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ABSTRACT  

 

 

The development of new methods for inferring ancestral origins in human popula�ons has a�racted a               

renewed interest for human popula�on gene�cists for be�er understanding recent human           

evolu�onary history or for correc�ng the presence of hidden popula�on substructure in genome-wide             

associa�on studies (GWAS). The algorithms for detec�ng popula�on substructure present several           

problems such as the dependency on the assump�ons of the algorithm, the type and number of                

considered DNA markers, the underlying demographic rela�onship among the considered popula�ons           

and   the   sample   size   of   the   target   popula�ons. 

 

With this concern in mind, we have constructed an experimental model for tes�ng the performance of                

currently algorithms applied for es�ma�ng popula�on substructure which starts by designing two ideal             

prototypes of spa�ally structured popula�ons (2D stepping stone and anisotropic). From each model             

we have generated a pool of 78 experimental datasets, simula�ng the genomic molecular diversity              

with Fastsimcoal2 under various migra�on rate condi�ons, performing the sampling of individuals and             

popula�ons and selec�ng different filtering strategies: Minor Allele Frequency (MAF) and Linkage            

Disequilibrium (LD). Those 78 datasets (plink bed files) have been processed to evaluate the response               

of commonly applied algorithms to SNP data for quan�fying individual popula�on substructure:            

Principal Components Analysis (smartPCA), Mul�dimensional Scaling (MDS-PLINK), Spa�al Ancestry         

Analysis (SPA), ADMIXTURE and SNMF. For those algorithms in which the output is a coordinate (PCA,                

MDS and SPA), we have evaluated the correla�on (via Mantel and Procrustes tests) of these es�mated                

coordinates with the geographic sampling coordinates of individuals in our original ideal ar�facts. For              

ADMIXTURE and SNMF we have applied different algorithms for assessing the best K number of               

ancestries   and   we   have   applied   CLUMPP   so�ware   to   compare   their   output   matrices. 

 

This ideal prototype has enabled us to establish the robustness of the five algorithms, iden�fy best                

performing algorithms and determine the impact of the condi�ons imposed on the results of these               

programs. 
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1. Introduc�on 

 

1.1   Origin   and   maintenance   of   the   gene�c   varia�on. 

 

The genome is subject to permanent change over the evolu�on of a species and that is why we can not                    

consider it as an immutable en�ty. Muta�ons (replica�ons errors) are introduced by the cellular              

replica�on machinery during DNA replica�on at any cell and they are vigorously but not fully offset by                 

the high fidelity of DNA polymerases and the DNA repair mechanisms. Henceforth, muta�ons are the               

ul�mate origin of all gene�c varia�on. However, t aking into account just evolu�onary consequences of              

muta�on, we can follow only those changes that occur in the germline, and not those in soma�c �ssues                  

because   they   are   not   heritable. 

From a structural point of view, muta�ons comprise from simple nucleo�de changes (called single              

nucleo�de variant or SNV) to duplica�ng/dele�ng large fragments of the genome, as well as changes in                

orienta�on and genomic rearrangements in new genomic posi�ons. Of all these possible types of              

muta�ons, the most common are SNVs .  In addi�on to muta�ons, another physical factor that alters the                

genomic composi�on of varia�on is recombina�on. Meio�c recombina�on occurs as a part of sexual              

reproduc�on, and enhances the ability of popula�ons to adapt to their environments by combining              

advantageous alleles at different physically con�guous loci. While alleles at loci on different             

chromosomes are randomly segregated during meiosis, alleles at loci closely linked on the same              

chromosome are not, as recombina�on between them occurs infrequently. Recombina�on can be            

studied at the popula�on level by inves�ga�ng whether specific alleles at different loci are correlated               

with one another more or less o�en than would be expected by chance. This nonrandom correla�on is                 

known as linkage disequilibrium (LD). The simplest model of recombina�on is that the rate of               

recombina�on is uniform. In other words, the probability of a crossover occurring between a pair of                

sequence variants is determined only by the physical distance that separates them. The products of               

this type of recombina�on event are two new haplotypes containing con�guous stretches of alleles              

from   each   ancestral   haplotype. 

Once a muta�on in the germline has passed to the next genera�on, different evolu�onary factors               

shape its frequency in the popula�on. These evolu�onary factors can be classified in demographic and               

selec�ve. 

 

Selec�ve   factors 

From an evolu�onary point of view and considering a very simplis�c model of selec�on, there are two                 

possible final scenarios for new muta�ons: if the new muta�on provides a higher fitness to the carrier                 

compared to the rest of individuals, the new muta�on will increase its frequency in the popula�on                

and, ul�mately, achieve fixa�on. In contrast, if the new muta�on provides a lower fitness to the carrier                 
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then it will be disadvantageous and removed from the popula�on. Therefore, new muta�ons that              

modify   the   phenotype   of   an   individual   are   the   substrate   of   natural   selec�on. 

Obviously, much more complex evolu�onary pa�erns exist in nature (i.e. mul�ple genes contribu�ng             

to a phenotype, ancient ongoing balancing selec�on, or selec�on on standing selec�on among others).              

From the gene�c varia�on point of view, selec�on can influence in several different ways to increase,                

decrease,   or   maintain   diversity    [Jobling   2014].  

 

Demographic   factors  

Nevertheless, according to the neutral hypothesis of evolu�on, most of the muta�ons that occur in the                

genome do not have a func�onal impact in the phenotype. The fate of these muta�ons in the                 

popula�on depends on gene�c dri�, which refers to the stochas�c process of sampling due to the finite                 

number of chromosomes that replicate at each genera�on. Suppose that a pool of gametes contains               

the alleles “A” and “a” at frequencies “p” and “q” with p+q=1. Then if 2N gametes are drawn at random                    

to produce the zygotes of the next genera�on, the probability that the sample contains exactly “j”                

alleles   of   type   A   is   as   follows    (Equation   1.1)     [Hartl   2007]: 

 

The smaller the popula�on size that reproduces at each genera�on, the higher the random sampling               

process   at   each   genera�on   and   higher   the   fixa�on/erasing   rate   of   muta�ons. 

In this context, the effec�ve popula�on size is defined as the number of random ma�ng individuals in                 

an ideal popula�on compared to the real popula�on  [Jobling 2014].  There are two mathema�cal ways               

of defining effec�ve popula�on sizes: one is based on the sampling variance of allele frequencies (that                

is, how an allele’s frequency might vary from one genera�on to the next), and the other u�lizes the                  

concept of inbreeding (that is, the probability that the two alleles within an individual are iden�cal by                 

descent from a common ancestor). Both of these proper�es of a finite popula�on depend on the                

ma�ng size of that popula�on. There also can be non gene�c defini�ons, such as the number of                 

breeding   individuals   inferred   from   demographic   studies.  

To illustrate the effect of these factors on the defini�on of the effec�ve popula�on size of one species,                  

we can take a look at ca�le in North America: there are about 100,000,000 female ca�le in North                  

America fer�lized on average by four males through ar�ficial insemina�on. Therefore, having four bulls              

that are insemina�ng 100,000,000 cows, gene�cally speaking the effec�ve popula�on size is just about              

16    [Stearns   2010]. 
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1.2   Theore�cal   models   of   spa�ally   structured   popula�ons. 

 

Natural popula�ons have complex geographies and histories and the problem of local differen�a�on of              

gene frequencies in a structured popula�on has historically required the use of basic models allowing               

the development of the explanatory mathema�cal theory. Despite the simplicity of these ideal             

prototypes, the design of very basic theore�cal models of spa�ally structured popula�ons has provided              

useful   intui�on   about   the   behavior   of   more   complex   models. 

A major development in terms of modelling strategies of spa�ally structured popula�ons was the use               

in   the   1960's   by   Kimura   and   others   of   island   and   stepping   stone   models    [Kimura   1964,   Slatkin   1975] 

The term "island model" refers to a model which considers a popula�on to be split into a finite or                   

infinite number of discrete islands or demes. Individuals can migrate from any deme to any other deme                 

uniformly,   there   is   no   sense   of   distance   and   all   islands   are   equally   far   apart   from   each   other   (Fig   1.1).  

 

F igure 1.1: Each island has a �nite diploid population of size N, each of which exchanges a proportion "m" of its                                         

population each generation with a mainland containing an in�nite population. We de�ne M = 2Nm for the total                                   

number   of   migrants   exchanged   per   generation. 

In this context, a useful and related sta�s�c to measure the differen�a�on between subpopula�ons is               

Wright's   fixa�on   index: 

 

Where "p" is the average frequency of an allele in the total popula�on,  σ 2 
S  is the variance in the                   

frequency of the allele between different subpopula�ons, weighted by the sizes of the             

subpopula�ons,   and    σ 2 
T    is   the   variance   of   the   allelic   state   in   the   total   popula�on. 

Although island models have the advantage of being manageable, they do not correspond to reality.               

Most popula�ons will exhibit isola�on by distance and the assump�on that an individual from any part                

of the range migrates uniformly is likely to be false. Individuals are more likely to be closely gene�cally                  
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related to individuals who are also spa�ally close to them (keeping alive the first law of geography:                 

"Everything is related to everything else, but near things are more related than distant things" ). The                

"stepping stone" model  [Kimura 1964] is the natural extension of the island model by including the                

concept of isola�on by distance in the model concept. In the stepping stone model, demes are                

arranged in a regular pa�ern, migra�on can only occur between the nearby neighbor surrounding              

demes and the degree of differen�a�on between subpopula�ons depends on the number of             

popula�ons. 

Formally, if we have "d" demes arranged in a K x K grid  [Cox 2002],  gene�c differen�a�on among demes                   

is: 

 

While the one dimensional model can represent a popula�on of organisms living along a river, the two                 

dimensional model can represent a popula�on on a plane and cover the most important cases in nature                 

including different migra�on rates in the longitude X and la�tude Y axis direc�ons. The three               

dimensional model can represent a popula�on in an oceanic habitat with migra�on rates in the three                

axes or can also represent a popula�on of organisms living on a plane, but including a third dimension                  

such   as   the   social   rank   in   which   migra�on   is   restricted   to   the   neighboring   classes    [Kimura   1964] . 

Isola�on by distance theory explains the accumula�on of local gene�c differences under the main              

driver "the more geographical distance, the more gene�c differen�a�on in the pairwise measures".             

However, we need to take into account that gene�c differen�a�on can increase at different rates in                

different geographic direc�ons, and this should affect the localiza�on of geographic origin from             

genome-wide SNP data. Keeping in mind that the concept of anisotropy is defined as the property of                 

being direc�onally dependent, we can rely on spa�al analysis of gene�c data since can addi�onally               

provide the orienta�on at which the accumula�on of gene�c differen�a�on is the greatest  [Jay 2013] .               

In fact, main land-masses do not show the same orienta�on and this creates an effect of anisotropy in                  

the   spa�al   distribu�on   of   the   gene�c   varia�on. 

 

1.3   The   coalescent   approach   for   modeling   the   neutral   gene�c   varia�on. 

Wright-Fisher   model . 

The Wright-Fisher model is one of the most simplest models for modeling the observed demographic               

varia�on of a popula�on. The Wright-Fisher model makes three idealized assump�ons: (i) Genera�ons             

are taken to be discrete (ii) The popula�on size is taken to be fixed, so that alleles compete only against                    

other alleles and not against an external environment. (iii) Random ma�ng is assumed. None of these                

assump�ons are present in any real popula�on. Nevertheless, Wright-Fisher has proved to be a useful               
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intui�ve guide in real cases, and also the mathema�cal founda�on on which more complicated              

popula�on   models   can   be   developed. 

Coalescent   theory 

The term coalescence refers to the process in which, looking backward in �me, the genealogies of two                 

alleles at present merge into a shared common ancestor in the past. In a sample of “k” alleles, for                   

example, the first coalescence (looking backward in �me) merges the “k” contemporary genealogies             

into (k - 1) ancestral genealogies, and the second coalescence merges these into (k - 2) genealogies,                 

and so forth, un�l there remains a single common ancestor for the whole sample of alleles at present.                  

The idea of coalescent analysis is to consider the ancestral history of genes in a sample by developing a                   

model   for   the   �me   intervals   between   each   coalescence. 

 

Figure 1.1: In a Wright-Fisher model, two haploid individuals (green) at the present generation coalesced at the sixth                                   

generation backward in time to the most recent common ancestral - MRCA (orange). Extracted from [Critical                               

assessment   of   coalescent   simulators   in   modeling   recombination   hotspots   in   genomic   sequences,   Tao   Yang   2014] 

The coalescent theory  was ini�ally derived as an approxima�on for explaining the pa�erns of varia�on                 

observed at one locus taking advantage of the neutral Wright-Fisher model: given an effec�ve              

popula�on size and a sample of alleles, we can es�mate each coalescence tree in probability following                

the (Equation 1.1) backward in �me. Once the tree is constructed, we can es�mate the probability of                  

the observed gene�c diversity in our samples by adding muta�ons to this tree. These muta�ons would                

follow a Poisson process where the scaling factor of a branch would be determined by the number of                  

genera�ons since the last coalescence event. Normally, an infinite sites model is assumed, which              

means no recurrent muta�ons occur. Each recombina�on event breaks the sequence into several             

segments, and each segment is modeled by a genealogy tree. Simula�on of recombina�on hotspots is               

realized   by   changing   the   rates   where   these   recombina�on   events   occur    [Yang   and   Deng   2014]. 

This   approxima�on   works   well   when   sample   sizes   are   small   rela�ve   to   the   effec�ve   popula�on   size.  
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2.   Applying   the   coalescent   theory   to   simulate   sequences. 

 

Backward coalescent simula�ons are the standard method of generate popula�on samples under            

various demographic models. They are widely used as powerful tools in the field of popula�on gene�cs                

and are the keystone in es�ma�ng parameters for different popula�on histories, to infer phylogene�c              

trees, tes�ng against the presence of selec�ve sweeps and for providing an evalua�on framework at               

associa�on studies among others. Based on the neutral Wright-Fisher model, the backward coalescent             

simula�on process starts from a sample of DNA sequences and then integrates all coalescent and               

recombina�on events simula�ng the en�re ancestral origin. From the computa�onal point of view, the              

process imposes considerable computa�onal requirements. Since the year 2002, an abundant number            

of coalescent simulators have been developed and, among them, Fastsimcoal2 is one of the more               

scalable   and   flexible. 

Fastsimcoal2 is a program to simulate the neutral genomic molecular diversity in current or ancient               

samples derived from a popula�on given a demographic model. Fastsimcoal2 generates replicates of             

random outcome of molecular diversity under a user-defined evolu�onary scenario. These scenarios            

can be very complex from the evolu�onary point of view, including an arbitrary migra�on matrix               

between samples, historical events allowing for popula�on resize, popula�on fusion and fission,            

admixture   events,   changes   in   migra�on   matrix,   or   changes   in   popula�on   growth   rates    [Excoffier   2011]. 

Fastsimcoal2 is fi�ed with a fast Sequen�al Markovian Coalescent (SMC) model for recombining DNA              

sequences, in par�cular the SMC' version of SMC  [Marjoram 2006]. Under SMC, a tree is generated on                 

the le� end of the sequence under study, and computes the posi�on of a recombina�on event on the                  

right-hand side assuming an exponen�al distribu�on of recombina�on posi�ons along the sequence. A             

recombina�on event is then implemented at random along the current tree, and the detached              

recombining lineage is then free to coalesce with the other remaining lineages, leading to a new tree                 

with a poten�ally different topology and most recent common ancestor (MRCA). This procedure is              

con�nued un�l one reaches the end of the sequence to be generated. By the implementa�on of SMC’                 

algorithm, for each tree, all migra�on events having occurred in addi�on to all coalescent events are                

recorded. These events are then replayed to generate the next tree, such that the detached               

recombinant lineage can migrate in any deme and poten�ally coalesce with lineages from the le� tree                

that   were   present   there   at   the   same   �me    [Excoffier   2011]. 

Due to the clarity how SMC' algorithm is described by the authors  [Marjoram 2006]. we transcribe it                 

here   in   full: 
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Figure   2.1:   The   seven   steps   of   the   SMC’   Algorithm.   Extracted   from   [Fast   coalescent   simulation,   Marjoram   and   Wall]. 

 

Figure 2.2: how the SMC’ algorithm forms the next tree along the chromosome, moving from left-to-right, given the                                   

state   of   the   current   tree.   Extracted   from   [Fast   coalescent   simulation,   Marjoram   and   Wall]. 
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3.   Methods   for   detec�ng   global   popula�on   substructure. 

 

3.1   The   analysis   of   popula�on   structure. 

 

Popula�on structure is produced when the popula�on or metapopula�on is subdivided in            

sub-popula�ons, local popula�ons, or demes whose individuals randomly reproduce at a higher rate             

within   each   deme   than   between   demes.  

Iden�fying the sub-popula�ons that comprise a species and the gene flow connec�ons between             

different demes is an ac�ve research field within popula�on gene�cs and has important consequences              

for properly interpre�ng the gene�c diversity, for instance iden�fying gene�c/geographic barriers or            

discon�nui�es. Ul�mately, we can not assume that gene�c varia�on over the whole range of a species                

is simply the same as extrapola�ng what happens in single popula�ons. In other words: popula�on               

structure   ma�ers. 

In many real popula�ons, popula�on substructure may be cryp�c and/or show con�nuous spa�al             

pa�erns. However, even in effec�vely spa�ally con�nuous environments, different geographic areas           

can differ in gene frequencies, because the whole metapopula�on is not panmic�c. For instance,              

among humans, there are regions showing some quite major language differences, sugges�ng            

substructure, but you would be hard put to find an exact boundary where there is a changeover. Such                  

popula�ons   are   structured,   but   con�nuously,   in   space. 

The analysis of popula�on structure based on gene�c ancestry has experienced an increasing progress              

during the last decade. “Gene�c ancestry es�ma�on” is a broad term which is concerned with a number                 

of   different   popula�on   gene�cs   problems    [ Liu   2013]    : 

 

·                             defining   the   number   of   subpopula�ons   in   a   sample 

·                             assigning   individuals   to   subpopula�ons 

·                             defining   the   number   of   ancestral   popula�ons   in   admixed   popula�ons 

·                             assigning   ancestral   popula�on   propor�ons   to   admixed   individuals 

·                             iden�fying   the   gene�c   ancestry   of   dis�nct   chromosomal   segments   within   an   individual 

 

This informa�on can be further used to inform us about the evolu�onary rela�onships and migra�on               

history of natural popula�ons. In the case of humans, where both the sampling loca�on of an organism                 

or self-reported ancestry can be uninforma�ve for the true ancestry of the individual, the use of                

gene�c markers can facilitate accurate and reliable ancestry inference by exploi�ng allele frequency             

differences   across   popula�on   groups. 
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3.2   Local   and   global   ancestry   es�ma�on.  

 

Taking into account that the chromosomes of an individual with admixed ancestry represent a mosaic               

of chromosomal blocks from the ancestral popula�ons (see Figure 3.1), there are currently two              

different paradigms underlying ancestry inference: global ancestry es�ma�on and local ancestry           

es�ma�on: 

Local Ancestry Es�ma�on . Local ancestry is defined as the gene�c ancestry of an individual at a                

par�cular chromosomal loca�on, where an individual can have 0, 1 or 2 copies of an allele derived from                  

each ancestral popula�on. Local es�mates are concerned with iden�fying the ancestral origin of dis�nct              

chromosomal segments within an individual genome and, henceforth, analysing each chromosome in            

an individual’s genome as a mosaic of segments that originate from different ancestral popula�ons              

[Padhukasahasram   2014] 

Global Ancestry Es�ma�on : Global ancestry is based on es�ma�ng the propor�on of ancestry             

contributed by different popula�ons averaged across the en�re genome of an individual. Despite this              

es�ma�on can be obtained by averaging the ancestry tracts obtained from local ancestry methods,              

there   is   a   large   number   of   algorithms   that   tackle   genome   ancestry   problem   as   a   whole. 

