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ABSTRACT

The development of new methods for inferring ancestral origins in human populations has attracted a
renewed interest for human population geneticists for better understanding recent human
evolutionary history or for correcting the presence of hidden population substructure in genome-wide
association studies (GWAS). The algorithms for detecting population substructure present several
problems such as the dependency on the assumptions of the algorithm, the type and number of
considered DNA markers, the underlying demographic relationship among the considered populations

and the sample size of the target populations.

With this concern in mind, we have constructed an experimental model for testing the performance of
currently algorithms applied for estimating population substructure which starts by designing two ideal
prototypes of spatially structured populations (2D stepping stone and anisotropic). From each model
we have generated a pool of 78 experimental datasets, simulating the genomic molecular diversity
with Fastsimcoal2 under various migration rate conditions, performing the sampling of individuals and
populations and selecting different filtering strategies: Minor Allele Frequency (MAF) and Linkage
Disequilibrium (LD). Those 78 datasets (plink bed files) have been processed to evaluate the response
of commonly applied algorithms to SNP data for quantifying individual population substructure:
Principal Components Analysis (smartPCA), Multidimensional Scaling (MDS-PLINK), Spatial Ancestry
Analysis (SPA), ADMIXTURE and SNMF. For those algorithms in which the output is a coordinate (PCA,
MDS and SPA), we have evaluated the correlation (via Mantel and Procrustes tests) of these estimated
coordinates with the geographic sampling coordinates of individuals in our original ideal artifacts. For
ADMIXTURE and SNMF we have applied different algorithms for assessing the best K number of

ancestries and we have applied CLUMPP software to compare their output matrices.

This ideal prototype has enabled us to establish the robustness of the five algorithms, identify best
performing algorithms and determine the impact of the conditions imposed on the results of these

programs.
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1. Introduction

1.1 Origin and maintenance of the genetic variation.

The genome is subject to permanent change over the evolution of a species and that is why we can not
consider it as an immutable entity. Mutations (replications errors) are introduced by the cellular
replication machinery during DNA replication at any cell and they are vigorously but not fully offset by
the high fidelity of DNA polymerases and the DNA repair mechanisms. Henceforth, mutations are the
ultimate origin of all genetic variation. However, taking into account just evolutionary consequences of
mutation, we can follow only those changes that occurin the germline, and not those in somatic tissues
because they are not heritable.

From a structural point of view, mutations comprise from simple nucleotide changes (called single
nucleotide variant or SNV) to duplicating/deleting large fragments of the genome, as well as changesin
orientation and genomic rearrangements in new genomic positions. Of all these possible types of
mutations, the most common are SNVs. In addition to mutations, another physical factor that alters the
genomic composition of variation is recombination. Meiotic recombination occurs as a part of sexual
reproduction, and enhances the ability of populations to adapt to their environments by combining
advantageous alleles at different physically contiguous loci. While alleles at loci on different
chromosomes are randomly segregated during meiosis, alleles at loci closely linked on the same
chromosome are not, as recombination between them occurs infrequently. Recombination can be
studied at the population level by investigating whether specific alleles at different loci are correlated
with one another more or less often than would be expected by chance. This nonrandom correlation is
known as linkage disequilibrium (LD). The simplest model of recombination is that the rate of
recombination is uniform. In other words, the probability of a crossover occurring between a pair of
sequence variants is determined only by the physical distance that separates them. The products of
this type of recombination event are two new haplotypes containing contiguous stretches of alleles
from each ancestral haplotype.

Once a mutation in the germline has passed to the next generation, different evolutionary factors
shape its frequency in the population. These evolutionary factors can be classified in demographic and

selective.

Selective factors

From an evolutionary point of view and considering a very simplistic model of selection, there are two
possible final scenarios for new mutations: if the new mutation provides a higher fitness to the carrier
compared to the rest of individuals, the new mutation will increase its frequency in the population

and, ultimately, achieve fixation. In contrast, if the new mutation provides a lower fitness to the carrier



then it will be disadvantageous and removed from the population. Therefore, new mutations that
modify the phenotype of an individual are the substrate of natural selection.

Obviously, much more complex evolutionary patterns exist in nature (i.e. multiple genes contributing
to a phenotype, ancient ongoing balancing selection, or selection on standing selection among others).
From the genetic variation point of view, selection can influence in several different ways to increase,

decrease, or maintain diversity [Jobling 2014].

Demographic factors

Nevertheless, according to the neutral hypothesis of evolution, most of the mutations that occur in the
genome do not have a functional impact in the phenotype. The fate of these mutations in the
population depends on genetic drift, which refers to the stochastic process of sampling due to the finite
number of chromosomes that replicate at each generation. Suppose that a pool of gametes contains
the alleles “A” and “a” at frequencies “p” and “q” with p+q=1. Then if 2N gametes are drawn at random
i

to produce the zygotes of the next generation, the probability that the sample contains exactly

alleles of type A is as follows (Equation 1.1) [Hart! 2007]:
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The smaller the population size that reproduces at each generation, the higher the random sampling

process at each generation and higher the fixation/erasing rate of mutations.

In this context, the effective population size is defined as the number of random mating individuals in
an ideal population compared to the real population [Jobling 2014]. There are two mathematical ways
of defining effective population sizes: one is based on the sampling variance of allele frequencies (that
is, how an allele’s frequency might vary from one generation to the next), and the other utilizes the
concept of inbreeding (that is, the probability that the two alleles within an individual are identical by
descent from a common ancestor). Both of these properties of a finite population depend on the
mating size of that population. There also can be non genetic definitions, such as the number of
breeding individuals inferred from demographic studies.

To illustrate the effect of these factors on the definition of the effective population size of one species,
we can take a look at cattle in North America: there are about 100,000,000 female cattle in North
America fertilized on average by four males through artificial insemination. Therefore, having four bulls
that are inseminating 100,000,000 cows, genetically speaking the effective population size is just about

16 [Stearns 2010].



1.2 Theoretical models of spatially structured populations.

Natural populations have complex geographies and histories and the problem of local differentiation of
gene frequencies in a structured population has historically required the use of basic models allowing
the development of the explanatory mathematical theory. Despite the simplicity of these ideal
prototypes, the design of very basic theoretical models of spatially structured populations has provided
useful intuition about the behavior of more complex models.

A major development in terms of modelling strategies of spatially structured populations was the use

in the 1960's by Kimura and others of island and stepping stone models [Kimura 1964, Slatkin 1975]

The term "island model" refers to a model which considers a population to be split into a finite or
infinite number of discrete islands or demes. Individuals can migrate from any deme to any other deme

uniformly, there is no sense of distance and all islands are equally far apart from each other (Fig 1.1).

Figure 11: Each island has a finite diploid population of size N, each of which exchanges a proportion "m" of its

population each generation with a mainland containing an infinite population. We define M = 2Nm for the total
number of migrants exchanged per generation.

In this context, a useful and related statistic to measure the differentiation between subpopulations is

Wright's fixation index:

Where "p" is the average frequency of an allele in the total population, 025 is the variance in the
frequency of the allele between different subpopulations, weighted by the sizes of the
subpopulations, and OZTis the variance of the allelic state in the total population.

Although island models have the advantage of being manageable, they do not correspond to reality.

