potential 

complications and pitfalls are also 

emphasized1. There are several 

approaches to select SNPs used to 

create PRS. One possibility is to select 

SNPs that are significant at single level 

(i.e. from GWAS). However, this 

approach does not consider possible 

interactions among them. Another 

possibility is to build a multivariate 

model (i.e. using machine learning 

algorithms) and consider those SNPs 
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that are selected in that model. Finally, 

a priori knowledge can also be used to 

filter those genes with an impact in the 

disease of interest. In this study, we 

aim to evaluate those different 

approaches used to build PRS by 

analysing asthma and ASD cases. 

2. MATERIAL AND METHODS 

For a better understanding of this 

section we recommend following 

visually the workflow represented in 

Supplementary Figure 1.  

2.1. Data 

In this study we used four datasets 

(Table 1), two from Asthma and two 

from ASD. For each disease one dataset 

was used to compute association and 

PRS analysis, and the other one to 

validate the analysis. All datasets came 

from public data of different 

consortiums. And only autosomal 

chromosomes were selected.  

2.2. Quality Control 

The five quality-control (QC) steps7,8 

consist of filtering out of SNPs and 

individuals based on the following: (1) 

individual and SNP missingness, (2) 

minor allele frequency (MAF), (3) 

deviations from Hardy–Weinberg 

equilibrium (HWE), (4) heterozygosity 

rate and (5) cryptic relatedness. This 

steps are performed using the free 

software PLINK9. 

2.2.1. Step I: individual and SNP 

missingness 

Missingness can lead to false 

associations if it is non-random with 

respect to phenotypes or genotypes. 

SNP missingness is the complement to 

individual missingness and is correlated 

with SNP quality from the original 

genotyping assay. Missingness is 

investigated using PLINK ‘--missing’. We 

removed markers and individuals by 

using the parameters ‘--geno' and ‘-- 

Table 1. Description of the datasets used in the study. * 10 ambiguous sex individuals 
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mind' respectively. This step is 

performed twice with two different 

thresholds 0.2 and 0.02 to increase the 

accuracy of this step.  

2.2.2. Step II: minor allele 

frequency (MAF) 

Minor allele frequency filtering is 

important because rare genotypes will 

not show up as often and thus will have 

less evidence in a GWAS and the calls 

will be less certain, and it is also 

difficult to detect associations with 

them. In this study we used a 

conventional threshold of 0.05. 

2.2.3. Step III: deviations from 

Hardy–Weinberg equilibrium 

(HWE) 

Markers out of HWE can indicate that 

there were genotyping errors. 

However, a strong association signal 

can also result in deviations from HWE. 

Normally, only variants from control 

samples are checked for deviations 

from HWE with a p-value of 1x10-6, but 

we also checked cases samples but with 

a less stringent threshold (1x10-10). 

2.2.4. Step IV: heterozygosity 

rate 

Individuals resulting from random 

mating within a population should have 

predictable heterozygosity (H) values. H 

is a measure of the number of loci in an 

individual that are heterozygous. 

Departure from expected H values can 

signify DNA quality issues (high H) or 

samples from a different population 

(low H). We computed the 

heterozygosity rate as: (Number of 

non-missing autosomal genotypes)-

(Observed number of homozygotes)/ 

(Number of non-missing autosomal 

genotypes) and we remove those 

individuals deviated more than 3 

standard deviations from the mean. 

2.2.5. Step V: cryptic relatedness 

Cryptic relatedness (CR) is when pairs 

of individuals are closely related and 

can lead to false positive or negative 

correlations when subjects are treated 

as independent. 

The PLINK ‘--genome’ command can 

estimate relatedness but is quite slow 

when there are a large number of 

markers in a dataset. Therefore, 

markers in high linkage disequilibrium 

(LD) are removed first to thin the data. 

This is done using PLINK ‘--indep-

pairwise’. 

PLINK ‘--genome’ estimates relatedness 

of all pairs of samples and reports 

identify by decent in the PI_HAT 

column of the result file. A PI_HAT 

value close to 1 would indicate a 
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duplicate sample. The threshold 0.2 

represents the half-way point between 

2nd and 3rd degree relatives and is a 

common cut-off to use. Of each pair of 

related individuals, the one with the 

greater proportion of missing SNPs is 

dropped from the final dataset. This 

analysis for cryptic relatedness is done 

only on founder samples, so in the case 

of ASD_I dataset the step that filters by 

founders is skipped due to this step 

removed all cases, because individuals 

were in trio data and the children (non-

founders) were the cases. 