 

Figure 3.1: Example of local genetic ancestry. Chromosome paintings showing the genomic distributions of loci with                               

African, Asian (Native American) and European ancestry, along with their genome-wide ancestry proportions for                           

one particular Colombian individual. Extracted from [Ancestry, admixture and �tness in Colombian genomes,                         

Lavanya   Rishishwar] 

 

Despite no single method or so�ware can op�mally solve all of these problems  [Padhukasahasram              

2014] recent advances in genomic technologies as well as compu�ng resources have made it possible               

to   accurately   infer   overall   ancestry   as   well   as   ancestry   at   a   fine   scale   across   an   individual’s   genome.  
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Apart from global and local ancestry approaches, under the large topic of global ancestry es�ma�on the                

algorithms for es�ma�ng gene�c ancestry can also be divided into methods that rely on mul�variate               

sta�s�cal methods (like PCA and cluster analysis) versus methods that make use of explicit gene�c               

models. However, this dis�nc�on does not imply that there aren’t important similari�es between             

algorithmic   and   model-based   methods    [Liu   2013]. 

 

3.3   “Algorithmic”   based   methods. 

 

Algorithmic approaches use techniques from mul�variate analysis, mainly cluster analysis and principal            

component analysis, to discover structure within the data not making any assump�on about the              

underlying gene�c model of the data. The proposed output of some of these methods (coordinates)               

can   be   interpreted   in   demographic   terms. 

Algorithm free methods are exemplified by MDS-PLINK  [Sham 2007] , SMARTPCA-Eigenso�  [Pa�erson            

2006] or sNMF among others (for an extensive overview of most widely used methods in popula�on                

gene�cs for detec�ng individual gene�c ancestry, see  Detec�ng individual ancestry in the human             

genome,   Wollstein   and   Lao] ) 

The   Principal   Component   Analysis   (PCA) 

The Principal Component Analysis (PCA) is an algorithm that itera�vely searches for orthogonal axes,              

described as linear combina�ons of mul�variate observa�ons, along which projected objects show the             

highest variance, and then returns the posi�ons of objects along those axes (the principal              

components). For many data sets, the rela�ve posi�on of these objects (e.g., individuals) along the first                

few PCs provides a reasonable approxima�on of the covariance pa�ern among individuals in the larger               

data set. As a result, the first few PC values are o�en used to explore the structure of varia�on in the                     

sample. 

A principal component analysis makes sense if there are high correla�ons between variables, as this is                

indica�ve that there is redundant informa�on and therefore fewer factors explain as much of the               

variability as the total set of variables. This is the case of gene�c variants: because demographic                

processes affect the whole genome, it is expected that a large number of variants will correlate due to                  

their   shared   history   (see   Origin   and   maintenance   of   the   gene�c   varia�on   in   the   human   genome ) . 

The selec�on of factors is performed such that the first factor collects the largest amount of the original                  

variability between observa�ons; the second factor collects the maximum possible variability not            

collected by the first, and so on (see Figure 3.2). From all these factors we can select those that collect                    

the percentage of variability that is considered sufficient for the analysis. Once selected the main               

components, they are represented in a matrix where each element of this factor represents the               
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coefficients of the variables (correla�ons between variables and principal components). The matrix will             

have   as   many   columns   as   main   components   and   as   many   rows   as   variables.    [Peña   2002] 

The PCA problem can be approached from a geometric point of view if we consider the point cloud                  

from our dataset and we see that the points are located following an ellipse, then we can describe its                   

orienta�on giving the direc�on of the major axis of the ellipse and the posi�on of the point by its                   

projec�on on this direc�on. It can be shown that this axis is the line that minimizes the orthogonal                  

distances. In several dimensions, prior concept can be applied to ellipsoids and the best approach to                

data is provided by the major axis of the ellipsoid. Considering the ellipsoid axes as new variables of                  

moving   from   original   variables   correlated   to   orthogonal   variables. 

Formally, let be a matrix with observa�ons, each of dimensionality , such that each  X     nm ×         m     

variable has zero mean, . Then the principal components (PCs) are given by the     Xij  ∀i  Σ = 0       Y     

transforma�on  T where is an orthogonal matrix chosen as follows: let  i be the Y = W  X   W     mm ×        w     i

th column of then  1 sa�sfies 1 =  =1 {||w T 
1 || 2 } and for  i sa�sfies i  =   ,W   w    w   rgmax  a w1∣∣ ∣∣ X    , w  1 < i ≤ m    w   

 =1 {||w T 
i [ -  j=1 

i-1 w j w T 
j || 2 } . Equivalently, the principal components are the orderedrgmax  a wi∣∣ ∣∣ I jΣ X]          

eigenvectors   of   the   sample   covariance   matrix. 

PCA is defined as an orthogonal linear transforma�on that transforms the data to a new coordinate                

system such that the greatest variance by some projec�on of the data comes to lie on the first                  

coordinate (called the first principal component), the second greatest variance on the second             

coordinate,   and   so   on.  

 

Figure 3.2: Illustration of PCA principles in a two dimensional (x1 and X2) example. Each dot represents an                                   

observation in these two dimensions. Left panel: Transforming to new coordinate system (red axis) with major                               

variance on the new �rst coordinate Right panel: Observed variables are projected onto their two principal                               

components resulting in a set of orthogonal predictors being the best approach provided by the major axis of the                                     

ellipsoid. 

Mathema�cally, the transforma�on is defined by a set of p-dimensional vectors of weights or loadings               

 1 , ….,  p that map each row vector of to a new vector of principal component(k ) ww = (  w (k ))       (i)X   X         

scores  1 , ….,  p given by in such a way that the individual variables of (i) tt = (  t (i))    k (i) (i)·w(k )t = X           t  
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considered over the data set successively inherit the maximum possible variance from , with each            X    

loading   vector      constrained   to   be   a   unit   vector.w  

 

History   of   PCA   in   popula�on   gene�cs:   Coalescent   interpreta�on,   difficul�es   and   new   uses. 

The applica�on of PCA to gene�c data was leaded by Cavalli-Sforza in the mid-1960s. From a wide range                  

of popula�ons and using rela�vely small number of classical markers (mostly blood groups and related               

biological markers) available at that �me, Cavalli-Sforza inves�gated the structure and rela�onships            

between   different   human   groups. 

In the 70's PCA was commonly used to visualise gene�c data using low size datasets; however, the                 

method was mostly abandoned in the 80’s and 90’s for these purposes due to problems related to                 

interpreta�on of PCA  [Sokal 2012] and data used not mee�ng assump�ons of PCA. In 2006  [Price 2006] ,                 

with the development of high-density SNP genotyping assays which has made possible to characterize              

pa�erns of gene�c varia�on within and among human popula�ons, the method was reintroduced in              

the popula�on genomics community, providing unprecedented opportuni�es to understand the          

evolu�onary history and migra�on pa�erns of humans. Such datasets with an order of magnitude 10 6               

absolutely require a dimensionality reduc�on technique to be summarised and visualised, and PCA is              

usually the most convenient.  [Jianzhong Ma 2012]  PCA is widely used to quan�fy pa�erns of               

popula�on structure and the Eigenstrat method, as implemented in the program SmartPCA, is now              

rou�nely used to detect and correct for popula�on stra�fica�on in genome-wide associa�on studies             

[Pa�erson   2006]. 

In conven�onal PCA, in which the markers are treated as features, sampled individuals are projected               

into a subspace spanned by the top principal components (PCs). Because the top PCs reflect varia�ons                

due to popula�on structure in the sample, individuals from the same popula�on are found to form a                 

cluster in this subspace. Therefore, the pa�ern of the top PCA is used to infer popula�on rela�onships                 

or within-popula�on structures that can be understood intui�vely.However, the biological          

interpreta�on of principal components from gene�c data is non-obvious. Cavalli-Sforza and colleagues            

interpreted varia�on in principal components in evolu�onary terms, so that a PCA component in the               

geographic   space      was   indica�ve   of   : 

 -   an   admixture   event 

 -   a   selec�ve   gradient 

 -   a   migra�on   event 

 -   a   range   expansion 

Nevertheless, as was pointed out by Novembre and Stephens  [Novembre 2006] , these PCA clines and               

other more complex regular pa�erns also appear naturally in the first few principal components of               
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varia�on when spa�ally structured popula�ons are at both equilibrium and nonequilibrium models.            

According   to   Novembre   and   Stephens    [Novembre   2006] ,   when   analyzing   spa�al   data: 

- PCA produces highly structured results, in par�cular sinusoidal func�ons of increasing            

frequency. 

 -   PCA   results   depend   on   the   details   of   a   par�cular   dataset: 

 >   popula�on   structure 

 >   distribu�on   of   sampling   loca�ons 

 >   amounts   of   data 

- These features limit the u�lity of PCA for drawing inferences about underlying processes and               

interpre�ng gradient pa�erns in PC maps as signatures of historical migra�on event, because             

such   pa�erns   arise   generally   under   a   simple   condi�on: 

> gene�c similarity decays with distance and this condi�on would be           

expected to be sa�sfied under a wide range of demographic scenarios,           

including both equilibrium isola�on-by distance models and       

nonequilibrium   models   involving   popula�on   expansions. 

- Because Cavalli-Sforza et al. used spa�al interpola�on to es�mate allele frequencies, their             

data could sa�sfy this condi�on even if the condi�on were absent in the underlying allelic               

frequencies    [Novembre   2006]. 

This is a problem to be further discussed. For example, the first two principal components of                

European genotypes almost perfectly recreate geographic North-South and East-West axes  [Lao           

2008] but it is not clear whether this is a result of range expansion in both these direc�ons,                  

constant   popula�on   structure   with   migra�on,   or   the   most   likely   op�on,   a   combina�on   of   both. 

McVean (2009) provided a unifying framework for understanding what PCA actually represents in a              

genomic context, by showing that the principal components are simply a func�on of the expected               

coalescence �mes between lineages (see The coalescent approach for modeling the neutral gene�c             

varia�on). Thus, models which lead to the same expected coalescence �mes provide the same PCA               

output. Furthermore, an addi�onal major problem when using PCA to analyse gene�c data is that it is                 

very sensi�ve to both ascertainment of markers and sampling scheme. Choosing different individuals             

can lead to very different conclusions, and according to McVean  [McVean 2009] the main drivers for this                 

situa�on   are: 

- PCA projec�ons can be strongly influenced by uneven sampling from a series of              

popula�ons. If all popula�ons are equally divergent from each other, those for which             

there are fewer samples will have larger values because rela�vely more pairwise            

comparisons   are   between   popula�ons. 
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- Even if the results were not influenced by the rela�ve sample size its eigenvectors               

will be, simply because rela�ve sample size will influence the structure of the             

gene�c   variance   in   the   sample. 

- The influence of uneven sample size can bias the projec�on of samples on the first                

few PCs in unexpected ways, for example, where there is spa�al structure to gene�c              

varia�on. 

- there are many different processes that one might want to consider as explana�ons              

for pa�erns of structure in empirical data and efficient inference, even under simple             

models   can   be   difficult. 

- Different processes can lead to similar pa�erns of structure. For example,            

equilibrium models of restricted migra�on can give similar pa�erns of          

differen�a�on   to   non-equilibrium   models   of   popula�on   spli�ng   events. 

- Any species is likely to have experienced many different demographic events and             

processes in its history and their superposi�on leads to complex pa�erns of gene�c             

variability.  

                  -   Such   models   are   o�en   highly   simplis�c   and   restricted   to   a   subset   of   possible 

explana�ons . 

 

M ul�dimensional   scaling   (MDS) 

The mul�dimensional scaling techniques (MDS) are a generaliza�on of the idea of principal             

components when, instead of having a matrix of observa�ons by variables such as principal              

component, there is a square nxn matrix "D" of distances or dissimilari�es between the "n" elements                

of a dataset. These distances may have been obtained from certain variables or may be the result of a                   

direct es�mate. The objec�ve is to represent this matrix by using a set of orthogonal variables                

(y1,....yp) where p<n so the Euclidean distances between the coordinates of the elements on these               

variables are equal (or as close as possible) to the distance or dissimilarity of the original matrix. That                  

is, from the matrix "D" it is obtained a "X" matrix n×p, which can be interpreted as the matrix of "p"                     

variables in the "n" individuals, and where the Euclidean distance between the elements             

approximately reproduces the ini�al distance matrix "D". In general it is not possible to find "p"                

variables that reproduce exactly the ini�al distances, however it is common to find variables that               

reproduce approximately the ini�al distances. On the other hand, if the distance matrix was generated               

by calcula�ng the Euclidean distances between observa�ons defined by certain variables, we can             

recover   the   main   components   of   these   variables    [Peña   2002] . 

The mul�dimensional scaling shares its main goal with principal components in order to synthesize the               

individual rela�onships and the interpreta�on of the data. If there are many elements, the matrix of                

similari�es will be very large and the representa�on by a few variables elements will allow us to                 
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understand its structure: what elements have similar proper�es or groups appearing between            

elements. 

Mul�dimensional   Scaling   (MDS)   on   Iden�ty   By   State   (IBS)   pairwise   matrix. 

Popula�on substructure modeling of a sample individuals can be done by compu�ng the Iden�ty By               

State (IBS) distance between each pair of individuals, subsequently building a matrix represen�ng the              

relatedness of individuals and then performing mul�dimensional scaling (MDS) using such matrix. IBS             

examines pairs of SNPs between two individuals and puts them into one of three categories (see                

Figure   3.3): 

1.   Iden�cal:   Both   individuals   have   the   same   genotype   call   (AA   and   AA;   BB   and   BB;   AB   and   AB). 

2.   One-Allele   Shared:   Only   one   call   is   shared   between   both   individuals   (AA   and   AB;   AB   and   BB). 

3.   No   alleles   shared:   No   alleles   are   the   same   (   AA   and   BB). 

For individual SNPs, this type of analysis really does not provide any extra informa�on. The real                

advantage   is   gained   when   high-density   SNP   informa�on   is   taken   for   the   whole   genome. 

Conceptually, having N loci, what we are really doing is plo�ng the individuals as points in a                 

N-dimensional space where each individual’s distance from another along each axis is either 0, 1, or 2                 

(IBS-0 is a distance of 2, IBS-1 is a distance of 1, IBS-2 is a distance of 0) and then compu�ng the distance                       

between each pair of points along each axis. Those distances will only plot properly in a                

N-dimensional space, but, with higher dimensions being difficult to visualize, we can use MDS to plot                

an approxima�on of the distances in 2D and itera�vely try to find a posi�oning of the points in two                   

dimensions   that   minimizes   conflict   between   their   true   distance   and   their   distance   as   plo�ed. 

 

 

Figure 3.3: IBS classi�cation example showing the three possible categories by examining pairs of SNP’s                             

between   two   individuals . 

 

IBS is suitable for popula�on outlier detec�on, is robust to high linkage disequilibrium (LD) among               

SNPs, and can be rapidly calculated  [Gao 2009] . Furthermore, one of the advantages of this distance                

method is that there is no need to explicitly specify the allele frequencies. Therefore, popula�on               

allele frequencies do not have to be approximated by sample allele frequencies. The allele              

frequencies and coancestry informa�on are embedded in the pairwise distance matrix over a large              

number of random SNP loci.  [Gao 2009] . Another advantage of the distance method is that it is easy to                   

calculate   with   no   decrease   in   accuracy   and   is   also   suitable   for   popula�on   outlier   detec�on. 
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In summary, the IBS method combined with SNP markers has considerable power in popula�on              

stra�fica�on analysis and it is not necessary to es�mate allele frequencies to separate individuals with               

different ethnic backgrounds. The correla�on/coancestry among individuals within subpopula�ons,         

which can be captured by the IBS, contributes to the classifica�on. Diploid individuals from different               

subpopula�ons   can   thus   be   separated   from   half-matrix   of   pairwise   distances. 

 

SNMF 

SNMF program  [Frichot 2014] applies an algorithm for inferring ancestry propor�ons founded on the              

linear   algebra   principle   of   non-nega�ve   matrix   factoriza�on   (see   Figure   3.4). 

Non-nega�ve matrix factoriza�on (NMF) is a group of algorithms in mul�variate analysis where a matrix               

V is factorized into two matrices W and H, with the property that all three matrices have no nega�ve                   

elements. Apart from the obvious fact that non nega�ve values make the resul�ng matrices easier to                

inspect, in NMF applica�ons such as nuclear imaging, processing of audio spectrograms or, as in our                

case, detec�ng individual ancestry in the human genome, non-nega�vity is inherent to the data being               

considered. Since the problem is not exactly solvable in general, it is commonly approximated              

numerically. Non-nega�ve matrix factoriza�on is dis�nguished from the other methods by its use of              

non-nega�vity constraints which lead to a parts-based representa�on because they allow only addi�ve,             

non   subtrac�ve,   combina�ons    [Lee   1999]. 

Figure 3.4: Probabilistic hidden variables model: the visible variables "v" in the bottom layer of nodes are generated                                   

from the hidden variables "h" in the top from a probability distribution with mean . The in�uence of  h a                            a(Wia·ha)  Σ          

on v i is represented by a connection with strength W ia . [Daniel D. Lee and H. Sebastian Seung (1999). "Learning                                       

the   parts   of   objects   by   non-negative   matrix   factorization".   Nature.   401   (6755):   788–791] 

 

The   algebraic   basis   of   NMF   is   as   follows:   let   matrix   V   be   the   product   of   the   matrices   W   and   H, 

HV = W  

and when mul�plying these matrices, the dimensions of the factor matrices (W and H) may be                

significantly lower than those of the product matrix (V) and it is this property that forms the basis of                   
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NMF: genera�ng factors with significantly reduced dimensions compared to the original matrix. For             

example, if V is an matrix, W is an matrix, and H is a matrix then p can be     m× n      m× p       p × n       

significantly   less   than   both   m   and   n. 

For illustra�ve purposes, a simplified example for detec�ng individual ancestry in the human genome              

by   using   NMF   algorithm   would   follow   next   steps: 

S1) Let the input matrix (the matrix to be factored) be "V" with 10,000 rows and 500 columns where                   

SNPs are in rows and individuals are in columns  (Figure 3.5) . Each row contains 1 character per                 

individual: 0 means zero copies of the reference allele. 1 means one copy of the reference allele. 2                  

means   two   copies   of   the   reference   allele.   9   means   missing   data: 

 

Figure 3.5: Illustrative example of sNMF factorization. The input matrix to be factored, a 10,000 SNPs genotyped at                                   

500 individuals from the left of the equation (SNP’s in rows, individuals in columns) is decomposed in two                                   

non-negative      features   matrix   W   and   coe�cients   matrix   H   on   the   right. 

 

S2) Assume we ask the algorithm to find -lets say- 10 features in order to generate a features matrix                   

"W" with 10,000 rows and 10 columns and a coefficients matrix H with 10 rows and 500 columns. The                   

product of W and H is a matrix with 10000 rows and 500 columns, the same shape as the input matrix V                      

and,   if   the   factoriza�on   worked,   it   is   a   reasonable   approxima�on   to   the   input   matrix   V. 

S3) From the treatment of matrix mul�plica�on above it follows that each column in the product matrix                 

WH is a linear combina�on of the 10 column vectors in the features matrix W with coefficients supplied                  

by   the   coefficients   matrix   H. 