Most populations will exhibit isolation by distance and the assumption that an individual from any part

of the range migrates uniformly is likely to be false. Individuals are more likely to be closely genetically



related to individuals who are also spatially close to them (keeping alive the first law of geography:
"Everything is related to everything else, but near things are more related than distant things"). The
"stepping stone" model [Kimura 1964] is the natural extension of the island model by including the
concept of isolation by distance in the model concept. In the stepping stone model, demes are
arranged in a regular pattern, migration can only occur between the nearby neighbor surrounding
demes and the degree of differentiation between subpopulations depends on the number of

populations.

Formally, if we have "d" demes arranged in a K x K grid [Cox 2002], genetic differentiation among demes

is:

i
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While the one dimensional model can represent a population of organisms living along a river, the two
dimensional model can represent a population on a plane and cover the most important cases in nature
including different migration rates in the longitude X and latitude Y axis directions. The three
dimensional model can represent a population in an oceanic habitat with migration rates in the three
axes or can also represent a population of organisms living on a plane, but including a third dimension

such as the social rank in which migration is restricted to the neighboring classes [Kimura 1964].

Isolation by distance theory explains the accumulation of local genetic differences under the main
driver "the more geographical distance, the more genetic differentiation in the pairwise measures".
However, we need to take into account that genetic differentiation can increase at different rates in
different geographic directions, and this should affect the localization of geographic origin from
genome-wide SNP data. Keeping in mind that the concept of anisotropy is defined as the property of
being directionally dependent, we can rely on spatial analysis of genetic data since can additionally
provide the orientation at which the accumulation of genetic differentiation is the greatest [Jay 2013].
In fact, main land-masses do not show the same orientation and this creates an effect of anisotropy in

the spatial distribution of the genetic variation.

1.3 The coalescent approach for modeling the neutral genetic variation.

Wright-Fisher model.

The Wright-Fisher model is one of the most simplest models for modeling the observed demographic
variation of a population. The Wright-Fisher model makes three idealized assumptions: (i) Generations
are taken to be discrete (ii) The population size is taken to be fixed, so that alleles compete only against
other alleles and not against an external environment. (iii) Random mating is assumed. None of these

assumptions are present in any real population. Nevertheless, Wright-Fisher has proved to be a useful



intuitive guide in real cases, and also the mathematical foundation on which more complicated

population models can be developed.

Coalescent theory

The term coalescence refers to the process in which, looking backward in time, the genealogies of two
alleles at present merge into a shared common ancestor in the past. In a sample of “k” alleles, for
example, the first coalescence (looking backward in time) merges the “k” contemporary genealogies
into (k - 1) ancestral genealogies, and the second coalescence merges these into (k - 2) genealogies,
and so forth, until there remains a single common ancestor for the whole sample of alleles at present.
The idea of coalescent analysis is to consider the ancestral history of genes in a sample by developing a

model for the time intervals between each coalescence.

Coalescent
direction
A
MRCA [T = 6)
Tirme
direction

Current generation
{T=1)

(D) Individuals to be coalesced

) Mast recent commaon ancestor

Figure 1.1: In a Wright-Fisher model, two haploid individuals (green) at the present generation coalesced at the sixth
generation backward in time to the most recent common ancestral - MRCA (orange). Extracted from [Critical
assessment of coalescent simulators in modeling recombination hotspots in genomic sequences, Tao Yang 2014]

The coalescent theory was initially derived as an approximation for explaining the patterns of variation
observed at one locus taking advantage of the neutral Wright-Fisher model: given an effective
population size and a sample of alleles, we can estimate each coalescence tree in probability following
the (Equation 17) backward in time. Once the tree is constructed, we can estimate the probability of
the observed genetic diversity in our samples by adding mutations to this tree. These mutations would
follow a Poisson process where the scaling factor of a branch would be determined by the number of
generations since the last coalescence event. Normally, an infinite sites model is assumed, which
means no recurrent mutations occur. Each recombination event breaks the sequence into several
segments, and each segment is modeled by a genealogy tree. Simulation of recombination hotspots is

realized by changing the rates where these recombination events occur [Yang and Deng 2014].

This approximation works well when sample sizes are small relative to the effective population size.



2. Applying the coalescent theory to simulate sequences.

Backward coalescent simulations are the standard method of generate population samples under
various demographic models. They are widely used as powerful tools in the field of population genetics
and are the keystone in estimating parameters for different population histories, to infer phylogenetic
trees, testing against the presence of selective sweeps and for providing an evaluation framework at
association studies among others. Based on the neutral Wright-Fisher model, the backward coalescent
simulation process starts from a sample of DNA sequences and then integrates all coalescent and
recombination events simulating the entire ancestral origin. From the computational point of view, the
process imposes considerable computational requirements. Since the year 2002, an abundant number
of coalescent simulators have been developed and, among them, Fastsimcoal2 is one of the more

scalable and flexible.

Fastsimcoal2 is a program to simulate the neutral genomic molecular diversity in current or ancient
samples derived from a population given a demographic model. Fastsimcoal2 generates replicates of
random outcome of molecular diversity under a user-defined evolutionary scenario. These scenarios
can be very complex from the evolutionary point of view, including an arbitrary migration matrix
between samples, historical events allowing for population resize, population fusion and fission,

admixture events, changes in migration matrix, or changes in population growth rates [Excoffier 2011].

Fastsimcoal2 is fitted with a fast Sequential Markovian Coalescent (SMC) model for recombining DNA
sequences, in particular the SMC' version of SMC [Marjoram 2006]. Under SMC, a tree is generated on
the left end of the sequence under study, and computes the position of a recombination event on the
right-hand side assuming an exponential distribution of recombination positions along the sequence. A
recombination event is then implemented at random along the current tree, and the detached
recombining lineage is then free to coalesce with the other remaining lineages, leading to a new tree
with a potentially different topology and most recent common ancestor (MRCA). This procedure is
continued until one reaches the end of the sequence to be generated. By the implementation of SMC’
algorithm, for each tree, all migration events having occurred in addition to all coalescent events are
recorded. These events are then replayed to generate the next tree, such that the detached
recombinant lineage can migrate in any deme and potentially coalesce with lineages from the left tree

that were present there at the same time [Excoffier 2011].

Due to the clarity how SMC' algorithm is described by the authors [Marjoram 2006]. we transcribe it

here in full:



| 1.Set x=0and generate a coalescent tree for x Denote this tree by 7x). Denote the length of the tree at x by ().
2. Generate y~ Exp(g L(x), the distance along the chromosome to the next recombination event.
3. Pick a point gon the tree 7{x) uniformly.
4. Add a recombination event to the graph at that g The recombination occurs at chromosomal location x+ ).
The left emerging branch follows the path of the existing line at that point. We refer to this as the old
branch. The right emerging line coalesces at some point higher up on the graph (possibly past the MRCA)
according to the usual coalescent probabilities. In particular, it coalesces with each existing line at rate 1.
5. Delete the part of the old (i.e. left) branch that lies between the newly added recombination event and the
point at which the old branch coalesces with another line. At this point we are left with a tree (rather than a
graph).
6.5et x =x+ . Let 7{x) denote the tree constructed at x. Set /(x) equal to the length of T X).
7.1fx+ y<1returnto 2.

Figure 2.1: The seven steps of the SMC’ Algorithm. Extracted from [Fast coalescent simulation, Marjoram and Wall].

Recombination
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Figure 2.2: how the SMC’ algorithm forms the next tree along the chromosome, moving from left-to-right, given the

state of the current tree. Extracted from [Fast coalescent simulation, Marjoram and Wall].