2.3. Imputation 

Once the datasets have passed the QC 

analysis the workflow splits in two main 

branches, one will be imputed and will 

compute the PRS using a R package; 

and the other one will continue using 

PLINK to compute the association and 

PRS without imputation. 

Imputation of SNP data could be done 

by several methods (IMPUTE2, 

imputation servers, etc.), in our study 

we used the method proposed and 

implemented in the R package 

‘bigsnpr’10. This method is based on a 

machine learning approach that 

computes local XGBoost models and 

does not use phasing, allowing to 

reduce dramatically the computational 

time of the imputation process. The 

algorithm basically for each SNP divide 

the individuals in test set (with missing 

genotype) and train set (non-missing 

genotype). The train set is divided into 

training set and validation set. The 

training set is used to build the XGBoost 

model for predicting missing data and 

the validation set is used to evaluate 

this model providing an estimator of 

the accuracy of the imputation. Then 

this model is used on the test set to 

impute the missing values. 

2.4. Association Analysis 

The association between the genotypes 

and the phenotype, a binary trait, were 

performed by two methods 

implemented in PLINK and other 

method implemented in the R11 

package ‘bigstatsr’. 

2.4.1. Logistic association – 

Population Stratification 

All datasets were associated correcting 

by population stratification. This 

association were performed by using 

PLINK’s parameters ‘--cluster --mds-

plot’ to compute the first 10 principal 

components and using them as 

covariates to compute a logistic 

regression between the SNPs and the 

case/control status. We obtained for 
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each SNP a p-value from t-statistic and 

an odd ratio that will be used as weight 

of the SNP. 

2.4.2. Family-based association 

Since ASD_I dataset was formed by 

parent-offspring data we had to take 

that into account to correct for these 

relations. PLINK has implemented a 

method for transmission disequilibrium 

test (TDT) to detect association using 

family trio design, this method used by 

the parameter ‘--tdt' and the output is 

similar from the output of the logistic 

regression, for each SNP a p-value from 

a chi-square test and an odd ratio to be 

used as weight. 

2.4.3. Column-Wise Logistic 

Regression 

This method is used on the imputed 

dataset in order to compute a PRS with 

the R package ‘bigsnpr’. This method is 

similar to the logistic method of PLINK 

because firstly we have to calculate the 

first 10 principal components by a 

singular value decomposition (SVD) to 

use them as covariates. Then the 

association is performed using the 

function ‘big_univLogReg’ that 

estimate beta values to be used as 

weight for each SNP10. 

2.5. PRS methods 

2.5.1. PLINK 

The allelic scoring method 

implemented in PLINK is used by the 

parameter ‘--score'. This method 

basically computes the score as a sum 

across SNPs of the number of reference 

alleles (0,1 or 2) at that SNP multiplied 

by the score for that SNP. We used as 

score, or weight, for the SNP the 

logarithm of the odd ratio computed 

previously in the association analysis. 

We computed several PRS using 

different p-value thresholds from more 

stringent to less stringent. 

2.5.2. Machine learning 

The approach used by ‘bigsnpr’ to 

compute the PRS need some previous 

data processing. First, as we mention 

above data must be imputed, because 

some functions do not work with 

missing values. Then, we made a first 

pruning of those SNP in long-range 

linkage disequilibrium regions. This 

pruned data is used to compute the 

SVD to estimate the covariates for the 

association explained in Section 2.4.3, 

and finally before computing the PRS 

itself we performed a clumping of the 

SNP. With all these step genotype data 

is prepared to be used to compute the 

PRS. 
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In this package the PRS is computed 

using another machine learning 

approach, called biglasso. This method 

does not use univariate summary 

statistics but instead train a 

multivariate model on all the SNPs and 

covariables at once, these models are 

very fast sparse linear and logistic 

regressions and they include lasso and 

elastic-net regularizations, which 

reduce the number of predictor (SNP) 

included in the predictive models10. 

Similar to the PLINK’s method we used 

different p-values thresholds to 

compute several PRS. 