This last point is the basis of NMF because we can consider each original individual in our example as                   

being   built   from   a   small   set   of   hidden   features.   NMF   generates   these   features. 

S4) We can interpret each feature (column vector) in the features matrix W as an individual archetype                 

comprising a set of SNPs where each SNP cell value defines the SNP's rank in the feature: The higher a                    

SNP's cell value the higher the SNP's rank in the feature. A column in the coefficients matrix H                  

represents an original individual with a cell value defining the individual's rank for a feature. This                

follows because each row in H represents a feature. We can now reconstruct an individual (column                

vector) from our input matrix by a linear combina�on of our features (column vectors in W) where each                  

feature   is   weighted   by   the   feature   cell   value   from   the   individual's   column   in   H. 
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In the context of the above mathema�cal framework, sNMF so�ware models the probability of the               

observed genotypes  p i l  in individual "i" at locus "l" as a frac�on  q ik of K ancestral genotype probability                  

g kl    [Lao   and   Wollstein   2015] : 

 

As exemplified above, j=0,1,2 denotes the number of alleles. The corresponding matrix representa�on             

is P=QG, where the unknown Q and G can be es�mated by nonlinear matrix factoriza�on minimizing                

two   least   square   criteria: 

 

A loop is then executed applying both criteria un�l convergence is reached. Star�ng from random               

matrices as ini�al condi�on, the algorithm finally obtain es�mates about Q from Ls 1 and G from Ls 2 .                 

[Wollstein   and   Lao   2015] . 

 

3.4      “Model”   based   methods . 

 

Model-based approaches es�mate individual ancestry propor�ons and ancestral popula�ons as the           

parameters of a sta�s�cal model. Model based algorithms philosophy are exemplified by STRUCTURE             

[Pritchard   2000] ,   FRAPPE    [Tang   2005]    or   ADMIXTURE    [Alexander   2009].  

In 2000 the seminal paper of Pritchard et al  [Pritchard 2000]  introduced STRUCTURE, a new method for                 

iden�fying individual global ancestry. The method was based on es�ma�ng ancestry propor�ons from a              

puta�ve number of ancestral popula�ons that produced currently observed data by assuming very basic              

popula�on gene�c assump�ons and implemen�ng a Bayesian framework to recover the ancestry            

propor�ons   of   each   individual   as   well   as   the   ancestral   allelic   propor�ons   in   the   ancestral   popula�ons. 

From a conceptual point of view, this method revolu�onized the analysis and interpreta�on of human               

genomic data. First of all, it showed that ancestry propor�ons could be recovered at individual level,                

rather than at a popula�on level. Second, in 2002, Rosenberg et al  [Rosenberg 2002] showed that                

con�nental like groups of humans could be iden�fied by means of using this method through               

STRUCTURE so�ware, without using prior informa�on about the origins of individuals. The authors             

iden�fied six main gene�c clusters, five of which corresponded to major geographic regions, and              

sub-clusters that corresponded to individual popula�ons. Finally, since its publica�on, this -and            

maximum likelihood based approaches- became the gold standard for iden�fying popula�on           

substructure   when   analyzing   gene�c   data. 
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From a methodological point of view, this new method introduced by Pritchard (STRUCTURE) is based               

on the assump�on of basic demographic assump�ons and es�ma�ng ancestry coefficients as the             

parameters   of   a   sta�s�cal   model.    [Pritchard   2000]. 

Formally   and   in   brief,   STRUCTURE   algorithm   assumes: 

 -   Each   cluster   or   popula�on   is   modeled   by   a   specific   set   of   allele   frequencies. 

 -   HWE   within   popula�ons. 

 -   Complete   linkage   equilibrium   between   loci   within   popula�ons. 

 - Each allele at each genotype is an independent draw from the appropriate frequency              

distribu�on Pr(X|Z,P) where X denote the genotypes of the sampled individuals, Z denote the              

unknown popula�ons of origin of individuals and P denote the unknown allele frequencies in all               

popula�ons.   See   next   point   for   a   descrip�on   of   the   individual   and   popula�on   likelihood. 

 

ADMIXTURE 

The approach for es�ma�ng ancestry propor�ons of ADMIXTURE so�ware is similar to STRUCTURE             

methodology since both programs model the probability of the observed genotypes using ancestry             

propor�ons and popula�on allele frequencies. Like STRUCTURE, ADMIXTURE simultaneously es�mates          

popula�on   allele   frequencies   along   with   ancestry   propor�ons    [ Alexander   2009]: 

in the likelihood model, individuals are formed by the random union of gametes producing the               

binomial   propor�ons: 

 

 

 

 

  

  

 

Being g ij the observed number of copies of allele "1" at marker "j" of individual "i" which equals 2, 1                     

or 0 if "i" has genotype 1/1, 1/2 or 2/2 at marker "j", since individuals are considered independent, the                   

log-likelihood   of   the   en�re   sample   is: 

 

In this expression, Q = ( q i k ) represents the matrix of ancestry coefficients for all individuals, and F =                  

( f kj )   represents   a   matrix   of   allele   frequencies   for   all   loci. 
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The main difference between ADMIXTURE and STRUCTURE relies on maximizing the likelihood rather             

than on sampling the posterior by MCMC as done by STRUCTURE. Since high-dimensional op�miza�on              

is much faster than high-dimensional MCMC, ADMIXTURE maximum likelihood approach can           

accommodate many more markers. The parameters of the ADMIXTURE model must sa�sfy linear             

constraints and bounds and is se�led on a block relaxa�on algorithm that alternates between upda�ng               

the ancestry coefficient matrix Q and the popula�on allele frequency matrix F. Each update of Q itself                 

involves sequen�al quadra�c programming, a generaliza�on of Newton's method suitable for           

constrained   op�miza�on. 

Since model-based methods explore the space of possible solu�ons star�ng from an stochas�c ini�al              

point, it is generally suggested to run the algorithm several �mes at different ini�al star�ng points for                 

each proposed K and to check for the op�mal resul�ng scenario. Different strategies have been               

proposed for combining the results from different runs: merging all the solu�ons and then compu�ng a                

consensus ancestry value or just to take the run that provides the best value of model performance                 

[Wollstein   and   Lao   2015] . 

 

Iden�fica�on   of   the   op�mal   number   of   ancestral   popula�ons 

 

The iden�fica�on of the number of ancestral popula�ons contribu�ng to current gene�c varia�on is of               

interest for several popula�on genomic fields such as associa�on mapping, molecular ecology or             

human evolu�on studies among others. Many algorithms have been developed for employing            

popula�on gene�c data to es�mate the individual ancestral propor�ons out of a predefined set of K                

ancestral popula�ons. Typically, a matrix structure is used to represent the individual ancestry             

propor�ons over all the samples, where each individual is given a coefficient or frac�on for each                

cluster, all adding to 1. This frac�on can have mul�ple interpreta�ons. In one hand, it can be interpreted                  

as the probability of being a member of the ancestral popula�on. On the other hand, it can indicate the                   

frac�on of the genome with membership in the ancestral popula�on. The number of ancestral              

components is usually predefined by the user for some methods, and a further algorithm is required                

for inferring the op�mal number of ancestry components explaining the observed data  [Rosenberg             

2007] . 

There are a number of methods in order to deal with the unknown K number of ancestral popula�ons                  

and es�mate the op�mal best one from the data under analysis. In model-based methods, the               

algorithm is explicitly run by the user at different Ks and then the selec�on of the ideal K value of                    

ancestral components is then ascertained by taking the K that op�mizes the parameter of performance               

of   the   algorithm    [Wollstein   and   Lao   2015] .   For   example: 

 -   the   one   that   maximizes   the   log-likelihood   of   the   posterior   in   the   case   of   STRUCTURE 

 -   the   one   that   minimizes   cross-valida�on   error   is   applied   in   ADMIXTURE 

 -   the   one   that   minimizes   cross-entropy   error   is   applied   in   SNMF 
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Cross   Valida�on   (ADMIXTURE)   vs   Cross-Entropy   (SNMF) 

Cross valida�on procedure helps iden�fying which value of K has the best predic�ve value by fi�ng the                 

model   on   a   subset   of   genotype   data   and   then   predic�ng   the   excluded   (masked)   genotypes    [Liu   2013]. 

The aim of cross-valida�on method is to iden�fy the best K value as judged by predic�on of                 

systema�cally excluded data points. In ADMIXTURE so�ware, v-fold cross-valida�on procedure is           

performed fragmen�ng the non-missing genotypes into "v" more or less equally sized subsets. At each               

of "v" itera�ons, the members of one of the folds are masked (excluded temporarily marking them as                 

missing) to build a new data matrix and then compu�ng the log-likelihood score (the entries with                

missing values are ignored). Maximiza�on of the log-likelihood readily yields new es�mates for the              

masked data and the predic�on error is es�mated by averaging the squares of the deviance residuals                

across all masked entries over all folds. Minimizing this es�mated predic�on error on a grid of K values                  

then   suggests   the   most   suitable   K    [Alexander   2011]. 

Cross-Entropy is a cross-valida�on technique also based on imputa�on of masked genotypes and a              

procedure par��oning the genotypic matrix entries into a training set and a test set. To build the test                  

set, 5% of all genotypes are randomly selected and marked as missing values. The occurrence               

probabili�es for the masked entries from training sets are computed according to the formula  [Frichot               

2014] : 

 

In   sta�s�cal   terms,   the   cross   entropy   method   provides   an   es�mate   of   the   quan�ty: 

 

This quan�ty corresponds to the sum of the Kullback–Leiber divergence between the sampled and              

predicted allelic distribu�ons. In probability theory, the Kullback–Leibler divergence is a measure of             

the difference between two probability distribu�ons P and Q  [Kullback 1951]. In applica�ons, P              

typically represents the "true" distribu�on of data or a precisely calculated distribu�on, while Q              

typically represents a theore�cal model or approxima�on of P. Specifically, the Kullback–Leibler            

divergence from Q to P, is a measure of the informa�on gained when one revises one's beliefs from the                   

prior probability distribu�on Q to the posterior probability distribu�on P. It is the amount of               

informa�on lost when Q is used to approximate P. Therefore, the number of ancestral gene clusters (K)                 

is selected to minimize the cross-entropy criterion where smaller values of the criterion indicate be�er               

algorithm   outputs   and   es�mates. 
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Spa�al   ancestry   and   SPA. 

 

As discussed previously, ancestry inference from gene�c data takes popula�ons modeled as discrete             

units of the input of the problem, and es�mates the frac�ons of the genome coming from a set of                   

source popula�ons as the output. This inference aims to assign each allele in the genome to one of the                   

considered ancestry popula�ons. Alterna�ve methodologies study popula�on structure in a geographic           

con�nuum, exploi�ng the expected correla�on of gene�cs and geography derived from isola�on by             

distance models (again the first law of geography:  "Everything is related to everything else, but near                

things are more related than distant things" (Tobler, 1970)) . Such localiza�on is called spa�al ancestry                

assignment.   This   spa�al   approach   offers   some   advantages    [Yang   2014] : 

i) It is reconciled with the fact that nature rarely provides precise boundaries between dis�nct               

popula�ons   which   are   exchanging   individuals. 

ii) Model-based inference take advantage of the geographic structure of allele frequencies in order to               

increase   sta�s�cal   power. 

iii)   More   accurate   alloca�on   of   ancestors   for   unsampled   or   undersampled   regions. 

By using this approach of ancestry inference based on geographical con�nuum instead of a categorical               

a�ribute, European individual’s geographic coordinates of origin can be determined up to a few              

hundred kilometers of error using spa�al ancestry inference methods. Though this level of resolu�on is               

impressive, it is natural to wonder if a model-based method for spa�al assignment could perform               

be�er and whether inferences could be reliably made for admixed individuals  [Rañola and Novembre              

2014]. 

With the aim of valida�ng real data from Europe, several theore�cal studies using computer              

simula�ons have shown that major prehistoric demographic events can produce gene�c gradients in             

autosomal markers similar to the observed in the real data. However, these simula�ons usually ignore               

more subtle demographic events that took place throughout history at a smaller geographical scale              

such as those in Europe, simplifying the demographic history due to computa�onal constraints. For              

solving these obstacles, it has been suggested to pay more a�en�on to recent demographic history in                

interpre�ng gene�c clines and has been proposed that gene�c popula�on substructure is detectable on              

a   small   geographic   scale   despite   recent   demographic   events    [Lao   2013]    . 

In this line of analysis, SPA so�ware is a probabilis�c model for the spa�al structure of gene�c varia�on                  

where the allele frequency of each SNP changes as a func�on of the loca�on of the individual in                  

geographic space: the allele frequency is a func�on of the x and y coordinates of an individual on a                   

map. In SPA, each individual’s genotypes are assumed to follow Hardy-Weinberg propor�ons, with             

allele   frequencies   defined   by   the   individual’s   loca�on    [Yang   and   Novembre   2012] . 

SPA algorithm is founded on the principle that when sampling a chromosome of an individual from a                 

posi�on (x,y) on the map, the probability of observing the minor allele at SNP “j” on the chromosome                  

can   be   formulated   assuming   a   spa�al   gradient   (Figure   3.6)   as   follows: 
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where the func�on  f j (X) is selected under the assump�on to be an instance of a logis�c func�on and                  

being a con�nuous func�on that describes allele frequency as a func�on of geographic posi�oning. "X"               

is a vector of variables indica�ng geographic loca�ons, "a" is a coefficient that encodes the steepness of                 

the   slope   and   "b"   is   a   fixed   offset   parameter. 

SPA model captures spa�al gene�c structure by the ability to jointly es�mate both the allele frequency                

gradients and the spa�al posi�ons of individuals only from the genotype data. The so�ware starts by                

placing the individuals in random posi�ons, then itera�vely uses these posi�ons for the es�ma�on of               

the   slope   func�ons,   and   finally   using   the   slope   func�ons   to   update   the   individual   posi�ons. 

 

Figure 3.6: Di�erent allele frequency slope model (a) Flat slope. A SNP with nearly constant allele frequency in all                                     

regions of the map. (b) Medium slope. A SNP with gradual allele frequency change. (c) Steep slope. A SNP with a                                         

sharp frequency change. Extracted from [A model-based approach for analysis of spatial structure in genetic                             

data,Wen-Yun   Yang,   John   Novembre] 
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4.   Objec�ves  
To what degree gene�cally homogeneous groups of human individuals exist is a long on-going and yet                

unsolved debate in the scien�fic community. Answering this ques�on is important for be�er             

understanding recent human evolu�onary history, for reducing the amount of false posi�ves in gene              

mapping studies and other medical issues, and for inferring biogeographic origin of unknown persons              

in forensic inves�ga�ons. Therefore, detec�ng the gene�c fingerprint of admixture and isola�on            

processes in human popula�ons is of main interest for human popula�on gene�cists, and the              

development of new methods for detec�ng such events has been a constant in the literature. However,                

the demographic history of  Homo sapiens has revealed to be extremely complex, comprising a large               

number of demographic fluctua�ons and migratory events that spa�ally and temporally overlap since             

the   ini�al   Out   of   Africa   expansion   of   humans.  

To make things more complex we need to know what is the gene�c varia�on in  Homo Sapiens                 

explained by the popula�ons. In order of importance, approximately 80% of the total gene�c variability               

is explained by within-individual varia�on, a small propor�on in the range 10-15% is explained by               

con�nent of origin and finally the remaining approximately 5% of the gene�c varia�on is explained by                

the   popula�ons    [Wollstein   and   Lao   2015] 

However, as we have highlighted in the previous sec�ons, state-of-the-art algorithms for detec�ng fine              

popula�on substructure present several problems. First of all, even when considering the simplest             

demographic models, the obtained gene�c admixture es�ma�ons depend on the assump�ons of the             

algorithm, the type and number of considered DNA markers and how they were discovered ini�ally,               

the underlying demographic rela�onship among the considered popula�ons, and the sample size of             

the studied popula�ons. When applied to real popula�ons, most algorithms only agree at the              

con�nental level of achieved ancestry resolu�on, while reaching fine geographic popula�on           

substructure is usually cumbersome. Furthermore, even in the simplest controlled demographic           

environments, the best performing algorithms show departures up to 5% in the es�mated ancestry              

propor�ons of each individual compared to his true gene�c ancestry  [Wollstein and Lao 2015] . Most               

importantly, the behavior of these algorithms is unknown in more complex and realis�c demographic              

models such as the ones including geography. This is par�cularly important in the case of humans.                

Humans tend to mate predominantly to individuals from the same (or close by) geographic area, which                

creates   an   effect   of   isola�on   by   distance   in   the   amount   of   gene�c   differen�a�on. 

 

The aim of this project is to analyze the performance of commonly applied algorithms for detec�ng                

global   ancestry   in   complex   controlled   geographic   demographic   scenarios   in   order   to:  
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1) Establish   the   robustness   of   these   algorithms  

2) Iden�fy   best   performing   algorithms.  

3) Provide   guidelines   for   interpre�ng   the   result   from   these   algorithms.  

Demographic      models      will      consider:  

i) Two-dimensional stepping stone model for mimicking processes of isola�on by distance in             

humans. 

ii)   Anisotropic      models      for      mimicking      the   different      con�nental      axis      of      differen�a�on      in      humans.  

For each demographic model, we will generate simulated full genomes by means of the demographic               

simulator   FASTSIMCOAL2 

At each simula�on, we will run different commonly applied algorithms for detec�ng popula�on             

substructure         such         as:  

- ADMIXTURE  

- SNMF 

- SMARTPCA  

- MDS-PLINK  

- SPA  

We will analyze the output performance of the different algorithms when considering non             

homogeneous   biased   geographic   sampling   or   unequal   sampling   size. 
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5.   Methods 
5.1   2D   stepping   stone   model. 

We have depicted in the next figure a two dimensional stepping stone model of 225 demes on a grid of                    

15x15. Each popula�on can exchange migrants with a rate “m” per genera�on with the nearby neighbor                

surrounding popula�ons. The figure is a simple graph illustra�ng the considered 2D stepping stone in a                

15 x 15 grid where each popula�on is depicted as a circle. Allowed migra�ons are depicted as edges.                  

Each number represents one popula�on. This is one of the two demographic models that are the object                 

of   this   study.  

 

Figure 5.1: Two Stepping Stone Model, 225 demes, 15x15. Demes 113, 120 and 225 illustrate migration patterns                                 

between neighbouring demes, patterns which in fact are applied in all demes in the same manner but not painted                                     

in   here. 
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5.2   Anisotropic   model. 

 

We have depicted in the next figure an anisotropic model of 125 demes on a cross-shaped grid with five                   

blocks of 5x5. Cross-shaped grid emulates anisotropic behavior. Each popula�on can exchange migrants             

with a rate “m” per genera�on with the nearby neighbor surrounding popula�ons. Again, each              

popula�on is depicted as a circle, allowed migra�ons are depicted as edges and each number               

represents   one   popula�on. 

 

                                                             

Figure 5.2: Anisotropic Model, 125 demes, cross-shaped grid with 5 blocks of 5x5 emulating directionally                             

dependent behavior. Demes 63, 70 and 125 illustrate migration patterns between neighbouring demes, patterns                           

which   in   fact   are   applied   in   all   demes   in   the   same   manner   but   not   painted   in   here. 
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5.3   Demographic   simula�ons   with   FastSIMCoal2. 