3. Methods for detecting global population substructure.

3.1 The analysis of population structure.

Population structure is produced when the population or metapopulation is subdivided in
sub-populations, local populations, or demes whose individuals randomly reproduce at a higher rate
within each deme than between demes.

Identifying the sub-populations that comprise a species and the gene flow connections between
different demes is an active research field within population genetics and has important consequences
for properly interpreting the genetic diversity, for instance identifying genetic/geographic barriers or
discontinuities. Ultimately, we can not assume that genetic variation over the whole range of a species
is simply the same as extrapolating what happens in single populations. In other words: population
structure matters.

In many real populations, population substructure may be cryptic and/or show continuous spatial
patterns. However, even in effectively spatially continuous environments, different geographic areas
can differ in gene frequencies, because the whole metapopulation is not panmictic. For instance,
among humans, there are regions showing some quite major language differences, suggesting
substructure, but you would be hard put to find an exact boundary where there is a changeover. Such

populations are structured, but continuously, in space.

The analysis of population structure based on genetic ancestry has experienced an increasing progress
during the last decade. “Genetic ancestry estimation” is a broad term which is concerned with a number

of different population genetics problems [Liu 2013] :

defining the number of subpopulations in a sample

assigning individuals to subpopulations

defining the number of ancestral populations in admixed populations
assigning ancestral population proportions to admixed individuals

identifying the genetic ancestry of distinct chromosomal segments within an individual

This information can be further used to inform us about the evolutionary relationships and migration
history of natural populations. In the case of humans, where both the sampling location of an organism
or self-reported ancestry can be uninformative for the true ancestry of the individual, the use of
genetic markers can facilitate accurate and reliable ancestry inference by exploiting allele frequency

differences across population groups.

10



3.2 Local and global ancestry estimation.

Taking into account that the chromosomes of an individual with admixed ancestry represent a mosaic
of chromosomal blocks from the ancestral populations (see Figure 3.1), there are currently two
different paradigms underlying ancestry inference: global ancestry estimation and local ancestry

estimation:

Local Ancestry Estimation. Local ancestry is defined as the genetic ancestry of an individual at a

particular chromosomal location, where an individual can have 0, 1 or 2 copies of an allele derived from
each ancestral population. Local estimates are concerned with identifying the ancestral origin of distinct
chromosomal segments within an individual genome and, henceforth, analysing each chromosome in
an individual’s genome as a mosaic of segments that originate from different ancestral populations

[Padhukasahasram 2014]

Global Ancestry Estimation: Global ancestry is based on estimating the proportion of ancestry

contributed by different populations averaged across the entire genome of an individual. Despite this

estimation can be obtained by averaging the ancestry tracts obtained from local ancestry methods,

there is alarge number of algorithms that tackle genome ancestry problem as a whole.
Il African (34%) [} Native American (32%) ] European (34%)

chr1 c¢hr2 chrd chr4 chrS chr§ chr? chr8 chr® chri0 chri1 chri12 chri3 chri4 chri5 chr16 chr17 chr18 chr19 chr20 chr21 chr22

Figure 3.1: Example of local genetic ancestry. Chromosome paintings showing the genomic distributions of loci with
African, Asian (Native American) and European ancestry, along with their genome-wide ancestry proportions for
one particular Colombian individual. Extracted from [Ancestry, admixture and fitness in Colombian genomes,

Lavanya Rishishwar]

Despite no single method or software can optimally solve all of these problems [Padhukasahasram
2014] recent advances in genomic technologies as well as computing resources have made it possible

to accurately infer overall ancestry as well as ancestry at a fine scale across an individual’s genome.

11



Apart from global and local ancestry approaches, under the large topic of global ancestry estimation the
algorithms for estimating genetic ancestry can also be divided into methods that rely on multivariate
statistical methods (like PCA and cluster analysis) versus methods that make use of explicit genetic
models. However, this distinction does not imply that there aren’t important similarities between

algorithmic and model-based methods [Liu 2013].

3.3 “Algorithmic” based methods.

Algorithmic approaches use techniques from multivariate analysis, mainly cluster analysis and principal
component analysis, to discover structure within the data not making any assumption about the
underlying genetic model of the data. The proposed output of some of these methods (coordinates)

can be interpreted in demographic terms.

Algorithm free methods are exemplified by MDS-PLINK [Sham 2007] , SMARTPCA-Eigensoft [Patterson

2006] or sSNMF among others (for an extensive overview of most widely used methods in population

genetics for detecting individual genetic ancestry, see Detecting individual ancestry in the human

genome, Wollstein and Lao])

The Principal Component Analysis (PCA)

The Principal Component Analysis (PCA) is an algorithm that iteratively searches for orthogonal axes,
described as linear combinations of multivariate observations, along which projected objects show the
highest variance, and then returns the positions of objects along those axes (the principal
components). For many data sets, the relative position of these objects (e.g., individuals) along the first
few PCs provides a reasonable approximation of the covariance pattern among individuals in the larger
data set. As a result, the first few PC values are often used to explore the structure of variation in the

sample.

A principal component analysis makes sense if there are high correlations between variables, as this is
indicative that there is redundant information and therefore fewer factors explain as much of the
variability as the total set of variables. This is the case of genetic variants: because demographic
processes affect the whole genome, it is expected that a large number of variants will correlate due to

their shared history (see Origin and maintenance of the genetic variation in the human genome).

The selection of factors is performed such that the first factor collects the largest amount of the original
variability between observations; the second factor collects the maximum possible variability not
collected by the first, and so on (see Figure 3.2). From all these factors we can select those that collect
the percentage of variability that is considered sufficient for the analysis. Once selected the main

components, they are represented in a matrix where each element of this factor represents the

12



coefficients of the variables (correlations between variables and principal components). The matrix will

have as many columns as main components and as many rows as variables. [Pefia 2002]

The PCA problem can be approached from a geometric point of view if we consider the point cloud
from our dataset and we see that the points are located following an ellipse, then we can describe its
orientation giving the direction of the major axis of the ellipse and the position of the point by its
projection on this direction. It can be shown that this axis is the line that minimizes the orthogonal
distances. In several dimensions, prior concept can be applied to ellipsoids and the best approach to
data is provided by the major axis of the ellipsoid. Considering the ellipsoid axes as new variables of

moving from original variables correlated to orthogonal variables.

Formally, let X be a m X n matrix with observations, each of dimensionality m, such that each
variable has zero mean, X Xij =0Vi. Then the principal components (PCs) Y are given by the
transformation ¥ = W T X where W isan orthogonal m x m matrix chosen as follows: let w, be the i
" column of W, then w, satisfies w, = argmax ||wl|| .{| Iw", X | |’}and for 1 <i < m, wsatisfies w =
argmax ||wil| ,{| |W'[1-%j jzl”ijTj]Xl |2} . Equivalently, the principal components are the ordered
eigenvectors of the sample covariance matrix.

PCA is defined as an orthogonal linear transformation that transforms the data to a new coordinate
system such that the greatest variance by some projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance on the second

coordinate, and so on.

B — " n " — " — - .

2 1* and 2™ PCA axis

Figure 3.2: lllustration of PCA principles in a two dimensional (x1 and X2) example. Each dot represents an
observation in these two dimensions. Left panel: Transforming to new coordinate system (red axis) with major
variance on the new first coordinate Right panel: Observed variables are projected onto their two principal
components resulting in a set of orthogonal predictors being the best approach provided by the major axis of the

ellipsoid.