2.5.3. Targeted-based 

The two first methods compute the PRS 

without a priori information, only using 

the genotype data provided, but this 

last method used SNP data external 

from the genotype SNP, i.e. information 

from some database, so we do not 

need to compute the association. In 

this study we used the database SFARI 

to obtain autism-related genes 

reported in literature, then we 

retrieved the SNP of those genes from 

Ensembl and then we compute the PRS 

with this SNPs. In this case the PRS is 

computed with a method implemented 

in the R package ‘SNPassoc’12 using the 

function ‘getScore’ which calculate the 

PRS using the MAF as weight for each 

SNP. We used this method to estimate 

the PRS for each category of SFARI. 

2.6. Predictive Models 

To test if the computed PRS are 

predictive or not of the disease or 

phenotype, we calculated generalized 

linear models (glm) of the phenotype 

against the PRS, and we obtained the 

Nagelkerke’s r2 as measure of the 

goodness of fit of the model13. We 

could have chosen another estimator of 

the goodness of fit but there is no 

standard or consensus measure14. 

2.7. Validation 

To validate the previously obtained 

models we used another dataset both 

of Asthma and ASD, i.e. Asthma_II and 

ASD_II. These datasets passed the QC 

and were not used in association, 

instead we extract the SNPs used in 

each PRS and the weight of each SNP 

from the previous association analysis 

in order to replicate them in these new 

datasets. Once we computed the PRS 

with the SNPs lists used in the previous 

analysis we calculated again the 

Nagelkerke’s r2 of each model. 

2.8. Reproducibility 

All code used in this study for each step 

of the quality control, the association, 
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the imputation and the PRS 

computation are available in the next 

link of GitHub. (github.com/isglobal-

brge/master_thesis/tree/master/geneti

c_score) 

3. RESULTS 

3.1. Quality Control 

Before any analysis we performed a 

quality control on the different 

datasets, a summary of the SNP and 

individuals removed is shown in Table 

2. We can see that most SNP are 

filtered out in due to missingness and 

HWE deviation, except in ASD_I that 

any SNP was removed due to HWE 

deviation. According to individuals 

most of the removed ones were due to 

heterozygosity rate, and in Asthma_II 

and ASD_I a considerable number of 

individuals were removed due to 

missingness. 

Thanks to this quality control in all 

datasets we removed the majority of 

missing phenotypes and other 

important considerations like 

individuals related to each other which 

would alter the results. In average after 

these five steps we increased the 

genotyping rate from 0.90-0.95 to 0.99 

in all datasets facilitating the 

imputation step. 

3.2. Association 

After the quality control we performed 

the typical association analysis for the 

Asthma_I and ASD_I datasets. For the 

Asthma_I dataset we corrected for 

population stratification computing the 

first 10 principal components as we 

Table 2. Summary of quality control removed SNP and individuals. 

https://github.com/isglobal-brge/master_thesis/tree/master/genetic_score
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Figure 1. Histogram of P-values distribution from association analysis. A: Distribution of P-values from Asthma_I 
dataset. B: Distribution of P-values from ASD_I dataset. 

described in Section 2.4.1, and we can 

see in Figure 1A how P-values from 

association are uniformly distributed, 

indicating that no many SNPs are 

significantly associated with the disease 

after multiple testing correction.  

For ASD_I dataset we performed the 

association analysis taken into account 

that individuals were in trio-data, so we 

did a family-based association and the 

P-values distribution is shown in Figure 

1B and it follows a uniform distribution 

as expected. However, in that case, we 

observe a little deviation in the P-values 

close to 0, indicating that there are 

some SNP which do not follow the null 

hypothesis, and hence, could be 

associated with the disease. 

3.3. PRS 

In this section we explained the results 

from the different methods of 

computing the PRS. 