 

We have run Fastsimcoal2 six �mes to simulate 2D Stepping Stone and Anisotropic models. ,Each               

scenario has been run with three different migra�on rates: m=0.001, m=0.005 and m=0.02. Taking as               

example m=0.001 and the popula�on numbered as 113 in Figure 5.1 for the 2D Stepping Stone model,                 

for each genera�on backward in �me, any gene from popula�on 113 has probability 0.001 to be sent to                  

popula�ons {97,98,99,112,114,127,128,129} and that a gene from popula�ons        

{97,98,99,112,114,127,128,129} has a probability 0.001 to move to popula�on 113. This migra�on process             

is applied to all demes in the model following a migra�on matrix defined in the fastsimcoal2 input file                  

“PAR”: the migra�on matrix included in the PAR input file is a double entry matrix of dimension                 

225x225 for the 2D stepping stone model and 125x125 for the anisotropic model, and the cell values of                  

this matrix are zero for those pairs of demes without migra�on or 0.001/0.005/0.02 for those pairs of                 

nearby   neighbouring   demes   as   defined   in   Figure   5.1   and   Figure   5.2. 

The fixed parameters common for the six models are: Popula�on Effec�ve Size=1000 haploid             

individuals (or 500 diploid individuals) for each of the 225 popula�ons in the 2D stepping stone design                 

(and also for each of the 125 popula�ons in the anisotropic design), Sample Size=20 haploid individuals,                

Growth=0 that means demes have a sta�onary popula�on size with no expansion events, and we want                

to generate diversity along 500 Kb DNA sequence on 22 Chromosomes with fixed muta�on rate               

 /bp/gen and fixed recombina�on rate  /bp/gen. These demographic μ = 2 × 10 8−       μ = 1 × 10 8−    

parameters have been ascertained either due to computa�onal constraints (i.e. number of demes,             

effec�ve popula�on size, DNA fragment size) or because they represent real case scenarios in human               

popula�ons (i.e. sample size, number of chromosomes, recombina�on rate and muta�on rate).            

Summary of the parameters established in the six PAR input files used to run fastsimcoal2 are shown in                  

Table   5.1. 

 

 

OUTPUT   FILES   from   fastsimcoal2 

For each simulated dataset we obtained an output text file in the Arlequin format (ARP). The content of                  

each   ARP   file   is   formed   by   four   blocks   of   informa�on: 

i)   A   header   lis�ng   the   run   parameters   used. 

30 



ii) A block lis�ng the numerical posi�ons of the generated SNPs on each of the 22 chromosomes. One                  

row per chromosome with the exact loca�ons separated by commas. For instance, for a given               

simula�on,   the   block   starts   with   chromosome-1: 

 

#   20675   polymorphic   positions   on   chromosome   1 

#10,   37,   51,   63,   152,   171,   185,   214,   232,   241,   248,   311,   328,   387,   433,   443,   488,   490, 

494,   535,   539,   574,   598,   638,   653,   668,   737,   741,   754,   798,   807,   870,   893,   915,   930,   1004, 

……………………………………,   499672,   499690,   499785,   499795,   499931,   499943,   499945,   499950

 

and   ends   with   the   list   of   SNPs   generated   on   chromosome   22:

 

#   20625   polymorphic   positions   on   chromosome   22 

#2,   13,   28,   56,   100,   111,   147,   153,   167,   184,   208,   232,   238,   391,   420,   426,   435,   437,   471, 

488,   536,   543,   576,   942,......................,   499699,   499756,   499817,   499878,   499892, 

499897,   499912,   499919,   499921,   499937,   499961

 

iii) A block lis�ng the numerical posi�ons of the recombina�ons events generated on each of the 22                 

chromosomes.   One   row   per   chromosome   similar   to   prior   SNPs   lists. 

iv) A block with the DNA sequence simulated for each haploid individual: for each haploid individual                

and each of the defined posi�ons (those posi�ons provided above in block [ii]), it is provided the                 

allele. Fastsimcoal2 only outputs polymorphic sites for DNA sequences, unless the user request to              

output   all   sites   by   using   a   command   line   op�on. 

For example, for the first haploid individual (individual coded 1_1) the allele corresponding to the first                

SNP   (in   posi�on   10)   is   “A”: 

 

1_1         1 

AGAAATCCCTTAGCTATCAGGATCATGGGGAGTCCGCGAAGGTGGATTGTATCCCAGATAAGTGTGCGCACCCGATTGATAACGGTTAG 

GGCCGCGATGGCTCGGAGGGAAGGTGCACATCAACACCTATCTCTCGGCCGCCGGTCAATGGATCGATTCACGATCCAAGATAATAGGG 

GGTCCCTCACGGCGCCAATAGAT…………………...

 

The six ARP Arlequin files showed in Table 5.1 have been converted to PLINK BED format files by using a                    

Java   applica�on   programmed   for   that   specific   purpose   (ConvertArlequinToPlink.jar). 

5.4   Sampling   methods. 

Spa�al   Sampling. 

We have considered various sampling strategies for the spa�al distribu�on of the selected demes and               

for   the   sampling   size   of   individuals   by   popula�on. 

For   the   spa�al   sampling   we   have   considered   three   scenarios: 
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- Full sampling (Homogeneous): taking the six basic designs (Table1) we consider all the             

simulated popula�ons (225 and 125 for the 2D stepping stone and anisotropic models             

respec�vely) with all of original individuals per popula�on (2250 and 1250 diploid            

individuals for 2D stepping stone and anisotropic models respec�vely). Just as they are             

conceived a�er running fastsimcoal2. We consider these six scenarios as main points of             

reference,      being   null   models   for   tes�ng   each   method.  

- Random   spa�al   sampling:    from   the   full   sampling   we   have   selected   “k”   popula�ons   at 

random:   k=75   for   2D   stepping   stone   and   k=45   for   anisotropic   model.   This   represents   a 

similar   percentage   of   sampling   33%   and   36%   respec�vely.   Figure   5.3   shows   the   random 

selec�on   on   the   2D   stepping   stone   and   anisotropic   designs. 

Figure   5.3:   The   k=75   and   k=45   random   populations   sampled   from   the   total   225   populations   of 

the   2D   stepping   stone   model   full   model   and   from   the   total   125   of   anisotropic   model. 

- Contagious sampling: The term contagious distribu�on was apparently first used by           

Neyman (1939) for a discrete distribu�on that exhibits clustering or contagious effect. In             

plant ecology, contagious distribu�on appears when the pa�ern formed by the           

distribu�on of individuals of a given plant species within a community is not random              

but shows clumping. In our case, from the full sampling, we have declared “n” regions               

and in each region we have selected “p” popula�ons. Both values, “n” and “p” have               

been chosen in a manner which ensures for comparison purposes. For 2D        n × p ≈ k       

stepping stone models we have declared n=25 squared regions formed by 9 popula�ons             

each one. For every of these 25 regions we have selected 3 popula�ons in average per                

region (total 74 popula�ons similar to the 75 random selec�on). For anisotropic models             

we have declared n=5 squared regions formed by 25 popula�ons each one. For every of               

these 5 regions we have selected 9 popula�ons per region (total 45 popula�ons equal              
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to the random selec�on). Figure 5.4 shows the contagious sampling for the two             

demographic   strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Contagious sampling showing the 25 regions declared on 2D stepping stone (left) and the                               

5 regions on Anisotropic model(right). 3 populations per region in average have been selected on 2D                               

stepping   stone   model,   total   74   (left)   and   9   populations   per   region   on   Anisotropic   (right). 

 

 

Sampling   size   by   popula�on. 

Regarding the sampling size by popula�on we have considered two op�ons: the same number of               

individuals per popula�on (10 diploid) and unequal number of individuals per popula�on defined by a               

random   sampling   within   popula�ons   in   the   range   1   to   5   diploid   individuals. 

Minimum   allele   Frequency   (MAF)   and   Linkage   Disequilibrium   (LD)   filtering. 

In addi�on, each of the subsets generated by prior sampling strategies (spa�al and within popula�ons)               

have been subject to Minimum allele Frequency (MAF) and Linkage Disequilibrium (LD) filtering. The              

MAF filtering has been performed by including only those SNPs that are above an specific MAF value                 

(0.05), which is typical in GWAS and SNP microarray pla�orms. The LD filtering has been implemented                

based on the variance infla�on factor (VIF), which recursively removes SNPs within a sliding window               

(window size used in SNPs = 50), the number of SNPs to shi� the window at each step (value used = 5)                      

and the VIF threshold (value used VIF=2). The VIF is equal to 1/(1-R^2) where R^2 is the mul�ple                  

correla�on coefficient for a SNP being regressed on all other SNPs simultaneously. That is, this               
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considers the correla�ons between SNPs but also between linear combina�ons of SNPs. A VIF=2              

implies   R^2=0.5.   These   are   the   default   LD   pruning   parameters   in   PLINK. 

Both   pruning   ac�ons,   MAF   and   LD,   have   been   implemented   via   PLINK   so�ware. 

 

Figure 5.5: LD-based SNP pruning: generates a subset of SNPs that are in approximate LD. Sliding window 50                                   

SNPs   and   calculate   LD.   Select   representative   SNPs   which   have   low   LD   (R^2<   0.5). 

Sampling   Summary. 

Recapitula�ng and bearing in mind the six star�ng full models from the two demographic designs with                

three different migra�on rates (Table 5.1), each one of them have generated a total of 12 addi�onal                 

subsets (2x2x3): 2 variants due to random or contagious spa�al popula�on sampling, 2 variants due to                

within   equal   or   unequal   popula�on   sampling,   3   variants   due   to   non   filtering   or   MAF   or   LD   filtering.  

In total we have built 78 experimental scenarios and each one is represented by its PLINK-BED file, as                  

shown      in   Table   5.2A   and   Table   5.2B. 
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5.5   Sta�s�cs   for   comparing   inferred   ancestry   with   coordinates   and   ancestry   propor�ons. 

 

Procrustes   Test 

 

In sta�s�c terms, Procrustes analysis determines a linear transforma�on of the points in matrix Y to                

best conform them to the points in matrix X. The transforma�on includes transla�on, reflec�on,              

orthogonal rota�on, and scaling. The goodness-of-fit criterion is the sum of squared errors. Procrustes              

algorithm   returns   the   minimized   value   of   this   dissimilarity   measure. 

In general terms, Procrustes transforma�on compare the shapes of two or more objects that must be                

first op�mally overlapped or superimposed. Procrustes superimposi�on is performed by op�mally           

transla�ng, rota�ng and uniformly scaling the objects. Both the placement in space and the size of the                 

objects are freely adjusted. The aim is to obtain a similar placement and size, by minimizing a measure                  

of   shape   difference   called   the   Procrustes   distance   between   the   objects. 

 

Figure   5.6:   Procrustes   transformation   steps   applied   to   a   simple   visual   pair   of   objects. 

For our study, Procrustes transforma�on is useful for comparisons between two or more maps that               

involve popula�on-gene�c data. This kind of analysis has generally been assessed in a qualita�ve              

manner, by visual evalua�on. Procrustes method provides a sensible quan�ta�ve approach for map             

comparison: each of two maps is transformed, preserving rela�ve distances among pairs of points              

within each map [Wang 2010] . The objec�ve is to iden�fy the transforma�ons that maximize the               

similarity of the transformed maps and obtain the similarity score between the two op�mally              

transformed maps. A permuta�on test can then evaluate the probability that a randomly chosen              

permuta�on of the points in one of the maps leads to a greater similarity score than that observed for                   

the   actual   data   points. 

More formally, Procrustes method aims to find the transforma�ons, f* and g*, that minimize a func�on                

over all choices and that preserve rela�ve pairwise distances between points in X(f (X), (Y ))d g    f   g           
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and Y. Being both X and Y a couple of matrices, only X is transformed so g*(Y) = Y can be assumed.          n × k              

The transforma�on f can be wri�en as  , where ρ is a scalar to produce matrix       (x ) A x  f r = ρ T
r + b

 
         

dila�on, A is a k × k orthogonal matrix represen�ng a rota�on and possibly a reflec�on, and b is a k × 1                       

transla�on   vector. 

The   objec�ve   func�on   “d”   to   be   minimized   is   as   follows: 

 

For the 78 experimental scenarios defined above (Tables 2A-2B), we have sequen�ally performed the              

algorithm free methods PCA and MDS as well as the model-based algorithm SPA. The three methods                

return a two columns matrix with the es�mated coordinates of the N individuals (rows) present in the                 

corresponding   78   PLINK-BED   files   described   before. 

We have applied Procrustes method using func�on "protest" from R package "vegan" which rotates a               

matrix to maximum similarity with a target matrix minimizing sum of squared differences. This func�on               

has been recursively executed to obtain the Procrustes correla�on coefficient returned when            

comparing each of the 78x3 (PCA,MDS,SPA) coordinates matrices with the real geographical posi�ons of              

the individuals: we have used the algorithms PCA,MDS and SPA to solve a problem for which we know                  

the answer in advance. The three programs have es�mated the geographical coordinates of the              

individuals (78 �mes) and we can compare their results with the real coordinates of the demographical                

models as described in Figure 5.1 and Figure 5.2. For instance, for the 2D stepping stone model,                 

individuals belonging to popula�on number 50 have real geographical coordinates (5,4), individuals            

belonging   to   popula�on   100   have   coordinates   (10,7),   and   so   on.   Same   simplicity   for   anisotropic   model. 

 

Mantel   Test 

The Mantel test is a non-parametric sta�s�cal method that computes the correla�on between two              

distance matrices. The Mantel test was proposed in 1967 to test the associa�on between two matrices                

and was first applied in popula�on gene�cs by Sokal in 1979. It computes the significance of the                 

correla�on through permuta�ons of the rows and columns of one of the input distance matrices. The                

test sta�s�c is the Pearson product-moment correla�on coefficient "r" which falls in the range of -1 to                 

+1, where being close to -1 indicates strong nega�ve correla�on and +1 indicates strong posi�ve               

correla�on.   An   r   value   of   0   indicates   no   correla�on. 

Formally   the   Mantel   test   is   given   by: 
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where  g i j  and  d i j are the two distance matrices to be evaluated  [Diniz-Filho 2013] . Because Zm is given                  

by the sum of products of distances its value depends on how many popula�ons are studied, as well as                   

the magnitude of their distances. The Zm-value can be compared with a null distribu�on, and Mantel                

originally   proposed   to   test   it   by   the   standard   normal   deviate   (SND),   given   by 

 

 

 

The ra�onale behind Mantel Test is that if there is a rela�onship between matrices G and D, the sum of                    

products Zm will be rela�vely high, and randomizing rows and columns will destroy this rela�onship so                

that Zm values, a�er permuta�ons, will tend to be lower than the observed  [Diniz-Filho 2013] .               

Therefore if the null hypothesis of there being no rela�on between the two matrices is true, then                 

permu�ng the rows and columns of the matrix should be equally likely to produce a larger or a smaller                   

coefficient. In contrast to the ordinary use of the correla�on coefficient, in Mantel test correla�on is                

recalculated a�er each permuta�on. The p-value of the observed correla�on is the propor�on of such               

permuta�ons   that   lead   to   a   higher   correla�on   coefficient. 

We have converted the 78x3 (PCA,MDS,SPA) coordinate matrices and the real geographical posi�ons of              

the individuals into Euclidean distance matrices. Then, func�on "mantel" from R package "ade4" has              

been recursively executed to obtain the correla�on coefficient returned when comparing each of the              

78x3 (PCA,MDS,SPA) distance matrices with the distance matrix from real geographical posi�ons.            

Similar procedural approach as before with Procrustes test: we are assessing which of the experimental               

designs   reconciles   be�er   with   the   real   geographical   coordinates. 

 

 

 

CLUMPP 

As discussed above, several algorithms for inferring ancestry propor�ons such as ADMIXTURE or SNMF              

result on a matrix where for each individual (rows) is given a membership coefficient for each cluster or                  

ancestry popula�ons (columns), being these coefficients the ancestry frac�ons (probabili�es) assigned           

to every individual and summing to 1 across the K columns. The random ini�al condi�ons of these                 

clustering algorithms introduce a degree of randomness in the output results, and independent             

analyses of the same input data may result in several dis�nct outputs. According to  [Rosenberg 2007]                

the main differences across replicates are of two types: “label switching” and “genuine mul�modality”.              

“Label switching” refers to the case in which different replicates obtain the same numerical ancestry               

frac�ons but placed in different columns (clusters are permuted). Due to the meaning of each cluster                
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label is not known in advance, a clustering algorithm may be equally likely to reach any of K!                  

permuta�ons of the same collec�on of es�mated membership coefficients. In contrast to label             

switching, “genuine mul�modality” appears when different admixture scenarios can similarly explain           

the   observed   gene�c   diversity   in   the   data. 

These matrices with ancestry frac�ons from mul�ple runs of a clustering program are the input for                

CLUMPP program, which outputs these same matrices, permuted so that all replicates have as close as                

possible a match. CLUMPP resolves the “label switching” heterogeneity so that the “genuine             

mul�-modality’   can   be   detected   and   quan�fied.  

Having a C×K matrix of membership coefficients for a single cluster analysis where “C” are the                

individuals or popula�ons and the “K” columns correspond to clusters, and R replicates of the               

admixture analysis, CLUMPP a�empts to maximize a measure of similarity of the replicates of the               

original CxK matrix over all  (K!) R−1 possible alignments of the replicates. The coefficient G’ used by                

CLUMPP   to   measure   the   similarity   is   defined   as   follows: 

 

Where Qi and Qj are a couple of input matrices coming from runs “i” and “j” and we calculate Frobenius                    

norm   on   their   difference   matrix   Qi-Qj: 

 

The output coefficient G’ is a value in the range [0,1] and the maximum G’=1 corresponds to an                   

iden�cal   pair   of   input   matrices,   decreasing   G’   as   the   similarity   of   the   input   matrices   decreases. 

 

CLUMPP program has been used to evaluate the degree of similarity between the matrices obtained               

from the 78 runs of ADMIXTURE and SNMF algorithms. In par�cular, we have compared by blocks the                 

resul�ng matrices from sampling runs against their corresponding full model matrices: the resul�ng             

matrices from ADMIXTURE and SNMF on 2D stepping stone full model basic case (migra�on rate               

m=0.001) with all the sampling cases generated on this basis (12 cases). The same for the other five                  

blocks: 2D stepping stone/migra�on rate 0.005 and 0.02 and anisotropic models with the three              

migra�on   rates   variants.  
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6.   Results 
6.1   Experimental   Workflow. 

We have constructed an experimental model for tes�ng the performance of currently algorithms             

applied for es�ma�ng popula�on substructure which starts by designing two ideal prototypes of             

spa�ally structured popula�ons (2D stepping stone and anisotropic). From each model we have             

generated a pool of 78 experimental datasets, simula�ng the genomic molecular diversity with             

Fastsimcoal2, performing the sampling of individuals and popula�ons and selec�ng different filtering            

strategies (MAF, LD). Those 78 datasets (plink bed files) have been processed to evaluate the response                

of commonly applied algorithms to SNP data for quan�fying individual popula�on substructure: PCA,             

MDS, SPA, ADMIXTURE and SNMF. For those algorithms in which the output is a coordinate (PCA, MDS                 

and SPA), we have evaluated the correla�on (via Mantel and Procrustes tests) of these es�mated               

coordinates with the geographic sampling coordinates of individuals in our original ideal ar�facts. For              

ADMIXTURE and SNMF we have applied different algorithms for assessing the best K number of               

ancestries and we have applied CLUMPP so�ware to compare their output matrices. Figure JJ describes               

the   work-pipeline   that   we   have   applied.  
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Figure 6.1: Work�ow for the full experimental procedure detailing the two main stages of the pipeline: First,                                 

dataset pool generation by simulation and sampling from step [A] to [F] and second, the analysis and obtention of                                     

results   from   step   [G]   to   [I]. 