Mathematically, the transformation is defined by a set of p-dimensional vectors of weights or loadings

w(k)=(w,, ..., w )(k) that map each row vector X(i) of X to a new vector of principal component

scores #(i) =(,, ..., t,)(i) given by tk(i) =X(i)-w(k) in such a way that the individual variables of ¢

13



considered over the data set successively inherit the maximum possible variance from X, with each

loading vector w constrained to be a unit vector.

History of PCA in population genetics: Coalescent interpretation, difficulties and new uses.

The application of PCA to genetic data was leaded by Cavalli-Sforza in the mid-1960s. From a wide range
of populations and using relatively small number of classical markers (mostly blood groups and related
biological markers) available at that time, Cavalli-Sforza investigated the structure and relationships

between different human groups.

In the 70's PCA was commonly used to visualise genetic data using low size datasets; however, the
method was mostly abandoned in the 80’s and 90’s for these purposes due to problems related to
interpretation of PCA [Sokal 2012] and data used not meeting assumptions of PCA. In 2006 [Price 2006],
with the development of high-density SNP genotyping assays which has made possible to characterize
patterns of genetic variation within and among human populations, the method was reintroduced in
the population genomics community, providing unprecedented opportunities to understand the
evolutionary history and migration patterns of humans. Such datasets with an order of magnitude 10°
absolutely require a dimensionality reduction technique to be summarised and visualised, and PCA is
usually the most convenient. [Jianzhong Ma 2012] PCA is widely used to quantify patterns of
population structure and the Eigenstrat method, as implemented in the program SmartPCA, is now
routinely used to detect and correct for population stratification in genome-wide association studies

[Patterson 2006].

In conventional PCA, in which the markers are treated as features, sampled individuals are projected
into a subspace spanned by the top principal components (PCs). Because the top PCs reflect variations
due to population structure in the sample, individuals from the same population are found to form a
cluster in this subspace. Therefore, the pattern of the top PCA is used to infer population relationships
or within-population structures that can be understood intuitively.However, the biological
interpretation of principal components from genetic data is non-obvious. Cavalli-Sforza and colleagues
interpreted variation in principal components in evolutionary terms, so that a PCA component in the

geographic space was indicative of :
- an admixture event
- a selective gradient
- amigration event
- arange expansion

Nevertheless, as was pointed out by Novembre and Stephens [Novembre 2006], these PCA clines and

other more complex regular patterns also appear naturally in the first few principal components of

14



variation when spatially structured populations are at both equilibrium and nonequilibrium models.

According to Novembre and Stephens [Novembre 2006], when analyzing spatial data:

- PCA produces highly structured results, in particular sinusoidal functions of increasing

frequency.

- PCA results depend on the details of a particular dataset:
> population structure
> distribution of sampling locations
>amounts of data

- These features limit the utility of PCA for drawing inferences about underlying processes and
interpreting gradient patterns in PC maps as signatures of historical migration event, because

such patterns arise generally under a simple condition:

> genetic similarity decays with distance and this condition would be
expected to be satisfied under a wide range of demographic scenarios,
including both equilibrium isolation-by distance models and

nonequilibrium models involving population expansions.

- Because Cavalli-Sforza et al. used spatial interpolation to estimate allele frequencies, their
data could satisfy this condition even if the condition were absent in the underlying allelic

frequencies [Novembre 2006].

This is a problem to be further discussed. For example, the first two principal components of
European genotypes almost perfectly recreate geographic North-South and East-West axes [Lao
2008] but it is not clear whether this is a result of range expansion in both these directions,

constant population structure with migration, or the most likely option, a combination of both.

McVean (2009) provided a unifying framework for understanding what PCA actually represents in a
genomic context, by showing that the principal components are simply a function of the expected
coalescence times between lineages (see The coalescent approach for modeling the neutral genetic
variation). Thus, models which lead to the same expected coalescence times provide the same PCA
output. Furthermore, an additional major problem when using PCA to analyse genetic datais thatitis
very sensitive to both ascertainment of markers and sampling scheme. Choosing different individuals
can lead to very different conclusions, and according to McVean [McVean 2009] the main drivers for this
situation are:

- PCA projections can be strongly influenced by uneven sampling from a series of

populations. If all populations are equally divergent from each other, those for which

there are fewer samples will have larger values because relatively more pairwise

comparisons are between populations.
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- Even if the results were not influenced by the relative sample size its eigenvectors
will be, simply because relative sample size will influence the structure of the

genetic variance in the sample.

- The influence of uneven sample size can bias the projection of samples on the first
few PCs in unexpected ways, for example, where there is spatial structure to genetic

variation.

- there are many different processes that one might want to consider as explanations
for patterns of structure in empirical data and efficient inference, even under simple

models can be difficult.

- Different processes can lead to similar patterns of structure. For example,
equilibrium models of restricted migration can give similar patterns of

differentiation to non-equilibrium models of population splitting events.

- Any species is likely to have experienced many different demographic events and
processes in its history and their superposition leads to complex patterns of genetic
variability.

- Such models are often highly simplistic and restricted to a subset of possible
explanations.

Multidimensional scaling (MDS)

The multidimensional scaling techniques (MDS) are a generalization of the idea of principal
components when, instead of having a matrix of observations by variables such as principal
component, there is a square nxn matrix "D" of distances or dissimilarities between the "n" elements
of a dataset. These distances may have been obtained from certain variables or may be the result of a
direct estimate. The objective is to represent this matrix by using a set of orthogonal variables
(y1,....yp) where p<n so the Euclidean distances between the coordinates of the elements on these
variables are equal (or as close as possible) to the distance or dissimilarity of the original matrix. That
is, from the matrix "D" it is obtained a "X" matrix nxp, which can be interpreted as the matrix of "p"
variables in the "n" individuals, and where the Euclidean distance between the elements
approximately reproduces the initial distance matrix "D". In general it is not possible to find "p"
variables that reproduce exactly the initial distances, however it is common to find variables that
reproduce approximately the initial distances. On the other hand, if the distance matrix was generated

by calculating the Euclidean distances between observations defined by certain variables, we can

recover the main components of these variables [Pefia 2002].

The multidimensional scaling shares its main goal with principal components in order to synthesize the
individual relationships and the interpretation of the data. If there are many elements, the matrix of

similarities will be very large and the representation by a few variables elements will allow us to
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understand its structure: what elements have similar properties or groups appearing between

elements.

Multidimensional Scaling (MDS) on Identity By State (IBS) pairwise matrix.

Population substructure modeling of a sample individuals can be done by computing the Identity By
State (IBS) distance between each pair of individuals, subsequently building a matrix representing the
relatedness of individuals and then performing multidimensional scaling (MDS) using such matrix. IBS
examines pairs of SNPs between two individuals and puts them into one of three categories (see

Figure 3.3):

1. Identical: Both individuals have the same genotype call (AA and AA; BB and BB; AB and AB).
2. One-Allele Shared: Only one call is shared between both individuals (AA and AB; AB and BB).
3. No alleles shared: No alleles are the same ( AA and BB).

For individual SNPs, this type of analysis really does not provide any extra information. The real

advantage is gained when high-density SNP information is taken for the whole genome.

Conceptually, having N loci, what we are really doing is plotting the individuals as points in a
N-dimensional space where each individual’s distance from another along each axis is either0, 1, or 2
(IBS-0 is a distance of 2, IBS-1is a distance of 1, IBS-2 is a distance of 0) and then computing the distance
between each pair of points along each axis. Those distances will only plot properly in a
N-dimensional space, but, with higher dimensions being difficult to visualize, we can use MDS to plot
an approximation of the distances in 2D and iteratively try to find a positioning of the points in two

dimensions that minimizes conflict between their true distance and their distance as plotted.