3.3.1. PLINK method 

Once we had the association analysis 

for both diseases we took the P-values 

to be used as thresholds for group the 

SNP and we used the odd-ratio to 

compute its logarithm to be used as 

betas for each SNP. We can see in both 

barplots Figure 2 the Nagelkerke's R2 

from the generalized linear models of 

each PRS, in both datasets we observed 

the same behaviour, the softer the P-

value threshold is the greater the R2 

value is, i.e. the more SNP are taken 

into account to compute the PRS the be 

tter is the R2 value. We could think this 

behaviour was due to the fact that 

when we include more predictors in a 
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Figure 2. Barplots of Nagelkerke's R2 and validation line computed by PLINK method. Both barplots represent the 
R2 (y-axis) obtained from the glm of the PRS computed with different p-values thresholds (x-axis) by PLINK and 
the R2 from the validation dataset represented as a black line over the barplot (secondary y-axis). A: Asthma 
datasets; B: ASD datasets. 

model the R2 increased, but in this case 

we did not do that, we took more 

predictors to compute the PRS not the 

generalized linear model. 

In order to prove if this R2 values where 

really that good for both diseases we 

computed the same PRS from a 

validation dataset (Asthma_II and 

ASD_II). We selected the SNP used to 

compute each PRS from the original 

datasets and used these lists of SNP 

and the betas computed in the 

association analysis of Asthma_I and 

ASD_II and we computed the PRS in the 

validation datasets. The R2 from the 

validation is represented as a black line 

over the barplots in Figure 2. The first 

notorious fact is the drastic change in 

the scale, the validation R2 only 

reached 0.0015 and 0.04 in Asthma and 

ASD respectively against the 1 and 0.8 

values from original datasets. The 

second notorious difference is the 

shape of the validation line, is not the 

same that the shape of the barplots, in 

both cases the R2 values tend to 

increase but at some thresholds the 

value decreases drastically, and it 

reached its maximum when almost all 

SNP are grouped to compute the PRS. 

3.3.2. Machine learning method 

The second method used was a 

machine learning approach using the R 

package bigsnpr on the imputed data. 

In this case the association is 

performed by the package and both P-

values and betas are computed by itself 

to be used in the PRS.   
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Figure 3. Barplots of Nagelkerke's R2 and validation line computed by Bigsnpr method. Both barplots represent 
the R2 (y-axis) obtained from the glm of the PRS computed with different p-values thresholds (x-axis) by R 
package bigsnpr and the R2 from the validation dataset represented as a black line over the barplot (secondary y-
axis). A: Asthma datasets; B: ASD datasets. 

We established different P-values 

thresholds, the same for both datasets, 

to compute several PRS from less 

predictors to more predictors. As we 

explained in the first method the 

barplots shown in Figure 3 represent 

the Nagelkerke's R2 value from the 

predictive models. With this method 

the barplots are not similar between 

both datasets, in ASD_I it is quite 

similar to the one generated by PLINK’s 

method because it tends to increase 

the R2 values as the threshold is softer 

and the maximum is 0.8. But in 

Asthma_I the barplot is quite irregular, 

it shows some increases and decreases 

over the barplot. According to the 

validation lines in ASD the difference 

from the original data is huge as it was 

in PLINK’s method, but in Asthma the 

difference is not so much. The shape of 

the line in both datasets is quite 

different from the original data, we 

could say that in both cases the line 

tends to increase the value of R2 

although there are some decreases. In 

Asthma the maximum of the barplot 

and the validation lines is reached 

almost in the same P-values threshold, 

whereas in ASD the maximum of both 

barplot and line is near but the 

maximum of the barplot corresponds 

to the minimum of the validation line. 

3.3.3. Targeted-based method 

The last method that we tried was 

based on a priori selection of SNP from 

the SFARI database. The first step in 

this method was to select a pruning 

threshold to apply to the dataset. In 
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Figure 4. Barplots of Nagelkerke's R2 and validation line computed by SNPassoc method based on SFARI 
categories of ASD dataset. A: Barplot of R2 (y-axis) obtained from the glm of the PRS computed for the different 
SFARI categories (x-axis) by R package SNPassoc and the R2 from the validation dataset represented as a black 
line over the barplot (secondary y-axis). B: Barplot of R2 (y-axis) obtained from the glm of the PRS computed for 
increasing groups of SFARI categories and syndromic categories (S) together and non-syndromic categories (noS) 
(x-axis) by R package SNPassoc and the R2 from the validation dataset represented as a black line over the barplot 
(secondary y-axis). 

Supplementary Figure 2 it is shown the 

R2 for each SFARI category at different 

pruning thresholds for almost all 

categories the best threshold was 

none, so we selected 0 as pruning 

threshold for further analysis.  