[A] Generation of the two demographic models which are the basis of the analysis as described in Figure 5.1 (2D                                       

stepping stone) and Figure 5.2 (anisotropic), a squared grid of 15x15(225) populations and a cross-shaped grid with                                 

125   populations   respectively. 

[B] Our design introduces three levels of migration rate applied to each of demographic models to evaluate the                                   

impact   of   migration   degree   on   �nal   results. 

[C] Prior steps [A] and [B] are just conceptual and graphical: the models do not become computational artifacts until                                     

we build the parameter �le for fastsimcoal2 . By completing the input �le (PAR �le) we are de�ning how we want                                         

to   simulate   the   molecular   diversity   through   fastsimcoal2   (populations,   mutation   rate,   recombination   ,   etc). 

[D] After 6 runs of fastsimcoal2 and once the six Arlequin result �les have been converted to plink-BED format,                                     

spatial sampling schema is applied by generating subsets based on random and contagious distributions as shown                               

in Figure DD and EE. Two new plink-BED �les are generated from each one of the 6 basic scenarios. Taking the                                         

plink-fam �les from the 6 basic datasets and executing a short script in R, a new pool of plink-fam �les have been                                           

43 



created with the reduced number of populations being the process guided by the random or contagious sampling                                 

schema. Then, using plink with option "keep" we have generated the new plink datasets for random and                                 

contagious   experimental   cases   (see   column   "Population   Sampling"   in   Table   5.2A   and   5.2B). 

[E] From each of the previous datasets we have generated a new version of them by randomly selecting between 1                                       

and   5   individuals   per   population   (unequal   sampling).  

[F] Finally each of the combinations has been �ltered by keeping only those SNPs that are above MAF>0.05 (new                                     

subset) and in a separated variant by keeping those SNPs which have low LD (R^2< 0.5). At this point we have                                         

generated   the   78   datasets   as   shown   in   Table   5.2A   and   5.2B. 

[G] The �ve algorithms under analysis have been sequentially executed on each of the 78 datasets using a Linux                                       

shell   script. 

[H] Two types of output �les coming from the prior massive program execution: MDS, PCA and SPA generate                                   

simple matrices where rows are the individuals and the columns are coordinates in two columns (the number of                                   

rows-individuals of each case will depend on the speci�c sampling case). Admixture and SNMF generate matrices                               

where   again   rows   are   the   individuals   and   columns   are   the   K=4   inferred   ancestry   fractions. 

[I] Coordinate matrices coming from MDS, PCA and SPA are evaluated through Mantel and Procrustes Test                               

obtaining the correlations against real individuals coordinates. Cross validation and cross entropy procedures have                           

been performed to identify which value of K has the best predictive value and CLUMPP software has been applied                                     

for determining the degree of similarity between the ancestry fractions matrices from Admixture and SNMF of the                                 

di�erent   sampling   cases   and   its   corresponding   base   full   sampling   case. 

 

6.2 Algorithmic Approach: Performance of PCA, MDS and SPA algorithms for detec�ng global             

individual ancestry in a 2D stepping stone and anisotropic model and the impact of              

migra�on   rate. 

The results from applying Mantel and Procrustes tests to the matrices generated by PCA, MDS and SPA                 

compared to the geographic sampling origin of the simulated individuals are shown in Table 6.1A and                

6.1B. The p-value for all Mantel and Procrustes tests is 0.001 indica�ng that our results are sta�s�cally                 

significant at an alpha of 0.05. Since the significance is assessed by permuta�on tests, we determined                

the   p-value   by   specifying   999   permuta�ons   both   in   Mantel   and   Procrustes   tests. 
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Before performing a more formal sta�s�cal assessment of the results we can iden�fy some trends by a                 

simple visual inspec�on of Table 6.1A and 6.1B: there is a high degree of correla�on between the                 

coordinates es�mated by the three algorithms and the real data, specially for the six full model used as                  

a reference (highlighted in grey in both tables). The average correla�on for these 2D stepping stone                

and Anisotropic full models with the three algorithms together is 0.93 and 0.91 respec�vely.              

Addi�onally, from the total number of coefficient correla�ons calculated (78 cases x 3 algorithms x 2                

tests = 468) there are 344 correla�ons (74%) above 0.80 and the rest of the measures (124) showing that                   

low degree of correla�on are mainly present (81%) in the high migra�on rate sec�ons (m=0.02),               

sugges�ng in a first approach an inverse rela�onship between correla�on results and migra�on rate.              
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Best global correla�on mean on the 78 experimental datasets corresponds to PCA with 0.82 and 0.91 for                 

Mantel and Procrustes respec�vely followed by MDS with 0.78 and 0.89 and finally SPA with 0.72 and                 

0.83.   It   is   also   evident   the   higher   correla�on   values   of   Procrustes   test   compared   with   Mantel. 

In order to iden�fy the best performing algorithm we have applied the one-tail paired Wilcoxon               

signed-rank test on PCA, MDS and SPA correla�ons resul�ng from Mantel and Procrustes tests. The               

Wilcoxon signed-rank test is a non-parametric sta�s�cal hypothesis test used when comparing            

repeated measurements on a single sample to assess whether their popula�on mean ranks differ.              

Wilcoxon test has been employed fragmen�ng the results by the two basic demographic models and by                

the   three   levels   of   migra�on   rate   and   comparing   the   three   algorithms   in   pairs.  

Table 6.2 shows the resul�ng p-values from all Wilcoxon test rounds: in all the cases PCA is the most                   

robust   algorithm   followed   by   MDS.  
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We can visualise by plo�ng the full set of Mantel and Procrustes correla�ons to double check this                 

conclusion: Figures 6.2, 6.3, 6.4 and 6.5 display the boxplots comparing the three algorithms in the two                 

demographic   models   split   by   the   three   migra�on   rates: 
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Figure 6.2: Plot with Mantel correlations for 2D Stepping Stone model results from PCA (gray), MDS (red) and SPA                                     

(blue) split by migration rates. PCA results show the highest degree of correlation with the geographic sampling                                 

origin   of   the   simulated   samples. 

 

Figure 6.3: Plot with Procrustes correlations for 2D Stepping Stone model results from PCA (gray), MDS (red) and                                   

SPA (blue) split by migration rates. PCA results show the highest degree of correlation with the geographic                                 

sampling   origin   of   the   simulated   samples. 
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Figure 6.4: Plot with Mantel correlations for Anisotropic model results for 2D Stepping Stone model results from                                 

PCA (gray), MDS (red) and SPA (blue) split by migration rates. PCA results show the highest degree of correlation                                     

with   the   geographic   sampling   origin   of   the   simulated   samples. 

 

Figure 6.5: Plot with Procrustes correlations for Anisotropic model results for 2D Stepping Stone model results                               

from PCA (gray), MDS (red) and SPA (blue) split by migration rates. PCA results show the highest degree of                                     

correlation   with   the   geographic   sampling   origin   of   the   simulated   samples. 

 

All the different boxplot suggest that PCA is the most robust algorithm for es�ma�ng the coordinates                

or geographical loca�on of individuals, closely followed by MDS. They also suggest that the more               
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migra�on rate, the lower accuracy in the results. To illustrate this rela�onship, Figure 6.6 displays PCA                

Mantel   correla�ons   in   their   three   levels   of   migra�on   rate:  

Figure 6.6: PCA Mantel correlations between the 78 datasets and real geographic coordinates split in the three                                 

levels of migration rate, becoming evident the decrease of accuracy as the migration increases. Similar behavior                               

has been detected for MDS and SPA algorithms, being the fall due migration more stronger for SPA. Procrustes                                   

tests   follows   the   same   trend   for   the   three   algorithms. 

 

Algorithmic   Approach:   Impact   of   the   Demographic   Model   on   the   Performance   of   PCA,   MDS   and   SPA 

Taking the correla�on Mantel and Procrustes results for PCA, MDS and SPA from Table 6.1A and 6.1B and                  

making them independent of migra�on rate, we can perform Wilcoxon test to evaluate how the               

demographic design (2D stepping stone or anisotropic) is impac�ng on the algorithm performance. In              

this case we are interested in comparing the Mantel correla�ons for PCA on the 2D stepping stone with                  

PCA   on   the   anisotropic   model   and   also   pairing   the   two   measures   of   MDS   and   the   two   measures   of   SPA.  

Table 6.3 shows the Wilcoxon test p-values that lead us to conclude that the three algorithms perform                 

more   robustly   under   2D   Stepping   Stone   scenario. 
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Similar results are observed when es�ma�ng the correla�on between the simulated datasets and the              

sampling   loca�on   by   means   of   Mantel   test 

 

Figure 6.7: Boxplot comparing the three algorithms and their Mantel test correlations with the geographic sampling                               

origin of the simulated samples in the two di�erent scenarios: 2D stepping stone and anisotropic. Each algorithm,                                 

PCA   (gray),   MDS   (red)   and   SPA   (blue)   performs   better   under   the   2D   stepping   stone   model.  

 

 

And   for   Procrustes   correla�ons: 
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Figure 6.8: Boxplot comparing the three algorithms and their Procrustes test correlations with the geographic                             

sampling origin of the simulated samples in the two di�erent scenarios: 2D stepping stone and anisotropic. Each                                 

algorithm   performs   better   under   the   2D   stepping   stone   model. 

 

Addi�onally, and for illustra�ng purposes, graph (Figure 6.9) shows MDS Mantel correla�ons comparing             

by   pairs   the   39   anisotropic   cases   with   their   corresponding   39   2D   stepping   stone   scenarios: 
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Figure 6.9: Using Mantel Test to estimate the correlation between the coordinates from MDS and the geographic                                 

sampling origin of the simulated samples we have obtained these coe�cients for the 78 datasets that, paired by                                   

the   two   demographic   scenarios,   evidence   the   higher   performance   of   MDS   under   the   2D   stepping   stone   design. 

 

Algorithmic Approach: Impact of the Popula�on Sampling Method on the Performance of PCA, MDS and               

SPA 

Taking the correla�on Mantel and Procrustes results for PCA, MDS and SPA from Table 6.1A and 6.1B and                  

making them independent of all factors except for the popula�on sampling method (Contagious or              

Random), we can perform Wilcoxon test to evaluate how the way we have selected the popula�ons                

from the full models is impac�ng on the algorithm performance. In this case we are interested in                 

comparing the Mantel correla�ons for PCA on the Contagious Sampling method with PCA on the               

Random   method   and   also   pairing   the   two   measures   of   MDS   and   the   two   measures   of   SPA. 

Table 6.4 show the Wilcoxon test p-values that lead us to conclude that PCA and MDS algorithms                 

perform more robustly under Contagious scenario (according to SPA p-values we can not determine              

which   is   the   best   popula�on   sampling   method   for   this   algorithm):  
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And   visually, 

 

Figure 6.10: Boxplot comparing the Mantel correlations of the three algorithms under the Contagious and Random                               

population sampling methods denoting a slightly stronger degree of correlation for Contagious scenarios when                           

using   PCA   and   MDS   algorithms   while   is   not   conclusive   for   SPA   algorithm.  

 

 

 

And   for   Procrustes   correla�ons: 
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Figure 6.11: Boxplot comparing the Procrustes correlations of the three algorithms under the Contagious and                             

Random population sampling methods denoting a slightly stronger degree of correlation for Contagious scenarios                           

when   using   PCA   and   MDS   and   SPA   algorithms. 

 

Figure 6.12 shows PCA Mantel correla�ons comparing by pairs the 36 contagious cases with their               

corresponding   36   Random   scenarios,   making   it   clear   that   Contagious   values   are   above   Random: 

 

Figure 6.12: Contagious vs Random correlations for PCA (Mantel values): the comparison by pairs of the 36 PCA                                   

Mantel correlations for the Contagious models (red) to their equivalent 36 Random (green) denotes the best                               

performance achieved by Contagious population sampling method. Full models are shown on the left (blue) as                               

reference. 
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Algorithmic Approach: Impact of the Individuals Sampling Method on the Performance of            

PCA-MDS-SPA 

Taking the correla�on Mantel and Procrustes results for PCA, MDS and SPA from Table 6.1A and 6.1B and                  

making them independent of all factors except for the individuals sampling method (Equal or              

Unequal), we can perform Wilcoxon test to evaluate how the way we have selected the individuals                

within popula�ons is impac�ng on the algorithm performance. In this case we are interested in               

comparing the Mantel correla�ons for PCA on the Equal Sampling method with PCA on the Unequal                

method   and   also   pairing   the   two   measures   of   MDS   and   the   two   measures   of   SPA. 

Table 6.5 show the Wilcoxon test p-values that lead us to conclude that the three algorithms perform                 

more   robustly   under   Equal   scenarios:  

 

 

Visually: 

 

Figure 6.13: The comparison of Mantel correlations split by the two individuals sampling methods (Equal vs                               

Unequal) indicates a higher degree of correlation with the geographic origin of the simulated samples for Equal                                 

method   and   for   the   three   algorithms. 
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The   same   for   Procrustes   test:

 

Figure 6.14: Likewise, Procrustes correlations split by the two individuals sampling methods (Equal vs Unequal) also                               

indicates a higher degree of correlation with the geographic origin of the simulated samples for Equal method and                                   

for   the   three   algorithms. 

And one sample graph showing the behaviour of MDS algorithm under the Equal and Unequal               

individuals   sampling   methods   (Procrustes): 

 

Figure 6.15: Equal vs Unequal Procrustes correlations for MDS: the comparison by pairs of the 36 MDS Procrustes                                   

correlations for the Equal sampling models (red) to their equivalent 36 Unequal (green) denotes the best                               

performance achieved by Equal population sampling method in all cases. Full models are shown on the left (blue)                                   

as   reference. 
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Algorithmic   Approach:   Robustness   against   different   levels   of   data   cleaning 

We have repeated previously described procedures to assess the impact of filtering methods (MAF and               

LD) on the three algorithms performance. Now we are comparing three cases: no filtering, MAF<0.05               

and   LD   (R2<0.5). 

Table 6.6 show the Wilcoxon test p-values that lead us to conclude that PCA and MDS algorithms                 

perform more robustly under LD data cleaning case, while SPA p-values indicate a be�er performance               

for   MAF   method: 

 

 

Figure 6.16: Plot with Mantel correlations split by the three cleaning data strategies: LD (left), MAF (center) and No                                     

Filtering (right). PCA (gray) and MDS (red) perform with stronger degree of correlation when LD is applied followed                                   

by the non �ltering case and denoting MAF as the more weak strategy. In contrast, SPA (blue) performs with higher                                       

intensity   of   Mantel   correlation   when   MAF   is   applied. 
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Figure 6.17: Similarly, the Procrustes correlations split by the three cleaning data strategies: LD (left), MAF (center)                                 

and No Filtering (right) indicate that PCA (gray) and MDS (red) perform with stronger degree of correlation when LD                                     

is applied followed by the non �ltering case and denoting MAF as the more weak strategy. In contrast, SPA (blue)                                       

performs   with   higher   intensity   of   Mantel   correlation   when   MAF   is   applied. 

 

 

Figure 6.18: The three di�erent cleaning data methods applied to the particular case of PCA (Mantel correlations):                                 

the comparison by trios of the 24 PCA Mantel correlations for the LD �ltering method (green) , MAF (red) and “No                                         

Filtering” (blue) denotes the best performance achieved by LD cleaning method in all cases followed by the “No                                   

Filtering”   strategy. 
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6.3   Model   Based   Approach:   Performance   of   ADMIXTURE   and   SNMF.  

 

Determining   the   most   predic�ve   K   number   of   ancestry   popula�ons 

We have sequen�ally applied the cross valida�on method (ADMIXTURE) and the cross entropy criterion              

(SNMF) to iden�fy the best K on the 78 experimental datasets for K={4,5,6,10}. The huge computa�onal                

resources required for doing this assessment has forced us to narrow the inspec�on to these par�cular                

four values. Addi�onally, and for having an improved visibility, we have performed a full assessment               

for K between 1 and 10 using the cross entropy criterion (SNMF) in the par�cular case of Anisotropic full                   

model   with   migra�on   rate=0.001   (one   of   the   six   reference   models): 

 

Figure   6.19:   Cross   entropy   error   for   K   between   1   and   10   on   Anisotropic   referential   full   model   with   m=0.001 

 

In this key case, the cross entropy error obtained declines from 0.3343 for K=1 to 0.2995 for K=10 with a                    

dynamic margin of 0.0348 ( 10% of the maximum value) sugges�ng a pure asympto�c trend, being K=4 a                  

number of ancestry popula�ons that can be a balanced point in which we minimize the error for                 

ADMIXTURE and SNMF algorithms as well as it makes possible to es�mate it in a reasonable amount of                  

�me given the high demanding computa�on �me. In fact, the cross entropy error for K=4 is just 20%                  

higher than the error for K=10 (execu�ng ADMIXTURE for K=10 on the 78 experimental datasets need to                 

be measured in “months” rather than hours or days on a server with 64 GB of RAM, 4 processors and                    

Linux   64bits).   For   these   reasons,   we   have   selected   K=4   for   the   78   runs   of   ADMIXTURE   and   SNMF.  

 

Applying   CLUMMP   test   on   ADMIXTURE   and   SNMF 

As opposed to the algorithmic approach where PCA, MDS and SPA produce output matrices of N                

individuals as rows and just 2 columns with the resul�ng inferred coordinates that can be directly                

compared with the known real geographical loca�ons, model based algorithms (ADMIXTURE and SNMF)             

generates output matrices of N individuals and K columns with the es�mated ancestry frac�ons, the               
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elements of each row adding to one. This lack of symmetry is a serious obstacle for the direct                  

comparison of the K ancestry propor�ons with the geographic origin of the simulated samples. A               

possible shortcut to coerce matrices symmetry could be based on transforming the K ancestries              

matrices in an euclidean distance matrix making them comparable to the real geographic origin by               

using Mantel or Procrustes tests, but this implies some sta�s�cal inconsistencies which require further              

analysis and inves�ga�on. As a consequence of this, we have limited our analysis to perform the                

comparison of the K ancestries matrices from ADMIXTURE and SNMF with their corresponding full              

sampling   cases   by   means   of   CLUMPP. 

The results from applying CLUMPP test to the matrices generated by ADMIXTURE and SNMF compared               

to their corresponding full sampling case are shown in Table 6.7. The results also include a third                 

column result showing the CLUMPP correla�on results on a paired comparison between ADMIXTURE             

and   SNMF   in   every   experimental   dataset. 

We can iden�fy some trends by a simple visual inspec�on of Table 6.7: there is a rela�vely strong                  

(ADMIXTURE) or high (SNMF) degree of correla�on between the K ancestry propor�ons es�mated by              

the two algorithms and the output matrices for the basic scenarios. The average CLUMPP similarity               

level (G’) for all the ADMIXTURE and SNMF runs are 0.80 and 0.87 respec�vely, sugges�ng a be�er                 

performance of SNMF. The paired comparison ADMIXTURE vs SNMF shows an average similarity of 0.80.               