Individual 1 A/C G/T A/G A/A G/G

I || | |
Individual 2 ¢/ /T AG CO/C GG

IBS 1 1 2 0 2

Figure 3.3: IBS classification example showing the three possible categories by examining pairs of SNP’s

between two individuals.

IBS is suitable for population outlier detection, is robust to high linkage disequilibrium (LD) among
SNPs, and can be rapidly calculated [Gao 2009]. Furthermore, one of the advantages of this distance
method is that there is no need to explicitly specify the allele frequencies. Therefore, population
allele frequencies do not have to be approximated by sample allele frequencies. The allele
frequencies and coancestry information are embedded in the pairwise distance matrix over a large
number of random SNP loci. [Gao 2009]. Another advantage of the distance method is that it is easy to

calculate with no decrease in accuracy and is also suitable for population outlier detection.
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In summary, the IBS method combined with SNP markers has considerable power in population
stratification analysis and it is not necessary to estimate allele frequencies to separate individuals with
different ethnic backgrounds. The correlation/coancestry among individuals within subpopulations,
which can be captured by the IBS, contributes to the classification. Diploid individuals from different

subpopulations can thus be separated from half-matrix of pairwise distances.

SNMEF

SNMF program [Frichot 2014] applies an algorithm for inferring ancestry proportions founded on the

linear algebra principle of non-negative matrix factorization (see Figure 3.4).

Non-negative matrix factorization (NMF) is a group of algorithms in multivariate analysis where a matrix
V is factorized into two matrices W and H, with the property that all three matrices have no negative
elements. Apart from the obvious fact that non negative values make the resulting matrices easier to
inspect, in NMF applications such as nuclear imaging, processing of audio spectrograms or, as in our
case, detecting individual ancestry in the human genome, non-negativity is inherent to the data being
considered. Since the problem is not exactly solvable in general, it is commonly approximated
numerically. Non-negative matrix factorization is distinguished from the other methods by its use of
non-negativity constraints which lead to a parts-based representation because they allow only additive,

non subtractive, combinations [Lee 1999].

Figure 3.4: Probabilistic hidden variables model: the visible variables "v" in the bottom layer of nodes are generated
from the hidden variables "h" in the top from a probability distribution with mean Za(Wia-ha). The influence of h,,
on V; is represented by a connection with strength VV,.O . [Daniel D. Lee and H. Sebastian Seung (1999). "Learning

the parts of objects by non-negative matrix factorization' Nature. 401(6755): 788—-791]

The algebraic basis of NMF is as follows: let matrix V be the product of the matrices W and H,
V=WH
and when multiplying these matrices, the dimensions of the factor matrices (W and H) may be

significantly lower than those of the product matrix (V) and it is this property that forms the basis of
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NMF: generating factors with significantly reduced dimensions compared to the original matrix. For
example, if V is an mxn matrix, W is an mxp matrix, and H is a p xn matrix then p can be
significantly less than both m and n.

For illustrative purposes, a simplified example for detecting individual ancestry in the human genome
by using NMF algorithm would follow next steps:

S1) Let the input matrix (the matrix to be factored) be "V" with 10,000 rows and 500 columns where
SNPs are in rows and individuals are in columns (Figure 3.5). Each row contains 1 character per
individual: 0 means zero copies of the reference allele. 1 means one copy of the reference allele. 2

means two copies of the reference allele. 9 means missing data:

500 individuals 10 cols
—p
= T i indl  ind2 ind3 ind4 00 *
% SMPL 1 1 2 2].. 2 > s00 caliimne
- SHP2 1 0 1 2 0 e - »
[=] . o wvi
=) SHP3 1 1 2 9 1 =
= s W X 2 H
= SHP3 2 2 2 2 2 = =
= 2
¥ |SNP10000 2 2 1 o 1 v

Figure 3.5: lllustrative example of SNMF factorization. The input matrix to be factored, a 10,000 SNPs genotyped at
500 individuals from the left of the equation (SNP’s in rows, individuals in columns) is decomposed in two

non-negative features matrix W and coefficients matrix H on the right.

S2) Assume we ask the algorithm to find -lets say- 10 features in order to generate a features matrix
"W" with 10,000 rows and 10 columns and a coefficients matrix H with 10 rows and 500 columns. The
product of W and H is a matrix with 10000 rows and 500 columns, the same shape as the input matrix V

and, if the factorization worked, it is a reasonable approximation to the input matrix V.

S3) From the treatment of matrix multiplication above it follows that each column in the product matrix
WH is a linear combination of the 10 column vectors in the features matrix W with coefficients supplied

by the coefficients matrix H.

This last point is the basis of NMF because we can consider each original individual in our example as

being built from a small set of hidden features. NMF generates these features.

S4) We can interpret each feature (column vector) in the features matrix W as an individual archetype
comprising a set of SNPs where each SNP cell value defines the SNP's rank in the feature: The highera
SNP's cell value the higher the SNP's rank in the feature. A column in the coefficients matrix H
represents an original individual with a cell value defining the individual's rank for a feature. This
follows because each row in H represents a feature. We can now reconstruct an individual (column
vector) from our input matrix by a linear combination of our features (column vectors in W) where each

feature is weighted by the feature cell value from the individual's column in H.
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In the context of the above mathematical framework, sNMF software models the probability of the

observed genotypes P, in individual "i" at locus "I" as a fraction (; of K ancestral genotype probability

8, [Lao and Wollstein 2015]:

X
pPylj) = Z{ﬁ':;&fuu )
k=1

As exemplified above, j=0,1,2 denotes the number of alleles. The corresponding matrix representation
is P=QG, where the unknown Q and G can be estimated by nonlinear matrix factorization minimizing

two least square criteria:

Ls) = |X-QGland Ls; = |(GT; va 1£)Q" - (XT;0,)]|

A loop is then executed applying both criteria until convergence is reached. Starting from random
matrices as initial condition, the algorithm finally obtain estimates about Q from Ls; and G from Ls,.

[Wollstein and Lao 2015].

3.4 “Model” based methods.

Model-based approaches estimate individual ancestry proportions and ancestral populations as the
parameters of a statistical model. Model based algorithms philosophy are exemplified by STRUCTURE
[Pritchard 2000], FRAPPE [Tang 2005] or ADMIXTURE [Alexander 2009].

In 2000 the seminal paper of Pritchard et al [Pritchard 2000] introduced STRUCTURE, a new method for
identifying individual global ancestry. The method was based on estimating ancestry proportions from a
putative number of ancestral populations that produced currently observed data by assuming very basic
population genetic assumptions and implementing a Bayesian framework to recover the ancestry

proportions of each individual as well as the ancestral allelic proportions in the ancestral populations.

From a conceptual point of view, this method revolutionized the analysis and interpretation of human
genomic data. First of all, it showed that ancestry proportions could be recovered at individual level,
rather than at a population level. Second, in 2002, Rosenberg et al [Rosenberg 2002] showed that
continental like groups of humans could be identified by means of using this method through
STRUCTURE software, without using prior information about the origins of individuals. The authors
identified six main genetic clusters, five of which corresponded to major geographic regions, and
sub-clusters that corresponded to individual populations. Finally, since its publication, this -and
maximum likelihood based approaches- became the gold standard for identifying population

substructure when analyzing genetic data.
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From a methodological point of view, this new method introduced by Pritchard (STRUCTURE) is based
on the assumption of basic demographic assumptions and estimating ancestry coefficients as the

parameters of a statistical model. [Pritchard 2000].