We conducted the PRS analysis in two 

ways, first we computed the PRS using 

the SNP in each SFARI categories 

(Figure 4A), and then we tried to see if 

grouping the categories (Figure 4B) 

increased the R2 of the PRS. In the 

barplot from each SFARI category we 

can see that the best category was C3.s, 

however in the validation line the best 

categories were C2 and C5, even with a 

better R2 value than the original data. 

We would like to mention that the 

shape of the line in the first five 

categories follows the same behaviour 

as in the barplot. 

On the other hand, we expected that 

when we added more categories the R2 

should be higher and that happens 

almost every time we add a new 

category, except in the case of adding 

C2 and C2.s mainly. Furthermore, the 

group of syndromic, and non-syndromic 

categories had a very low R2 value. 

According to the validation line, in this 

case, like the validation of each 

category, the R2 values are better than 

the original ones. It is curious how it 

tends to increase every time we added 

a new category and how when we 

added the category C2 now it reached a 
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maximum and not a minimum like it did 

in the original data. It is also interesting 

to point out that the non-syndromic 

categories have the maximum R2 value. 

4. DISCUSION 

This study shows us how different the 

three methods of computing PRS are, 

and how heterogeneous are the R2 

values from the predictive model 

estimated from the PRS at different 

thresholds. Maybe we could say that 

the most similar prediction between 

original data and validation data is the 

one obtained from PRS computed by 

PLINK, but these results have to be 

taken into account carefully because 

the high values of R2 obtained in the 

original datasets (0.8-1) are caused 

because this values in Asthma_I and 

ASD_I were computed using the same 

data that was used to estimate betas in 

association analysis, so these values are 

inflated. Another more efficient 

approach could be to estimate these 

betas from bigger databases that 

contains more SNP and more individual 

in order to compute proper betas for 

each SNP. 

Besides, the fact that ASD_I was a 

family-based dataset could interfere 

with the computation of betas and 

could not be the best option to use 

these betas in non-family-based 

dataset as it were ASD_II. And in the 

case of Asthma, the original dataset 

came from paediatric cases while the 

validation one came from adult 

patients. 

The machine learning approach is the 

one with the results more similar 

between the original data and the 

validation data, in the asthma datasets, 

that could tell us that this method is 

quite accurate. But in the ASD datasets 

the different in obvious but as we 

mention above the reason could be the 

family nature of the data. 

According to the SFARI results we could 

see that there is almost no relation 

between the category and the PRS, 

because the categories goes from those 

genes (SNPs in our case) with high 

evidence in the disease to those with 

less to non-evidence, and we could see 

that some categories with less evidence 

have a greater R2 which does not make 

sense. On the other hand, when we 

computed the cumulative PRS of the 

categories the R2 increases as expected, 

this may be caused because when we 

take into account more SNPs to 

compute the PRS the predictability in 
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higher. These discordant results could 

highlight the necessity of a better 

classification of the genes related with 

the diseases, because SFARI databases 

used its own criteria to group the 

related genes. 

In general, to improve these low rates 

of predictive power, i.e. R2 values, we 

could consider adding more 

information to the predictive models 

and the computations of PRS like 

environmental and sociodemographic 

data, as well as clinical history of 

patients. Some studies15 used these 

approached and they get better results 

in predicting their outputs. Another 

consideration should be to estimate the 

heritability of the disease in order to 

estimate how much of this heritability 

is explained by the PRS, i.e. by grouping 

some SNPs3. 

And finally, as an interesting future 

study to explore the genetic nature of 

these complex diseases the GWAS data 

from these patients could be analysis 

using a pathway-networks16 approach  

to try to find which biochemical 

pathways are the ones enriched in 

these diseases, and maybe with the 

genes significantly present in those 

pathways a new PRS could be 

computed. 
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7. SUPPLEMENTARY FIGURES 

 

Supplementary Figure 1. Overview of the workflow used in this study. (1) It corresponds to the list of SNPs from 
SFARI categories. (2) It corresponds to betas from logistic/family-based association and SNP lists from each PRS 
computed with PLINK. (3) It corresponds to betas from column-wise logistic regression and the SNP lists from 
each PRS computed by machine learning. 

 

Supplementary Figure 2. Comparison of Nagelkerke's R2 between different thresholds of pruning by SNPassoc 
computed for the different SFARI categories. 

 

 