Obviously the CLUMPP result for the six full models (highlighted in gray) is equal to 1 since we are                   

comparing their output with themselves. Addi�onally, from the total number of similarity coefficients             

G’ (72 cases x 2 algorithms = 144) there are 102 correla�ons (71%) above 0.80 and the rest of the                    

measures (42) showing that low degree of similarity are mainly present (79%) in the high migra�on rate                 

level (m=0.02), sugges�ng in a first approach an inverse rela�onship between correla�on results and              

migra�on   rate.  
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In order to iden�fy the best performing algorithm we have applied the one-tail paired Wilcoxon               

signed-rank test on ADMIXTURE and SNMF similarity coefficients resul�ng from CLUMPP tests. Wilcoxon             

test has been employed fragmen�ng the results by the two basic demographic models and by the three                 

levels   of   migra�on   rate   and   comparing   the   two   algorithms   in   pairs.  

Table 6.8 shows the resul�ng p-values from all Wilcoxon test rounds: in all the cases SNMF is the most                   

robust algorithm. In the second exercise showed in Table 6.8 the resul�ng Wilcoxon p-values are not                

conclusive   comparing   Anisotropic   vs   2D   Stepping   Stone   in   either   of   the   two   algorithms. 

 

 

 

We can visualise by plo�ng the CLUMPP correla�ons to double check these conclusions: Figures 6.20               

and 6.21 display the boxplots comparing the two algorithms split by the three migra�on rates and split                 

by   the   two   demographic   models   respec�vely: 

 

Figure 6.20: ADMIXTURE (green) and SNMF (orange) similarity coe�cients (G’) estimated by CLUMPP displayed by                             

the three levels of migration rate and corroborating the best performance of SNMF in all cases and also ratifying                                     

the   decreasing   trend   of   both   algorithms   as   migration   rate   grows. 
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Figure 6.21: ADMIXTURE (green) and SNMF (orange) similarity coe�cients (G’) estimated by CLUMPP displayed by                             

the two demographic models, corroborating the best performance of SNMF but not establishing a signi�cant                             

di�erence   between   demographic   models. 

 

Finally,   aligning   the   CLUMPP   similarity   values   (G’)   for   all   the   78   experimental   datasets   in   a   graph:  

 

Figure 6.23: ADMIXTURE (green) and SNMF (orange) similarity coe�cients (G’) estimated by CLUMPP displayed                           

along   the   78   experimental   models,   corroborating   again   the   best   performance   of   SNMF   algorithm. 
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7.   Conclusions 
 

The performance of five algorithms widely used in the field of popula�on gene�cs for quan�fying               

global popula�on substructure has been tested under realis�c spa�al models. The validity and accuracy              

of the experimental model we have constructed is based on two pillars: first, the sta�s�cal predic�ve                

power of the 78 demographic scenarios designed and second, the robustness of Fastsimcoal2             

performing coalescent simula�ons of DNA sequences. On the one hand, the set of demographic              

scenarios have been designed covering a broad range of sampling schemes. In the other hand,               

Fastsimcoal2 has been previously validated  [Yang 2014]  as highly scalable and flexible in simula�ng              

many   different   demographic   histories   and   diverse   DNA   sequence   structures   such   as   SNPs. 

Assuming that these ini�al condi�ons are well established, the analysis of the performance of              

commonly   applied   algorithms   has   determined   that: 

1) The five programs (PCA, MDS, SPA, ADMIXTURE and SNMF) show a strong robustness for              

detec�ng global ancestry in complex controlled geographic demographic scenarios. This is           

evidenced by the high degree of correla�on between the es�mated coordinates and the real              

geographical   origin   of   individuals. 

2) With regard to “Algorithmic” based methods,  the best performing algorithm is smart-PCA            

(Eigenso�) since it shows the strongest level of correla�on with the geographic sampling             

loca�on and performing in a very fast and efficient way. Smart-PCA performance is followed              

very closely by MDS (PLINK) in terms of high correla�on with the real geographical origin of                

individuals. A large number of computa�onal tasks for processing SNP data can be easily              

performed via PLINK, and this is an addi�onal advantage for performing global ancestry             

detec�on with the MDS-PLINK algorithm without changing the program pla�orm. By using SPA,             

we have obtained a poorest correla�on degree and we have experienced a shocking             

computa�onal response �me: while smart-PCA and MDS-PLINK solved the ancestry es�ma�on           

of bigger datasets in minutes (2250 individuals - 944,000 SNPs), SPA required days with the               

same   datasets. 

3) With respect to “Model” based methods,  the best performing algorithm is SNMF since it shows               

the highest degree of similarity between the different sampling cases and the reference             

datasets. In contrast, ADMIXTURE resulted in a lowest level of correla�on between sampling             

and base datasets and, similarly to SPA, suffers from a dispropor�onate and severe response              

�me   that   makes   difficult   to   coordinate   the   different   stages   of   the   pipeline.  

4) The migra�on rate level has a very significant impact on the validity of the results from the five                  

algorithms: the higher the migra�on rate, the lower accuracy in the results. For instance, the               

best performing “algorithmic” program, smartPCA, experiences a Mantel correla�on decreases          

from 0.97 when migra�on rate is m=0.001, to 0.86 when migra�on rate is 20 �mes greater                
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(m=0.02), in line with the principle which asserts that migra�on has a homogenizing effect on               

the   gene�c   varia�on   in   popula�ons. 

5) The 2D stepping stone demographic model exhibits a slightly higher degree of correla�on than              

anisotropic model for all algorithms. In average, the 2D stepping stone obtain Mantel and              

Procrustes   correla�ons   that   are   6%   and   4%   above   anisotropic   model   respec�vely.  

6) The contagious sampling method performs slightly be�er than selec�ng popula�ons randomly.           

For instance, for MDS-PLINK program under Procrustes test, the mean for the 36 contagious              

datasets is 0.90 while the mean for 36 two stepping stone models is 0.85 (6.4% below                

contagious). Similarly, for SNMF program under CLUMPP test, the mean for the 36 contagious              

datasets is 0.89 while the mean for the 36 two stepping stone models is 0.83 (5.8% below                 

contagious). 

7) The Equal sampling shows a stronger degree of correla�on than unequal sampling method for              

all algorithms but this has to be taken with cau�on as the average number of individuals for                 

unequal datasets are significantly lower than equal cases and this can par�ally explain the              

devia�on. 

8) The LD filtering method performs slightly be�e r correlated than No Filtering strategy while             

MAF cleaning is the worst method. This conclusion is applicable to the whole experimental              

dataset   pool. 

9) The comparison between Mantel and Procrustes test is a ques�on that can not go unno�ced:               

while Mantel test shows a total mean of 0.77 for the three algorithmic methods and for the 78                  

datasets (a total of 234 cases), Procrustes test exhibits a total mean of 0.88, 13% higher than                 

Mantel. This can lead us to a very different conclusion: or a less demanding behavior for                

Procrustes   test   or   a   dysfunc�on   in   Mantel   test   amplifying   ar�ficially   the   decorrela�on.  
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8.   Appendices:   Linux   Shell   Scripts   and   “R”   Code 
STEP   1   -   SHELL   SCRIPT   FOR   AUTOMATING   FASTSIMCOAL2   AND   ALGORITHMS   ON   BASE   CASES 

================================================================================== 

pop_train1 

  

########################################################################## 

##############   POPULATION   ALGORITHM      ##################################### 

#Notes: 

#FASTSIMCOAL2   installed   at   /home/ubuntu/f ast   and   executable   renamed   as   f sc 

#ARLEQUIN2PLINK   CONVERSOR   installed   at   /home/ubuntu/dist 

#ADMIXTURE   installed   at   /home/ubuntu/admix 

#SNMF   installed   at   /home/ubuntu/snmf  

#EIGENSOFT   installed   at   /home/ubuntu/eigen 

#SPA   installed   at   /home/ubuntu/spa 

#PLINK(MDS)   installed   at   /home/ubuntu/plink 

#TREEMIX   installed   at   /home/ubuntu/tree 

#R   installed 

#R   package   OriGen   installed 

##############   Just   to   f orce   linux   f ormat   ################################ 

dos2unix   $1.par 

##############   Running   FASTSIMCOAL2   ###################################### 

cp   $1.par   /home/ubuntu/f ast 

cd   /home/ubuntu/f ast 

##   one   simulation   -n1,   f our   cores   and   f our   baches 

./f sc   -i   $1.par   -n1   -c4   -B4 

cd   $1 

cp   $1_1_1.arp   /home/ubuntu/dist 

cd   .. 

mv    $1.par   /home/ubuntu/dist 

rm   -r   $1 

read   -p   "Process   f inished,   ENTER   to   show   f iles   ........" 

##############   Conv erting   Arlequin   to   Plink   ############################## 

cd   /home/ubuntu/dist 

mv    $1_1_1.arp   $1.arp 

jav a   -jar   Conv ertArlequinToPlink.jar   $1.arp   $1 

##############   Creating   ped   and   Remov ing   missing   snp   ##################### 

grep   "[G|T|A|C]   0"   $1.bim|awk   '{   print   $2}'   >   remov e.snp 

/home/ubuntu/plink/plink.107   --bf ile   $1   --recode   --tab   --out   $1   --noweb 

read   -p   "NOW   EDIT   WITH   VI   AND   CHANGE   SAMPLE   0      ........" 

##   tail   -n   +2   $1.ped   >   pedped2 

##   head   -n   1   $1.ped   >   pedped1 

##   v i   pedped1   CHANGE   SAMPLE   0 

##   rm   $1.ped 

##   cat   pedped1   pedped2   >   $1.ped 

##   rm   pedped1   pedped2 

##   SPA   is   reluctant   to   run   with   missing   v alues 

/home/ubuntu/plink/plink.109   --f ile   $1   --exclude   remov e.snp   --noweb   --make-bed   --out   $1bis 

rm   $1.bed   $1.bim   $1.f am 

mv    $1bis.bed   $1.bed 

mv    $1bis.bim   $1.bim 

mv    $1bis.f am   $1.f am 

##############   Running   ADMIXTURE   ######################################### 

/home/ubuntu/admix/admixture   $1.bed   4   -j4 

##   K   ancestries   =   4 

mv    $1.4.Q   $1_admix.4.Q 

rm   $1.4.P 

##############   Running   SNMF   ############################################## 

/home/ubuntu/snmf /bin/ped2geno   $1.ped   $1.geno 

##   K   ancestries   =   4 

/home/ubuntu/snmf /bin/sNMF   -x   $1.geno   -K   4 

mv    $1.4.Q   $1_snmf .4.Q 

rm   $1.4.G 

##############   Running   EIGENSOFT   SMartPCA   ################################ 

##   just   two   principal   components   -k   2 

read   -p   "CONTROL   BEFORE   PCA   ........" 

smartpca.perl   -i   $1.bed   -a   $1.bim   -b   $1.f am   -o   $1.pca   -q   NO   -k   2   -p   $1.pca   -e   $1.pca   -l   $1.pca 

read   -p   "CONTROL   AFTER   PCA   ........" 

##############   Running   SPA   ############################################### 

#/home/ubuntu/spa/spa   --bf ile   $1   --location-output   $1.spa   -r   0.0001 

##############   Running   MDS   ############################################### 

##   Pairwise   IBS   estimation 
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/home/ubuntu/plink/plink.109   --bf ile   $1   --genome   --noweb   --out   $1 

rm   $1.log   $1.nosex 

/home/ubuntu/plink/plink.109   --bf ile   $1   --read-genome   $1.genome   --cluster   --mds-plot   2   --noweb   --out   $1 

##############   Sav ing   RESULTS   ############################################ 

mkdir   /home/ubuntu/results/$1 

mv    $1.par   $1.arp   $1.bed   $1.bim   $1.f am   $1_admix.4.Q   $1_snmf .4.Q   $1.ped   $1.map   $1.geno   $1.pca.ev ec   $1.spa   $1.genome   $1.mds   $1.cluster* 

/home/ubuntu/results/$1 

rm   $1.pca.*   *.log   *.nosex   $1.pca   remov e.snp   $1bis.*   *.mod 

cd   /home/ubuntu/results/$1 

read   -p   "Process   f inished,   ENTER   to   show   f iles   ........" 

ls   -l 

########################################################################## 

  

  

  

STEP   2   -   SHELL   SCRIPT   FOR   AUTOMATING   SAMPLING   ON   BASE   CASES   (POP,IND,   MAF,   LD) 

================================================================================== 

pop_train2 

  

mkdir   /home/ubuntu/results/tss/tss_m2_cont_eq 

mkdir   /home/ubuntu/results/tss/tss_m2_cont_eq_ld 

mkdir   /home/ubuntu/results/tss/tss_m2_cont_eq_maf  

mkdir   /home/ubuntu/results/tss/tss_m2_cont_un 

mkdir   /home/ubuntu/results/tss/tss_m2_cont_un_ld 

mkdir   /home/ubuntu/results/tss/tss_m2_cont_un_maf  

mkdir   /home/ubuntu/results/tss/tss_m2_kpop_eq 

mkdir   /home/ubuntu/results/tss/tss_m2_kpop_eq_ld 

mkdir   /home/ubuntu/results/tss/tss_m2_kpop_eq_maf  

mkdir   /home/ubuntu/results/tss/tss_m2_kpop_un 

mkdir   /home/ubuntu/results/tss/tss_m2_kpop_un_ld 

mkdir   /home/ubuntu/results/tss/tss_m2_kpop_un_maf  

mkdir   /home/ubuntu/results/ani/ani_m2_cont_eq 

mkdir   /home/ubuntu/results/ani/ani_m2_cont_eq_ld 

mkdir   /home/ubuntu/results/ani/ani_m2_cont_eq_maf  

mkdir   /home/ubuntu/results/ani/ani_m2_cont_un 

mkdir   /home/ubuntu/results/ani/ani_m2_cont_un_ld 

mkdir   /home/ubuntu/results/ani/ani_m2_cont_un_maf  

mkdir   /home/ubuntu/results/ani/ani_m2_kpop_eq 

mkdir   /home/ubuntu/results/ani/ani_m2_kpop_eq_ld 

mkdir   /home/ubuntu/results/ani/ani_m2_kpop_eq_maf  

mkdir   /home/ubuntu/results/ani/ani_m2_kpop_un 

mkdir   /home/ubuntu/results/ani/ani_m2_kpop_un_ld 

mkdir   /home/ubuntu/results/ani/ani_m2_kpop_un_maf  

  

read   -p   "ENTER   to   continue   ........" 

  

/home/ubuntu/plink/plink.109   --f ile   /home/ubuntu/results/tss/tss_m2_f m/tss_m2_f m   --keep   tss_kpop_eq.f am   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_kpop_eq/tss_m2_kpop_eq   --noweb 

/home/ubuntu/plink/plink.109   --f ile   /home/ubuntu/results/tss/tss_m2_f m/tss_m2_f m   --keep   tss_kpop_un.f am   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_kpop_un/tss_m2_kpop_un   --noweb 

/home/ubuntu/plink/plink.109   --f ile   /home/ubuntu/results/tss/tss_m2_f m/tss_m2_f m   --keep   tss_cont_eq.f am   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_cont_eq/tss_m2_cont_eq   --noweb 

/home/ubuntu/plink/plink.109   --f ile   /home/ubuntu/results/tss/tss_m2_f m/tss_m2_f m   --keep   tss_cont_un.f am   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_cont_un/tss_m2_cont_un   --noweb 

/home/ubuntu/plink/plink.109   --f ile   /home/ubuntu/results/ani/ani_m2_f m/ani_m2_f m   --keep   ani_kpop_eq.f am   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_kpop_eq/ani_m2_kpop_eq   --noweb 

/home/ubuntu/plink/plink.109   --f ile   /home/ubuntu/results/ani/ani_m2_f m/ani_m2_f m   --keep   ani_kpop_un.f am   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_kpop_un/ani_m2_kpop_un   --noweb 

/home/ubuntu/plink/plink.109   --f ile   /home/ubuntu/results/ani/ani_m2_f m/ani_m2_f m   --keep   ani_cont_eq.f am   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_cont_eq/ani_m2_cont_eq   --noweb 

/home/ubuntu/plink/plink.109   --f ile   /home/ubuntu/results/ani/ani_m2_f m/ani_m2_f m   --keep   ani_cont_un.f am   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_cont_un/ani_m2_cont_un   --noweb 

  

read   -p   "Principal   f iles   created   continue   ........" 

####/home/ubuntu/plink/plink.109   --bf ile   ani_kpop_eq   --maf    0.00001   --make-bed   --out   ani_kpop_eq_000   --noweb 

#################   MAF   generation   #################################### 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_kpop_eq/tss_m2_kpop_eq   --noweb   --maf    0.05   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_kpop_eq_maf /tss_m2_kpop_eq_maf  

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_kpop_un/tss_m2_kpop_un   --noweb   --maf    0.05   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_kpop_un_maf /tss_m2_kpop_un_maf  

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_cont_eq/tss_m2_cont_eq   --noweb   --maf    0.05   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_cont_eq_maf /tss_m2_cont_eq_maf  

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_cont_un/tss_m2_cont_un   --noweb   --maf    0.05   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_cont_un_maf /tss_m2_cont_un_maf  
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/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_kpop_eq/ani_m2_kpop_eq   --noweb   --maf    0.05   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_kpop_eq_maf /ani_m2_kpop_eq_maf  

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_kpop_un/ani_m2_kpop_un   --noweb   --maf    0.05   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_kpop_un_maf /ani_m2_kpop_un_maf  

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_cont_eq/ani_m2_cont_eq   --noweb   --maf    0.05   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_cont_eq_maf /ani_m2_cont_eq_maf  

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_cont_un/ani_m2_cont_un   --noweb   --maf    0.05   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_cont_un_maf /ani_m2_cont_un_maf  

  

read   -p   "MAF   done   continue   ........" 

#################   LD   generation   #################################### 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_kpop_eq/tss_m2_kpop_eq   --noweb   --indep   50   5   2 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_kpop_eq/tss_m2_kpop_eq   --noweb   --extract   plink.prune.in   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_kpop_eq_ld/tss_m2_kpop_eq_ld 

rm   /home/ubuntu/sampling/plink.* 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_kpop_un/tss_m2_kpop_un   --noweb   --indep   50   5   2 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_kpop_un/tss_m2_kpop_un   --noweb   --extract   plink.prune.in   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_kpop_un_ld/tss_m2_kpop_un_ld 

rm   /home/ubuntu/sampling/plink.* 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_cont_eq/tss_m2_cont_eq   --noweb   --indep   50   5   2 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_cont_eq/tss_m2_cont_eq   --noweb   --extract   plink.prune.in   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_cont_eq_ld/tss_m2_cont_eq_ld 

rm   /home/ubuntu/sampling/plink.* 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_cont_un/tss_m2_cont_un   --noweb   --indep   50   5   2 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/tss/tss_m2_cont_un/tss_m2_cont_un   --noweb   --extract   plink.prune.in   --make-bed   --out 

/home/ubuntu/results/tss/tss_m2_cont_un_ld/tss_m2_cont_un_ld 

rm   /home/ubuntu/sampling/plink.* 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_kpop_eq/ani_m2_kpop_eq   --noweb   --indep   50   5   2 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_kpop_eq/ani_m2_kpop_eq   --noweb   --extract   plink.prune.in   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_kpop_eq_ld/ani_m2_kpop_eq_ld 

rm   /home/ubuntu/sampling/plink.* 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_kpop_un/ani_m2_kpop_un   --noweb   --indep   50   5   2 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_kpop_un/ani_m2_kpop_un   --noweb   --extract   plink.prune.in   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_kpop_un_ld/ani_m2_kpop_un_ld 

rm   /home/ubuntu/sampling/plink.* 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_cont_eq/ani_m2_cont_eq   --noweb   --indep   50   5   2 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_cont_eq/ani_m2_cont_eq   --noweb   --extract   plink.prune.in   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_cont_eq_ld/ani_m2_cont_eq_ld 

rm   /home/ubuntu/sampling/plink.* 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_cont_un/ani_m2_cont_un   --noweb   --indep   50   5   2 

/home/ubuntu/plink/plink.109   --bf ile   /home/ubuntu/results/ani/ani_m2_cont_un/ani_m2_cont_un   --noweb   --extract   plink.prune.in   --make-bed   --out 

/home/ubuntu/results/ani/ani_m2_cont_un_ld/ani_m2_cont_un_ld 

rm   /home/ubuntu/sampling/plink.* 

  

read   -p   "Process   f inished,   ENTER   to   show   f iles   ........" 