Formally and in brief, STRUCTURE algorithm assumes:
- Each cluster or population is modeled by a specific set of allele frequencies.
- HWE within populations.
- Complete linkage equilibrium between loci within populations.

- Each allele at each genotype is an independent draw from the appropriate frequency
distribution Pr(X|Z,P) where X denote the genotypes of the sampled individuals, Z denote the
unknown populations of origin of individuals and P denote the unknown allele frequencies in all

populations. See next point for a description of the individual and population likelihood.

ADMIXTURE

The approach for estimating ancestry proportions of ADMIXTURE software is similar to STRUCTURE
methodology since both programs model the probability of the observed genotypes using ancestry
proportions and population allele frequencies. Like STRUCTURE, ADMIXTURE simultaneously estimates

population allele frequencies along with ancestry proportions [Alexander 2009]:

in the likelihood model, individuals are formed by the random union of gametes producing the

binomial proportions:

2
Pr(1/1 for i at SNP j)= | Y quf s
k
Pr(1/2 for i at SNP j)= 2{2 ‘Iskf'kf} {E ql(1 — ;"k;-]}
. 7| (4 :

2
Pr(2/2 for iat SNPj)= {Z qall —fy ]}
K

Being g;; the observed number of copies of allele "1" at marker "j" of individua which equals 2, 1

or 0if "i" has genotype 1/1, 1/2 or 2/2 at marker "j", since individuals are considered independent, the

log-likelihood of the entire sample is:
L(Q.F)=) Y.< &0 | X qufei| + (2 —8i)In | X qi(1 — i)
i ] K K

In this expression, Q = ({;,) represents the matrix of ancestry coefficients for all individuals, and F =

(fkj) represents a matrix of allele frequencies for all loci.
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The main difference between ADMIXTURE and STRUCTURE relies on maximizing the likelihood rather
than on sampling the posterior by MCMC as done by STRUCTURE. Since high-dimensional optimization
is much faster than high-dimensional MCMC, ADMIXTURE maximum likelihood approach can
accommodate many more markers. The parameters of the ADMIXTURE model must satisfy linear
constraints and bounds and is settled on a block relaxation algorithm that alternates between updating
the ancestry coefficient matrix Q and the population allele frequency matrix F. Each update of Qitself
involves sequential quadratic programming, a generalization of Newton's method suitable for

constrained optimization.

Since model-based methods explore the space of possible solutions starting from an stochastic initial
point, it is generally suggested to run the algorithm several times at different initial starting points for
each proposed K and to check for the optimal resulting scenario. Different strategies have been
proposed for combining the results from different runs: merging all the solutions and then computing a
consensus ancestry value or just to take the run that provides the best value of model performance

[Wollstein and Lao 2015].

Identification of the optimal number of ancestral populations

The identification of the number of ancestral populations contributing to current genetic variation is of
interest for several population genomic fields such as association mapping, molecular ecology or
human evolution studies among others. Many algorithms have been developed for employing
population genetic data to estimate the individual ancestral proportions out of a predefined set of K
ancestral populations. Typically, a matrix structure is used to represent the individual ancestry
proportions over all the samples, where each individual is given a coefficient or fraction for each
cluster, all adding to 1. This fraction can have multiple interpretations. In one hand, it can be interpreted
as the probability of being a member of the ancestral population. On the other hand, it can indicate the
fraction of the genome with membership in the ancestral population. The number of ancestral
components is usually predefined by the user for some methods, and a further algorithm is required
for inferring the optimal number of ancestry components explaining the observed data [Rosenberg

2007].

There are a number of methods in order to deal with the unknown K number of ancestral populations
and estimate the optimal best one from the data under analysis. In model-based methods, the
algorithm is explicitly run by the user at different Ks and then the selection of the ideal K value of
ancestral components is then ascertained by taking the K that optimizes the parameter of performance

of the algorithm [Wollstein and Lao 2015]. For example:
- the one that maximizes the log-likelihood of the posteriorin the case of STRUCTURE
- the one that minimizes cross-validation error is applied in ADMIXTURE

- the one that minimizes cross-entropy error is applied in SNMF
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Cross Validation (ADMIXTURE) vs Cross-Entropy (SNMF)

Cross validation procedure helps identifying which value of K has the best predictive value by fitting the

model on a subset of genotype data and then predicting the excluded (masked) genotypes [Liu 2013].

The aim of cross-validation method is to identify the best K value as judged by prediction of
systematically excluded data points. In ADMIXTURE software, v-fold cross-validation procedure is
performed fragmenting the non-missing genotypes into "v" more or less equally sized subsets. At each
of "v" iterations, the members of one of the folds are masked (excluded temporarily marking them as
missing) to build a new data matrix and then computing the log-likelihood score (the entries with
missing values are ignored). Maximization of the log-likelihood readily yields new estimates for the
masked data and the prediction error is estimated by averaging the squares of the deviance residuals
across all masked entries over all folds. Minimizing this estimated prediction error on a grid of K values

then suggests the most suitable K [Alexander 2011].

Cross-Entropy is a cross-validation technique also based on imputation of masked genotypes and a
procedure partitioning the genotypic matrix entries into a training set and a test set. To build the test
set, 5% of all genotypes are randomly selected and marked as missing values. The occurrence
probabilities for the masked entries from training sets are computed according to the formula [Frichot

2014]:

K
PYG) = qugul), j=0,1,2
k=1

In statistical terms, the cross entropy method provides an estimate of the quantity:

2
H(p=mele, pped) = 3~ pmBleilog pB*(j) , j=0,1,2.
j=0

This quantity corresponds to the sum of the Kullback-Leiber divergence between the sampled and
predicted allelic distributions. In probability theory, the Kullback-Leibler divergence is a measure of
the difference between two probability distributions P and Q [Kullback 1951]. In applications, P
typically represents the "true" distribution of data or a precisely calculated distribution, while Q
typically represents a theoretical model or approximation of P. Specifically, the Kullback—Leibler
divergence from Qto P, is a measure of the information gained when one revises one's beliefs from the
prior probability distribution Q to the posterior probability distribution P. It is the amount of
information lost when Q is used to approximate P. Therefore, the number of ancestral gene clusters (K)
is selected to minimize the cross-entropy criterion where smaller values of the criterion indicate better

algorithm outputs and estimates.
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Spatial ancestry and SPA.

As discussed previously, ancestry inference from genetic data takes populations modeled as discrete
units of the input of the problem, and estimates the fractions of the genome coming from a set of
source populations as the output. This inference aims to assign each allele in the genome to one of the
considered ancestry populations. Alternative methodologies study population structure in a geographic
continuum, exploiting the expected correlation of genetics and geography derived from isolation by
distance models (again the first law of geography: "Everything is related to everything else, but near
things are more related than distant things" (Tobler, 1970)) . Such localization is called spatial ancestry

assignment. This spatial approach offers some advantages [Yang 2014]:

i) It is reconciled with the fact that nature rarely provides precise boundaries between distinct

populations which are exchanging individuals.

ii) Model-based inference take advantage of the geographic structure of allele frequenciesin order to

increase statistical power.
iii) More accurate allocation of ancestors for unsampled or undersampled regions.

By using this approach of ancestry inference based on geographical continuum instead of a categorical
attribute, European individual’s geographic coordinates of origin can be determined up to a few
hundred kilometers of error using spatial ancestry inference methods. Though this level of resolution is
impressive, it is natural to wonder if a model-based method for spatial assignment could perform
better and whether inferences could be reliably made for admixed individuals [Rafiola and Novembre

2014].

With the aim of validating real data from Europe, several theoretical studies using computer
simulations have shown that major prehistoric demographic events can produce genetic gradients in
autosomal markers similar to the observed in the real data. However, these simulations usually ignore
more subtle demographic events that took place throughout history at a smaller geographical scale
such as those in Europe, simplifying the demographic history due to computational constraints. For
solving these obstacles, it has been suggested to pay more attention to recent demographic history in
interpreting genetic clines and has been proposed that genetic population substructure is detectable on

a small geographic scale despite recent demographic events [Lao 2013] .

In this line of analysis, SPA software is a probabilistic model for the spatial structure of genetic variation
where the allele frequency of each SNP changes as a function of the location of the individual in
geographic space: the allele frequency is a function of the x and y coordinates of an individual on a
map. In SPA, each individual’s genotypes are assumed to follow Hardy-Weinberg proportions, with
allele frequencies defined by the individual’s location [Yang and Novembre 2012].

SPA algorithm is founded on the principle that when sampling a chromosome of an individual from a

position (x,y) on the map, the probability of observing the minor allele at SNP “j” on the chromosome

can be formulated assuming a spatial gradient (Figure 3.6) as follows:
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1
Ax) =
fj( ) exp(—a?x—bj)wtl

where the function fj(X) is selected under the assumption to be an instance of a logistic function and

being a continuous function that describes allele frequency as a function of geographic positioning. "X"
is a vector of variables indicating geographic locations, "a" is a coefficient that encodes the steepness of
the slope and "b" is a fixed offset parameter.

SPA model captures spatial genetic structure by the ability to jointly estimate both the allele frequency
gradients and the spatial positions of individuals only from the genotype data. The software starts by
placing the individuals in random positions, then iteratively uses these positions for the estimation of

the slope functions, and finally using the slope functions to update the individual positions.
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Figure 3.6: Different allele frequency slope model (a) Flat slope. A SNP with nearly constant allele frequency in all
regions of the map. (b) Medium slope. A SNP with gradual allele frequency change. (c) Steep slope. A SNP with a
sharp frequency change. Extracted from [A model-based approach for analysis of spatial structure in genetic

dataWen-Yun Yang, John Novembre]
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4. Objectives

To what degree genetically homogeneous groups of human individuals existis along on-going and yet
unsolved debate in the scientific community. Answering this question is important for better
understanding recent human evolutionary history, for reducing the amount of false positives in gene
mapping studies and other medical issues, and for inferring biogeographic origin of unknown persons
in forensic investigations. Therefore, detecting the genetic fingerprint of admixture and isolation
processes in human populations is of main interest for human population geneticists, and the
development of new methods for detecting such events has been a constant in the literature. However,
the demographic history of Homo sapiens has revealed to be extremely complex, comprising a large
number of demographic fluctuations and migratory events that spatially and temporally overlap since

the initial Out of Africa expansion of humans.

To make things more complex we need to know what is the genetic variation in Homo Sapiens
explained by the populations. In order of importance, approximately 80% of the total genetic variability
is explained by within-individual variation, a small proportion in the range 10-15% is explained by
continent of origin and finally the remaining approximately 5% of the genetic variation is explained by

the populations [Wollstein and Lao 2015]

However, as we have highlighted in the previous sections, state-of-the-art algorithms for detecting fine
population substructure present several problems. First of all, even when considering the simplest
demographic models, the obtained genetic admixture estimations depend on the assumptions of the
algorithm, the type and number of considered DNA markers and how they were discovered initially,
the underlying demographic relationship among the considered populations, and the sample size of
the studied populations. When applied to real populations, most algorithms only agree at the
continental level of achieved ancestry resolution, while reaching fine geographic population
substructure is usually cumbersome. Furthermore, even in the simplest controlled demographic
environments, the best performing algorithms show departures up to 5% in the estimated ancestry
proportions of each individual compared to his true genetic ancestry [Wollstein and Lao 2015]. Most
importantly, the behavior of these algorithms is unknown in more complex and realistic demographic
models such as the ones including geography. This is particularly important in the case of humans.
Humans tend to mate predominantly to individuals from the same (or close by) geographic area, which

creates an effect of isolation by distance in the amount of genetic differentiation.

The aim of this project is to analyze the performance of commonly applied algorithms for detecting

global ancestry in complex controlled geographic demographic scenarios in order to:
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1) Establish the robustness of these algorithms
2) Identify best performing algorithms.

3) Provide guidelines for interpreting the result from these algorithms.
Demographic models will consider:

i) Two-dimensional stepping stone model for mimicking processes of isolation by distance in

humans.
ii) Anisotropic models for mimicking the different continental axis of differentiation in humans.

For each demographic model, we will generate simulated full genomes by means of the demographic

simulator FASTSIMCOAL2

At each simulation, we will run different commonly applied algorithms for detecting population

substructure such as:

- ADMIXTURE
- SNMF

- SMARTPCA
- MDS-PLINK
- SPA

We will analyze the output performance of the different algorithms when considering non

homogeneous biased geographic sampling or unequal sampling size.
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5. Methods

5.1 2D stepping stone model.

We have depicted in the next figure a two dimensional stepping stone model of 225 demes on a grid of
15x15. Each population can exchange migrants with a rate “m” per generation with the nearby neighbor
surrounding populations. The figure is a simple graph illustrating the considered 2D stepping stone in a
15 x 15 grid where each population is depicted as a circle. Allowed migrations are depicted as edges.
Each number represents one population. This is one of the two demographic models that are the object

of this study.

Figure 5.1: Two Stepping Stone Model, 225 demes, 15x15. Demes 113, 120 and 225 illustrate migration patterns
between neighbouring demes, patterns which in fact are applied in all demes in the same manner but not painted

in here.
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5.2 Anisotropic model.

We have depicted in the next figure an anisotropic model of 125 demes on a cross-shaped grid with five

blocks of 5x5. Cross-shaped grid emulates anisotropic behavior. Each population can exchange migrants

with a rate “m” per generation with the nearby neighbor surrounding populations. Again, each

population is depicted as a circle, allowed migrations are depicted as edges and each number

represents one population.
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Figure 5.2: Anisotropic Model, 125 demes, cross-shaped grid with 5 blocks of 5x5 emulating directionally

dependent behavior. Demes 63, 70 and 125 illustrate migration patterns between neighbouring demes, patterns

which in fact are applied in all demes in the same manner but not painted in here.
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5.3 Demographic simulations with FastSIMCoal2.

We have run Fastsimcoal2 six times to simulate 2D Stepping Stone and Anisotropic models. ,Each
scenario has been run with three different migration rates: m=0.001, m=0.005 and m=0.02. Taking as
example m=0.001 and the population numbered as 113 in Figure 5.1 for the 2D Stepping Stone model,
for each generation backward in time, any gene from population 113 has probability 0.001 to be sent to
populations {97,98,99,112,114,127,128,129} and that a gene from populations
{97,98,99,112,114,127,128,129} has a probability 0.001 to move to population 113. This migration process
is applied to all demes in the model following a migration matrix defined in the fastsimcoal2 input file
“PAR”: the migration matrix included in the PAR input file is a double entry matrix of dimension
225x225 for the 2D stepping stone model and 125x125 for the anisotropic model, and the cell values of
this matrix are zero for those pairs of demes without migration or 0.001/0.005/0.02 for those pairs of

nearby neighbouring demes as defined in Figure 5.1 and Figure 5.2.