  

STEP   3   AND   4   -   SHELL   SCRIPT   AUTOMATING   ALL   ALGORITHMS   ON   ALL   SUBCASES 

================================================================================== 

pop_train3 

  

cd   /home/ubuntu/results/ani/ani_m2_cont_eq 

/home/ubuntu/pop_train4   ani_m2_cont_eq 

cd   /home/ubuntu/results/ani/ani_m2_cont_eq_ld 

/home/ubuntu/pop_train4   ani_m2_cont_eq_ld 

cd   /home/ubuntu/results/ani/ani_m2_cont_eq_maf  

/home/ubuntu/pop_train4   ani_m2_cont_eq_maf  

cd   /home/ubuntu/results/ani/ani_m2_cont_un 

..................................... 

/home/ubuntu/pop_train4   tss_m2_kpop_un 

  

================================================================================== 

pop_train4 

  

##############   Creating   ped   and   Remov ing   missing   snp   ##################### 

grep   "[G|T|A|C]   0"   $1.bim|awk   '{   print   $2}'   >   remov e.snp 

/home/ubuntu/plink/plink.109   --bf ile   $1   --recode   --tab   --out   $1   --noweb 

/home/ubuntu/plink/plink.109   --f ile   $1   --exclude   remov e.snp   --noweb   --make-bed   --out   $1bis 

rm   $1.bed   $1.bim   $1.f am 

mv    $1bis.bed   $1.bed 

mv    $1bis.bim   $1.bim 

mv    $1bis.f am   $1.f am 

##############   Running   ADMIXTURE   ######################################### 

/home/ubuntu/admix/admixture   $1.bed   4   -j4 

mv    $1.4.Q   $1_admix.4.Q 

rm   $1.4.P 
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##############   Running   SNMF   ############################################## 

/home/ubuntu/snmf /bin/ped2geno   $1.ped   $1.geno 

/home/ubuntu/snmf /bin/sNMF   -x   $1.geno   -K   4 

mv    $1.4.Q   $1_snmf .4.Q 

rm   $1.4.G 

##############   Running   EIGENSOFT   SMartPCA   ################################ 

smartpca.perl   -i   $1.bed   -a   $1.bim   -b   $1.f am   -o   $1.pca   -q   NO   -k   2   -p   $1.pca   -e   $1.pca   -l   $1.pca 

##############   Running   SPA   ############################################### 

/home/ubuntu/spa/spa   --bf ile   $1   --location-output   $1.spa   -r   0.0001 

##############   Running   MDS   ############################################### 

/home/ubuntu/plink/plink.109   --bf ile   $1   --genome   --noweb   --out   $1 

rm   $1.log   $1.nosex 

/home/ubuntu/plink/plink.109   --bf ile   $1   --read-genome   $1.genome   --cluster   --mds-plot   2   --noweb   --out   $1 

##############   Sav ing   RESULTS   ############################################ 

rm   *.cluster?   *.pca   *.pca.par   *.ps   *.xtxt   *.nosex   *.log   remov e.snp   $1bis.* 

########################################################################## 

  

  

STEP   5   -   R   SCRIPT   FOR   GENERATING   PLINK   FAM   FILES   FOR   FURTHER   SAMPLING   SUBCASES 

================================================================================== 

ani_cont_eq.R 

  

linies   <-   v ector() 

j<-1 

kpop   <- 

sort(c(11,13,23,2,4,15,20,21,24,27,28,41,43,45,59,88,89,90,32,46,48,49,50,62,63,65,93,37,51,52,53,54,55,66,69,100,101,104,107,108,111,114,118,119,

120)) 

f or   (k   in   c(1:45)) 

      { 

      f or   (i   in   (1:10)) 

{ 

linies[j]   <-   paste("Sample",kpop[k],"   ",kpop[k]*10-11+i,sep="") 

j<-j+1} 

} 

write(linies,   f ile="/home/ubuntu/sampling/ani_cont_eq.f am") 

  

================================================================================== 

ani_cont_un.R 

  

linies   <-   v ector() 

kpop   <- 

sort(c(11,13,23,2,4,15,20,21,24,27,28,41,43,45,59,88,89,90,32,46,48,49,50,62,63,65,93,37,51,52,53,54,55,66,69,100,101,104,107,108,111,114,118,119,

120)) 

llev o   <-   1 

f or   (k   in   c(1:45)) 

      {j   <-   sample(1:5,1) 

      ind   <-   sort(sample(c((kpop[k]*10-10):(kpop[k]*10-1)),j)) 

      f or   (i   in   (1:j)) 

{linies[llev o]   <-   paste("Sample",kpop[k],"   ",ind[i],sep="") 

llev o   <-   llev o+1} 

      } 

write(linies,   f ile="/home/ubuntu/sampling/ani_cont_un.f am") 

  

  

================================================================================== 

ani_kpop_eq.R 

  

linies   <-   v ector() 

j   <-   1 

kpop   <-   sort(sample(c(1:125),45)) 

f or   (k   in   c(1:45)) 

      { 

      f or   (i   in   (1:10)) 

{ 

linies[j]   <-   paste("Sample",kpop[k],"   ",kpop[k]*10-11+i,sep="") 

if    (linies[j]   ==   "Sample1   0"){linies[j]   <-   "Sample1   A"} 

j<-j+1} 

} 

write(linies,   f ile="/home/ubuntu/sampling/ani_kpop_eq.f am") 

  

  

================================================================================== 

ani_kpop_un.R 

  

linies   <-   v ector() 
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kpop   <-   sort(sample(c(1:125),45)) 

llev o   <-   1 

f or   (k   in   c(1:45)) 

      {j   <-   sample(1:5,1) 

      ind   <-   sort(sample(c((kpop[k]*10-10):(kpop[k]*10-1)),j)) 

      f or   (i   in   (1:j)) 

{linies[llev o]   <-   paste("Sample",kpop[k],"   ",ind[i],sep="") 

if    (linies[llev o]   ==   "Sample1   0"){linies[llev o]   <-   "Sample1   A"} 

llev o   <-   llev o+1} 

      } 

write(linies,   f ile="/home/ubuntu/sampling/ani_kpop_un.f am") 

  

================================================================================== 

tss_cont_eq.R 

  

linies   <-   v ector() 

j   <-   1 

kpop   <- 

sort(sample(c(1,17,33,6,20,19,37,22,7,11,12,27,13,29,45,46,47,48,79,80,65,67,53,54,55,71,72,74,60,90,106,93,123,107,121,123,113,97,99,130,116,102

,10,118,119,138,153,168,154,155,156,172,157,174,175,147,162,165,164,179,196,212,183,184,200,214,217,187,219,190,191,206,210,223,224),75)) 

f or   (k   in   c(1:75)) 

      { 

      f or   (i   in   (1:10)) 

{ 

linies[j]   <-   paste("Sample",kpop[k],"   ",kpop[k]*10-11+i,sep="") 

if    (linies[j]   ==   "Sample1   0"){linies[j]   <-   "Sample1   A"} 

j<-j+1} 

} 

write(linies,   f ile="/home/ubuntu/sampling/tss_cont_eq.f am") 

  

================================================================================== 

tss_cont_un.R 

  

linies   <-   v ector() 

kpop   <- 

sort(sample(c(1,17,33,6,20,19,37,22,7,11,12,27,13,29,45,46,47,48,79,80,65,67,53,54,55,71,72,74,60,90,106,93,123,107,121,123,113,97,99,130,116,102

,10,118,119,138,153,168,154,155,156,172,157,174,175,147,162,165,164,179,196,212,183,184,200,214,217,187,219,190,191,206,210,223,224),75)) 

llev o   <-   1 

f or   (k   in   c(1:75)) 

      {j   <-   sample(1:5,1) 

      ind   <-   sort(sample(c((kpop[k]*10-10):(kpop[k]*10-1)),j)) 

      f or   (i   in   (1:j)) 

{linies[llev o]   <-   paste("Sample",kpop[k],"   ",ind[i],sep="") 

if    (linies[llev o]   ==   "Sample1   0"){linies[llev o]   <-   "Sample1   A"} 

llev o   <-   llev o+1} 

      } 

write(linies,   f ile="/home/ubuntu/sampling/tss_cont_un.f am") 

  

  

================================================================================== 

tss_kpop_eq.R 

  

linies   <-   v ector() 

j   <-   1 

kpop   <-   sort(sample(c(1:225),75)) 

f or   (k   in   c(1:75)) 

      { 

      f or   (i   in   (1:10)) 

{ 

linies[j]   <-   paste("Sample",kpop[k],"   ",kpop[k]*10-11+i,sep="") 

if    (linies[j]   ==   "Sample1   0"){linies[j]   <-   "Sample1   A"} 

j<-j+1} 

} 

write(linies,   f ile="/home/ubuntu/sampling/tss_kpop_eq.f am") 

================================================================================== 

tss_kpop_un.R 

  

linies   <-   v ector() 

kpop   <-   sort(sample(c(1:225),75)) 

llev o   <-   1 

f or   (k   in   c(1:75)) 

      {j   <-   sample(1:5,1) 

      ind   <-   sort(sample(c((kpop[k]*10-10):(kpop[k]*10-1)),j)) 

      f or   (i   in   (1:j)) 

{linies[llev o]   <-   paste("Sample",kpop[k],"   ",ind[i],sep="") 
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if    (linies[llev o]   ==   "Sample1   0"){linies[llev o]   <-   "Sample1   A"} 

llev o   <-   llev o+1} 

      } 

write(linies,   f ile="/home/ubuntu/sampling/tss_kpop_un.f am") 

  

  

STEP   6   -   R   SCRIPT   FOR   APPLYING   MANTEL   AND   PROCRUSTES   ON   PCA,   MDS   AND   SPA 

================================================================================== 

mantel.R 

  

library (v egan) 

library (ade4) 

library (prabclus) 

conn   <-   f ile("/home/ubuntu/results/task",open="r") 

linn   <-readLines(conn) 

theheader1   <- 

"case,m_mds_cor,m_mds_sig,p_mds_cor,p_mds_sig,m_spa_cor,m_spa_sig,p_spa_cor,p_spa_sig,m_pca_cor,m_pca_sig,p_pca_cor,p_pca_sig,K4,K5,

K6,Gadm,Gsnm,Gas,NumInd,SNPs,BedSize" 

write(theheader1,f ile="/home/ubuntu/results/res") 

head1   <-   "case                                                      f am bed mds               pca spa adm               snm OK" 

head2   <-   "=================               === === ===               === === ===               === ===" 

write(head1,f ile="/home/ubuntu/results/rec") 

write(head2,f ile="/home/ubuntu/results/rec",append="TRUE") 

  

f or   (i   in   1:length(linn)) 

{ 

print(linn[i]) 

theroot   <-   substr(linn[i],1,3) 

thepath   <-   paste("/home/ubuntu/results/",theroot,"/",linn[i],"/",sep="") 

if    (substr(linn[i],1,3)=="ani"){base_global   <-   read.table("/home/ubuntu/results/base_ani.txt")}   else{base_global   <- 

read.table("/home/ubuntu/results/base_tss.txt")} 

colnames(base_global)   <-   c("pop","ind","x","y ") 

f amf ile   <-   list.f iles(path=thepath,pattern="*[a-z].f am") 

if    (length(f amf ile)   ==   0){a1<-0}else{a1<-1} 

bedf ile   <-   list.f iles(path=thepath,pattern="*.bed") 

if    (length(bedf ile)   ==   0){a2<-0}else{a2<-1} 

mdsf ile   <-   list.f iles(path=thepath,pattern="*.mds") 

if    (length(mdsf ile)   ==   0){a3<-0}else{a3<-1} 

pcaf ile   <-   list.f iles(path=thepath,pattern="*.ev ec") 

if    (length(pcaf ile)   ==   0){a4<-0}else{a4<-1} 

spaf ile   <-   list.f iles(path=thepath,pattern="*.spa") 

if    (length(spaf ile)   ==   0){a5<-0}else{a5<-1} 

admf ile   <-   list.f iles(path=thepath,pattern="*admix*") 

if    (length(admf ile)   ==   0){a6<-0}else{a6<-1} 

snmf ile   <-   list.f iles(path=thepath,pattern="*snmf *") 

if    (length(snmf ile)   ==   0){a7<-0}else{a7<-1} 

aa   <-   a1+a2+a3+a4+a5+a6+a7 

if    (aa   ==   7) 

{ 

case   <-   linn[i] 

f am   <-   read.table(paste(thepath,f amf ile,sep="")) 

f am   <-   f am[,1:2] 

colnames(f am)   <-   c("pop","ind") 

f am$ind[f am$ind   ==   0]   <-   "A";   f am$ind[f am$ind   ==   "0"]   <-   "A" 

base   <-   merge(base_global,   f am,   by =c("pop","ind")) 

mds   <-   read.table(paste(thepath,case,".mds",sep=""),header=TRUE) 

mds   <-   mds[,c(1,2,4,5)] 

colnames(mds)   <-   c("pop","ind","mds_x","mds_y ") 

mds$ind[mds$ind   ==   0]   <-   "A";   mds$ind[mds$ind   ==   "0"]   <-   "A" 

base   <-   merge(base,   mds,   by =c("pop","ind")) 

spa   <-   read.table(paste(thepath,case,".spa",sep="")) 

spa   <-   spa[,c(1,2,7,8)] 

colnames(spa)   <-   c("pop","ind","spa_x","spa_y ") 

spa$ind[spa$ind   ==   0]   <-   "A";   spa$ind[spa$ind   ==   "0"]   <-   "A" 

base   <-   merge(base,   spa,   by =c("pop","ind")) 

pca   <-   read.table(paste(thepath,case,".pca.ev ec",sep="")) 

pca   <-   pca[,c(1,2,3)] 

pca$pop   <-   substr(pca[,1],1,as.numeric(regexpr(":",   pca[,1]))-1) 

pca$ind   <-   substr(pca[,1],as.numeric(regexpr(":",   pca[,1]))+1,nchar(as.character(pca[,1]))) 

pca   <-   pca[,c(4,5,2,3)] 

colnames(pca)   <-   c("pop","ind","pca_x","pca_y ") 

pca$ind[pca$ind   ==   0]   <-   "A";   pca$ind[pca$ind   ==   "0"]   <-   "A" 

base   <-   merge(base,   pca,   by =c("pop","ind")) 

dbase   <-   coord2dist(coordmatrix=base[,3:4],f ile.f ormat="decimal2") 

dmds   <-   coord2dist(coordmatrix=base[,5:6],f ile.f ormat="decimal2") 
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mant   <-   mantel(dbase,dmds) 

prot   <-   protest(base[,3:4],base[,5:6]) 

m_mds_cor   <-   mant$statistic 

m_mds_sig   <-   mant$signif  

p_mds_cor   <-   prot$scale 

p_mds_sig   <-   prot$signif  

dspa   <-   coord2dist(coordmatrix=base[,7:8],f ile.f ormat="decimal2") 

mant   <-   mantel(dbase,dspa) 

prot   <-   protest(base[,3:4],base[,7:8]) 

m_spa_cor   <-   mant$statistic 

m_spa_sig   <-   mant$signif  

p_spa_cor   <-   prot$scale 

p_spa_sig   <-   prot$signif  

dpca   <-   coord2dist(coordmatrix=base[,9:10],f ile.f ormat="decimal2") 

mant   <-   mantel(dbase,dpca) 

prot   <-   protest(base[,3:4],base[,9:10]) 

m_pca_cor   <-   mant$statistic 

m_pca_sig   <-   mant$signif  

p_pca_cor   <-   prot$scale 

p_pca_sig   <-   prot$signif  

############################################# 

###   bestK   results   collection 

############################################# 

bestf ile   <-   list.f iles(path="/home/ubuntu/bestK/",pattern=paste(case,".snm",sep="")) 

if    (length(bestf ile)   ==   0) 

{ 

K4   <-   -1 

K5   <-   -1 

K6   <-   -1 

} 

else 

{ 

bestK   <-readLines(paste("/home/ubuntu/bestK/",bestf ile,sep="")) 

K4<-substr(bestK[1],regexpr("0.",bestK[1]),regexpr("0.",bestK[1])+6) 

K5<-substr(bestK[2],regexpr("0.",bestK[2]),regexpr("0.",bestK[2])+6) 

K6<-substr(bestK[3],regexpr("0.",bestK[3]),regexpr("0.",bestK[3])+6) 

} 

############################################# 

###   CLUMPP   ADMIXTURE   results   collection 

############################################# 

clumf ile   <-   list.f iles(path="/home/ubuntu/results/clumpp",pattern=paste(case,".adm",sep="")) 

if    (length(clumf ile)   ==   0) 

{Ga   <-   -1} 

else 

{ 

theG   <-readLines(paste("/home/ubuntu/results/clumpp/",clumf ile,sep="")) 

Ga   <-   substr(theG[length(theG)],1,6) 

} 

############################################# 

###   CLUMPP   SNMF   results   collection 

############################################# 

clumf ile   <-   list.f iles(path="/home/ubuntu/results/clumpp",pattern=paste(case,".snm",sep="")) 

if    (length(clumf ile)   ==   0) 

{Gs   <-   -1} 

else 

{ 

theG   <-readLines(paste("/home/ubuntu/results/clumpp/",clumf ile,sep="")) 

Gs   <-   substr(theG[length(theG)],1,6) 

} 

#################################################### 

###   CLUMPP   ADMIXTURE   v s   SNMF   results   collection 

#################################################### 

clumf ile   <-   list.f iles(path="/home/ubuntu/results/clumpp",pattern=paste(case,".as",sep="")) 

if    (length(clumf ile)   ==   0) 

{Gas   <-   -1} 

else 

{ 

theG   <-readLines(paste("/home/ubuntu/results/clumpp/",clumf ile,sep="")) 

Gas   <-   substr(theG[length(theG)],1,6) 

} 

############################################# 

##   obtaining   indiv iduals,   snps,   bed   f ile   size 

############################################# 

f amf ile   <-   list.f iles(path=thepath,pattern="*[a-z].f am") 

if    (length(f amf ile)   ==   0) 
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{numind   <-   -1} 

else 

{ 

f am   <-   read.table(paste(thepath,f amf ile,sep="")) 

numind   <-   nrow(f am) 

} 

  

bimf ile   <-   list.f iles(path=thepath,pattern="*[a-z].bim") 

if    (length(bimf ile)   ==   0) 

{SNPS   <-   -1} 

else 

{ 

bim   <-   read.table(paste(thepath,bimf ile,sep="")) 

SNPS   <-   nrow(bim) 

} 

  

bedf ile   <-   list.f iles(path=thepath,pattern="*[a-z].bed") 

if    (length(bedf ile)   ==   0) 

{bedsiz   <-   -1} 

else 

{ 

bedsiz   <-   f ile.size(paste(thepath,bedf ile,sep=""))/1000000 

} 

############################################# 

  

results1   <- 

paste(case,m_mds_cor,m_mds_sig,p_mds_cor,p_mds_sig,m_spa_cor,m_spa_sig,p_spa_cor,p_spa_sig,m_pca_cor,m_pca_sig,p_pca_cor,p_pca_sig,K

4,K5,K6,Ga,Gs,Gas,numind,SNPS,bedsiz,sep=",") 

write(t(results1),f ile="/home/ubuntu/results/res",append=TRUE) 

} 

else 

{ 

case   <-   linn[i] 

case   <-   paste(case,"                                    ",sep="") 

case   <-   substr(case,1,20) 

recue   <-   paste(case,a1,a2,a3,a4,a5,a6,a7,aa,sep="\t") 

results1   <-   paste(case,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,sep=",") 

write(results1,f ile="/home/ubuntu/results/res",append=TRUE) 

write(recue,f ile="/home/ubuntu/results/rec",append=TRUE) 

} 

} 

close(conn) 

STEP   7-   SHELL   SCRIPTS   FOR   ESTIMATING   BEST   K   NUMBER   OF   ANCESTRIES 

================================================================================== 

mixK 

================================================================================== 

f or   K   in   4   5   6 

do 

echo   K=$K 

/home/ubuntu/admix/admixture   --cv    /home/ubuntu/results/$2/$1/$1.bed   $K   -j4   >   $1.$K.mix.log 

done 

grep   -h   CV   $1*.mix.log   >   $1.mix 

rm   *.mix.log 

cat   $1.mix 

================================================================================== 

snmf K 

  

cd   /home/ubuntu/bestK 

cp   /home/ubuntu/results/$2/$1/$1.geno   . 

f or   K   in   4   5   6 

do 

echo   K=$K;   /home/ubuntu/snmf /bin/sNMF   -x   $1.geno   -p   4   -K   $K   -c   >   $1.$K.log 

done 

rm   *.G   *.Q   $1.geno   $1_I.geno 

grep   "Cross-Entropy    (masked   data):"   $1*.log   >   $1.snm 

rm   $1*.log 

cat   $1.snm 

================================================================================== 

  

  

STEP   8   -   R   SCRIPT   FOR   APPLYING   CLUMPP   ON   ADMIXTURE   VS   BASE   CASES 

================================================================================== 

clum_admix.R 

  

library (v egan) 
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library (ade4) 

library (prabclus) 

conn   <-   f ile("/home/ubuntu/results/task2",open="r") 

linn   <-readLines(conn) 

  

f or   (i   in   1:length(linn)) 

{ 

print(linn[i]) 

theroot   <-   substr(linn[i],1,3) 

thepath   <-   paste("/home/ubuntu/results/",theroot,"/",linn[i],"/",sep="") 

  

f amf ile   <-   list.f iles(path=thepath,pattern="*[a-z].f am") 

if    (length(f amf ile)   ==   0){a1<-0}else{a1<-1} 

admf ile   <-   list.f iles(path=thepath,pattern="*admix*") 

if    (length(admf ile)   ==   0){a6<-0}else{a6<-1} 

aa   <-   a1+a6 

if    (aa   ==   2) 

{ 

case   <-   linn[i] 

f am   <-   read.table(paste(thepath,f amf ile,sep="")) 

f am   <-   f am[,2] 

adm   <-   read.table(paste(thepath,admf ile,sep="")) 

adm   <-   cbind(f am,adm) 

print(adm[1,1]) 

adm[,1]   <-   as.character(adm[,1]) 

if    (adm[1,1]=="A"){adm[1,1]<-"9999"} 

if    (adm[1,1]=="0"){adm[1,1]<-"9999"} 

######   READ   BASE   SNMF   FILE   ############################# 

baseadm   <-   paste(substr(case,1,7),"f m",sep="") 

thepathh   <-   paste("/home/ubuntu/results/",theroot,"/",baseadm,"/",sep="") 

basef amf ile   <-   list.f iles(path=thepathh,pattern="*[a-z].f am") 

basef am   <-   read.table(paste(thepathh,basef amf ile,sep="")) 

basef am   <-   basef am[,2] 

basef ile   <-   list.f iles(path=thepathh,pattern="*admix*") 

baseadm   <-   read.table(paste(thepathh,basef ile,sep="")) 

baseadm   <-   cbind(basef am,baseadm) 

baseadm$basef am   <-   as.character(baseadm$basef am) 

if    (baseadm[1,1]=="A"){baseadm[1,1]<-"9999"} 

if    (baseadm[1,1]=="0"){baseadm[1,1]<-"9999"} 

baseadm2   <-   baseadm[baseadm$basef am   %in%   adm$f am,] 

adm   <-   cbind(adm[,1],adm[,1],adm[,1],adm[,1],adm) 

baseadm2   <-   cbind(baseadm2[,1],baseadm2[,1],baseadm2[,1],baseadm2[,1],baseadm2) 

adm[,5]<-   ":" 

baseadm2[,5]<-   ":" 

adm[,3]<-   paste("(",adm[,3],")",sep="") 

baseadm2[,3]<-   paste("(",baseadm2[,3],")",sep="") 

  

rownames(adm)   <-   NULL 

rownames(baseadm2)   <-   NULL 

colnames(adm)   <-   NULL 

colnames(baseadm2)   <-   NULL 

#adm[,1]<-   adm[,1]+1 

#adm[,2]<-   adm[,2]+1 

#adm[,3]<-   adm[,3]+1 

#adm[,4]<-   adm[,4]+1 

#baseadm2[,1]   <-   as.numeric(baseadm2[,1]) 

#baseadm2[,2]   <-   as.numeric(baseadm2[,2]) 

#baseadm2[,3]   <-   as.numeric(baseadm2[,3]) 

#baseadm2[,4]   <-   as.numeric(baseadm2[,4]) 

#baseadm2[,1]<-   baseadm2[,1]+1 

#baseadm2[,2]<-   baseadm2[,2]+1 

#baseadm2[,3]<-   baseadm2[,3]+1 

#baseadm2[,4]<-   baseadm2[,4]+1 

write.table(adm,"unouno",sep="\t",row.names=FALSE,quote=FALSE) 

write.table(baseadm2,"dosdos",sep="\t",row.names=FALSE,quote=FALSE) 

sy stem(paste("cat   unouno   dosdos   >   thepop",sep="")) 

sy stem("rm   unouno   dosdos") 

prepcommand   <-   "/home/ubuntu/clum/CLUMPP   /home/ubuntu/clum/paramf ile   -i   thepop   "  

theoptions   <-   paste("   -c   ",nrow(adm),sep="") 

prepcommand   <-   paste(prepcommand,theoptions,sep="") 

print   (prepcommand) 

sy stem(prepcommand,   intern=TRUE,wait=TRUE) 

sy stem(paste("mv    lov eo.miscf ile   ",case,".adm",sep="")) 

##sy stem("rm   lov eo.outf ile   thepop") 

} 
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else 

{ 

} 

} 

sy stem("tail   -v    -n   1   *.adm   >   CLUMPP.admix") 

sy stem("rm   *.adm") 

close(conn) 

  

  

STEP   9   -   R   SCRIPT   FOR   APPLYING   WILCOXON   AND   BOXPLOTS   TO   FINAL   RESULTS 

================================================================================== 

wilcox.R 

  

res1   <-   read.table("c:/v ic/pop/wilcoxon_2DSS.csv ",header=TRUE,sep=";") 

boxplot(res1[,c(9,3,6,10,4,7,11,5,8)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

   names=c("PCA   m=0.001","MDS   m=0.001","SPA   m=0.001","PCA   m=0.005","MDS   m=0.005","SPA   m=0.005","PCA   m=0.02","MDS   m=0.02","SPA 

m=0.02"), 

   y lab   ="Mantel   Correlation",   xlab   ="Algorithms/Migration   Rate", 

   main   ="2D   Steeping   Stone   -   Mantel   Correlation   with   Geographic   sampling   site" 

      ) 

boxplot(res1[,c(18,12,15,19,13,16,20,14,17)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   m=0.001","MDS   m=0.001","SPA   m=0.001","PCA   m=0.005","MDS   m=0.005","SPA   m=0.005","PCA   m=0.02","MDS 

m=0.02","SPA   m=0.02"), 

 y lab   ="Procrustes   Correlation",   xlab   ="Algorithms/Migration   Rate", 

 main   ="2D   Steeping   Stone   -   Procrustes   Correlation   with   Geographic   sampling   site" 

) 

  

res2   <-   read.table("c:/v ic/pop/wilcoxon_ANIS.csv ",header=TRUE,sep=";") 

boxplot(res2[,c(9,3,6,10,4,7,11,5,8)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   m=0.001","MDS   m=0.001","SPA   m=0.001","PCA   m=0.005","MDS   m=0.005","SPA   m=0.005","PCA   m=0.02","MDS 

m=0.02","SPA   m=0.02"), 

 y lab   ="Mantel   Correlation",   xlab   ="Algorithms/Migration   Rate", 

 main   ="ANISOTROPIC   -   Mantel   Correlation   with   Geographic   sampling   site" 

) 

boxplot(res2[,c(18,12,15,19,13,16,20,14,17)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   m=0.001","MDS   m=0.001","SPA   m=0.001","PCA   m=0.005","MDS   m=0.005","SPA   m=0.005","PCA   m=0.02","MDS 

m=0.02","SPA   m=0.02"), 

 y lab   ="Procrustes   Correlation",   xlab   ="Algorithms/Migration   Rate", 

 main   ="ANISOTROPIC   -   Procrustes   Correlation   with   Geographic   sampling   site" 

) 

  

wilcox.test(res1$pca_man_001,res1$mds_man_001,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$pca_man_001,res1$spa_man_001,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$mds_man_001,res1$spa_man_001,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res1$pca_man_005,res1$mds_man_005,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$pca_man_005,res1$spa_man_005,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$mds_man_005,res1$spa_man_005,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res1$pca_man_02,res1$mds_man_02,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$pca_man_02,res1$spa_man_02,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$mds_man_02,res1$spa_man_02,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res1$pca_pro_001,res1$mds_pro_001,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$pca_pro_001,res1$spa_pro_001,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$mds_pro_001,res1$spa_pro_001,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res1$pca_pro_005,res1$mds_pro_005,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$pca_pro_005,res1$spa_pro_005,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$mds_pro_005,res1$spa_pro_005,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res1$pca_pro_02,res1$mds_pro_02,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$pca_pro_02,res1$spa_pro_02,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res1$mds_pro_02,res1$spa_pro_02,paired=TRUE,alternativ e="greater")$p.v alue 

  

  

  

wilcox.test(res2$pca_man_001,res2$mds_man_001,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$pca_man_001,res2$spa_man_001,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$mds_man_001,res2$spa_man_001,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res2$pca_man_005,res2$mds_man_005,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$pca_man_005,res2$spa_man_005,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$mds_man_005,res2$spa_man_005,paired=TRUE,alternativ e="greater")$p.v alue 
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wilcox.test(res2$pca_man_02,res2$mds_man_02,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$pca_man_02,res2$spa_man_02,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$mds_man_02,res2$spa_man_02,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res2$pca_pro_001,res2$mds_pro_001,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$pca_pro_001,res2$spa_pro_001,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$mds_pro_001,res2$spa_pro_001,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res2$pca_pro_005,res2$mds_pro_005,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$pca_pro_005,res2$spa_pro_005,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$mds_pro_005,res2$spa_pro_005,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res2$pca_pro_02,res2$mds_pro_02,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$pca_pro_02,res2$spa_pro_02,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res2$mds_pro_02,res2$spa_pro_02,paired=TRUE,alternativ e="greater")$p.v alue 

  

  

  

res3   <-   read.table("c:/v ic/pop/2DSS_ANIS.csv ",header=TRUE,sep=";") 

boxplot(res3[,c(9,1,5,10,2,6)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   2DSS","MDS   2DSS","SPA   2DSS","PCA   Aniso","MDS   Aniso","SPA   Aniso"), 

 y lab   ="Mantel   Correlation",   xlab   ="Algorithms/Demographic   Model", 

 main   ="Mantel   Correlation   with   Demographic   Model" 

) 

boxplot(res3[,c(11,3,7,12,4,8)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   2DSS","MDS   2DSS","SPA   2DSS","PCA   Aniso","MDS   Aniso","SPA   Aniso"), 

 y lab   ="Procrustes   Correlation",   xlab   ="Algorithms/Demographic   Model", 

 main   ="Procrustes   Correlation   with   Demographic   Model" 

) 

  

wilcox.test(res3$pca_man_tss,res3$pca_man_ani,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res3$mds_man_tss,res3$mds_man_ani,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res3$spa_man_tss,res3$spa_man_ani,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res3$pca_pro_tss,res3$pca_pro_ani,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res3$mds_pro_tss,res3$mds_pro_ani,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res3$spa_pro_tss,res3$spa_pro_ani,paired=TRUE,alternativ e="greater")$p.v alue 

  

res4   <-   read.table("c:/v ic/pop/random_cont.csv ",header=TRUE,sep=";") 

boxplot(res4[,c(9,1,5,10,2,6)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

                        names=c("PCA   Contagious","MDS   Contagious","SPA   Contagious","PCA   Random","MDS   Random","SPA   Random"), 

 y lab   ="Mantel   Correlation",   xlab   ="Algorithms/Population   Sampling   Method", 

 main   ="Mantel   Correlation   with   Population   Sampling   Method" 

) 

boxplot(res4[,c(11,3,7,12,4,8)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   Contagious","MDS   Contagious","SPA   Contagious","PCA   Random","MDS   Random","SPA   Random"), 

 y lab   ="Procrustes   Correlation",   xlab   ="Algorithms/Population   Sampling   Method", 

 main   ="Procrustes   Correlation   with   Population   Sampling   Method" 

) 

  

wilcox.test(res4$pca_man_con,res4$pca_man_rnd,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res4$mds_man_con,res4$mds_man_rnd,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res4$spa_man_con,res4$spa_man_rnd,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res4$pca_pro_con,res4$pca_pro_rnd,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res4$mds_pro_con,res4$mds_pro_rnd,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res4$spa_pro_con,res4$spa_pro_rnd,paired=TRUE,alternativ e="greater")$p.v alue 

  

  

res5   <-   read.table("c:/v ic/pop/equal_unequal.csv ",header=TRUE,sep=";") 

boxplot(res5[,c(9,1,5,10,2,6)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   Equal","MDS   Equal","SPA   Equal","PCA   Unequal","MDS   Unequal","SPA   Unequal"), 

 y lab   ="Mantel   Correlation",   xlab   ="Algorithms/Indiv iduals   Sampling   Method", 

          main   ="Mantel   Correlation   with   Indiv iduals   Sampling   Method" 

) 

boxplot(res5[,c(11,3,7,12,4,8)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   Equal","MDS   Equal","SPA   Equal","PCA   Unequal","MDS   Unequal","SPA   Unequal"), 

 y lab   ="Procrustes   Correlation",   xlab   ="Algorithms/Indiv iduals   Sampling   Method", 

 main   ="Procrustes   Correlation   with   Indiv iduals   Sampling   Method" 

) 

  

wilcox.test(res5$pca_man_eq,res5$pca_man_un,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res5$mds_man_eq,res5$mds_man_un,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res5$spa_man_eq,res5$spa_man_un,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res5$pca_pro_eq,res5$pca_pro_un,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res5$mds_pro_eq,res5$mds_pro_un,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res5$spa_pro_eq,res5$spa_pro_un,paired=TRUE,alternativ e="greater")$p.v alue 
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res6   <-   read.table("c:/v ic/pop/MAF_LD_NO.csv ",header=TRUE,sep=";") 

boxplot(res6[,c(13,1,7,14,2,8,15,3,9)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   LD","MDS   LD","SPA   LD","PCA   MAF","MDS   MAF","SPA   MAF","PCA   NoFilt","MDS   NoFilt","SPA   NoFilt"), 

 y lab   ="Mantel   Correlation",   xlab   ="Algorithms/Filtering   Method", 

 main   ="Mantel   Correlation   with   Filtering   Method" 

) 

  

boxplot(res6[,c(16,4,10,17,5,11,18,6,12)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   LD","MDS   LD","SPA   LD","PCA   MAF","MDS   MAF","SPA   MAF","PCA   NoFilt","MDS   NoFilt","SPA   NoFilt"), 

 y lab   ="Procrustes   Correlation",   xlab   ="Algorithms/Filtering   Method", 

 main   ="Procrustes   Correlation   with   Filtering   Method" 

) 

  

  

boxplot(res6[,c(11,3,7,12,4,8)],col=c("grey ","tomato","roy alblue3","grey ","tomato","roy alblue3"), 

 names=c("PCA   Equal","MDS   Equal","SPA   Equal","PCA   Unequal","MDS   Unequal","SPA   Unequal"), 

 y lab   ="Procrustes   Correlation",   xlab   ="Algorithms/Indiv iduals   Sampling   Method", 

 main   ="Procrustes   Correlation   with   Indiv iduals   Sampling   Method" 

) 

  

wilcox.test(res6$pca_man_ld,res6$pca_man_maf ,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res6$pca_man_ld,res6$pca_man_no,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res6$mds_man_ld,res6$mds_man_maf ,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res6$mds_man_ld,res6$mds_man_no,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res6$spa_man_ld,res6$spa_man_maf ,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res6$spa_man_ld,res6$spa_man_no,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res6$pca_pro_ld,res6$pca_pro_maf ,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res6$pca_pro_ld,res6$pca_pro_no,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res6$mds_pro_ld,res6$mds_pro_maf ,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res6$mds_pro_ld,res6$mds_pro_no,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res6$spa_pro_ld,res6$spa_pro_maf ,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res6$spa_pro_ld,res6$spa_pro_no,paired=TRUE,alternativ e="greater")$p.v alue 

  

###################################################################################### 

##      CLUMPP   on   ADMIXTURE   and   SNMF 

###################################################################################### 

res7   <-   read.table("c:/v ic/pop/clumpp1.csv ",header=TRUE,sep=";") 

boxplot(res7[,c(1,4,2,5,3,6)],col=c("chartreuse4","orange2","chartreuse4","orange2","chartreuse4","orange2"), 

 names=c("ADMIXTURE   m=0.001","SNMF   m=0.001","ADMIXTURE   m=0.005","SNMF   m=0.005","ADMIXTURE   m=0.02","SNMF   m=0.02"), 

 y lab   ="G'   CLUMPP   Correlation",   xlab   ="Algorithms/Migration   Rate",   cex=0.7, 

 main   ="CLUMPP   [G']   Correlation   of    Model   Based   Algorithms   with   Migration   Rate" 

) 

  

res8   <-   read.table("c:/v ic/pop/clumpp2.csv ",header=TRUE,sep=";") 

boxplot(res8[,c(1,3,2,4)],col=c("chartreuse4","orange2","chartreuse4","orange2"), 

 names=c("ADMIXTURE   2D   S.Stone","SNMF   2D   S.Stone","ADMIXTURE   Anisotropic","SNMF   Anisotropic"), 

 y lab   ="G'   CLUMPP   Correlation",   xlab   ="Algorithms/Demographic   Models",   cex=0.7, 

 main   ="CLUMPP   [G']   Correlation   of    Model   Based   Algorithms   with   Demographic   Models" 

) 

  

wilcox.test(res7$snmf _001,res7$adm_001,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res7$snmf _005,res7$adm_005,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res7$snmf _02,res7$adm_02,paired=TRUE,alternativ e="greater")$p.v alue 

  

wilcox.test(res8$adm_ani,res8$adm_tss,paired=TRUE,alternativ e="greater")$p.v alue 

wilcox.test(res8$snmf _ani,res8$snmf _tss,paired=TRUE,alternativ e="greater")$p.v alue 
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