The fixed parameters common for the six models are: Population Effective Size=1000 haploid
individuals (or 500 diploid individuals) for each of the 225 populations in the 2D stepping stone design
(and also for each of the 125 populations in the anisotropic design), Sample Size=20 haploid individuals,
Growth=0 that means demes have a stationary population size with no expansion events, and we want
to generate diversity along 500 Kb DNA sequence on 22 Chromosomes with fixed mutation rate
n=2x 1078 /bp/gen and fixed recombination rate pL = 1 X 1078 /bp/gen. These demographic
parameters have been ascertained either due to computational constraints (i.e. number of demes,
effective population size, DNA fragment size) or because they represent real case scenarios in human
populations (i.e. sample size, number of chromosomes, recombination rate and mutation rate).
Summary of the parameters established in the six PAR input files used to run fastsimcoal2 are shown in

Table 5.1.

Table 5.1: fastsimcoal2 parameters for the two demographic models and the three levels of migration rate.

Model Diesign Pop Num PopEffSize SampleSizes Growth Chr Mbase Rec Mut Migration Ind Sampled SNPs PLINK Fsize(Mb}
2D Stepping Stone 225 1000 20 0 22 0.5 1.E-08 2.E-08 0.001 2250 944,093 5315
2D Stepping Stone 225 1000 20 0 22 0.5 LE-08 2.E08 0.005 2250 874,491 492.3
2D Stepping Stone 225 1000 20 o 22 0.5 1.E-08 2.E-08 0.020 2250 861,222 434.9
Anisotropic 135 1000 20 1] 22 0.5 1.E-08 2.E-08 0.001 1250 503,182 157.5
Anisotropic 135 1000 20 o 22 0.5 1.E-08 2.E-08 0.005 1250 462,441 144.7
Anisotropic 125 1000 20 0 22 0.5 1.E-08 2.E-08 0.020 1250 451,116 141.2

OUTPUT FILES from fastsimcoal2

For each simulated dataset we obtained an output text file in the Arlequin format (ARP). The content of

each ARP file is formed by four blocks of information:

i) A header listing the run parameters used.
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ii) A block listing the numerical positions of the generated SNPs on each of the 22 chromosomes. One
row per chromosome with the exact locations separated by commas. For instance, for a given

simulation, the block starts with chromosome-1:

# 20675 polymorphic positions on chromosome 1

#10, 37, 51, 3, 152, 171, 185, 214, 232, 241, 248, 311, 328, 387, 433, 443, 488, 490,

494, 535, 539, 574, 598, 638, 653, 668, 737, 741, 754, 798, 807, 870, 893, 915, 930, 1004,
wy 499672, 499690, 499785, 499795, 499931, 499943, 499945, 499950

and ends with the list of SNPs generated on chromosome 22:

# 20625 polymorphic positions on chromosome 22

#2, 13, 28, 56, 100, 111, 147, 153, 167, 184, 208, 232, 238, 391, 420, 426, 435, 437, 471,
488, 536, 543, 576, 942, . .. , 499699, 499756, 499817, 499878, 499892,
499897, 499912, 499919, 499921, 499937, 499961

iii) A block listing the numerical positions of the recombinations events generated on each of the 22

chromosomes. One row per chromosome similar to prior SNPs lists.

iv) A block with the DNA sequence simulated for each haploid individual: for each haploid individual
and each of the defined positions (those positions provided above in block [ii]), it is provided the
allele. Fastsimcoal2 only outputs polymorphic sites for DNA sequences, unless the user request to

output all sites by using a command line option.

For example, for the first haploid individual (individual coded 1_1) the allele corresponding to the first

SNP (in position 10) is “A”:

11 1
AGAAATCCCTTAGCTATCAGGATCATGGGGAGTCCGCGAAGGTGGATTGTATCCCAGATAAGTGTGCGCACCCGATTGATAACGGTTAG

GGCCGCGATGGCTCGGAGGGAAGGTGCACATCAACACCTATCTCTCGGCCGCCGGTCAATGGATCGATTCACGATCCAAGATAATAGGG

GGTCCCTCACGGCGCCAATAGAT e e« o

The six ARP Arlequin files showed in Table 5.1 have been converted to PLINK BED format files by using a

Java application programmed for that specific purpose (ConvertArlequinToPlink.jar).
5.4 Sampling methods.

Spatial Sampling.

We have considered various sampling strategies for the spatial distribution of the selected demes and

for the sampling size of individuals by population.

For the spatial sampling we have considered three scenarios:
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Full sampling (Homogeneous): taking the six basic designs (Tablel) we consider all the

simulated populations (225 and 125 for the 2D stepping stone and anisotropic models
respectively) with all of original individuals per population (2250 and 1250 diploid
individuals for 2D stepping stone and anisotropic models respectively). Just as they are
conceived after running fastsimcoal2. We consider these six scenarios as main points of
reference, being null models for testing each method.

Random spatial sampling: from the full sampling we have selected “k” populations at

random: k=75 for 2D stepping stone and k=45 for anisotropic model. This represents a
similar percentage of sampling 33% and 36% respectively. Figure 5.3 shows the random

selection on the 2D stepping stone and anisotropic designs.

Figure 5.3: The k=75 and k=45 random populations sampled from the total 225 populations of

the 2D stepping stone model full model and from the total 125 of anisotropic model.

Contagious sampling: The term contagious distribution was apparently first used by
Neyman (1939) for a discrete distribution that exhibits clustering or contagious effect. In
plant ecology, contagious distribution appears when the pattern formed by the
distribution of individuals of a given plant species within a community is not random
but shows clumping. In our case, from the full sampling, we have declared “n” regions
and in each region we have selected “p” populations. Both values, “n” and “p” have
been chosen in a manner which ensures n xp = k for comparison purposes. For 2D
stepping stone models we have declared n=25 squared regions formed by 9 populations
each one. For every of these 25 regions we have selected 3 populations in average per
region (total 74 populations similar to the 75 random selection). For anisotropic models

we have declared n=5 squared regions formed by 25 populations each one. For every of

these 5 regions we have selected 9 populations per region (total 45 populations equal
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to the random selection). Figure 5.4 shows the contagious sampling for the two

demographic strategies.
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Figure 5.4: Contagious sampling showing the 25 regions declared on 2D stepping stone (left) and the
5 regions on Anisotropic model(right). 3 populations per region in average have been selected on 2D

stepping stone model, total 74 (left) and 9 populations per region on Anisotropic (right).

Sampling size by population.

Regarding the sampling size by population we have considered two options: the same number of
individuals per population (10 diploid) and unequal number of individuals per population defined by a

random sampling within populations in the range 1to 5 diploid individuals.

Minimum allele Frequency (MAF) and Linkage Disequilibrium (LD) filtering.

In addition, each of the subsets generated by prior sampling strategies (spatial and within populations)
have been subject to Minimum allele Frequency (MAF) and Linkage Disequilibrium (LD) filtering. The
MAF filtering has been performed by including only those SNPs that are above an specific MAF value
(0.05), which is typical in GWAS and SNP microarray platforms. The LD filtering has been implemented
based on the variance inflation factor (VIF), which recursively removes SNPs within a sliding window
(window size used in SNPs = 50), the number of SNPs to shift the window at each step (value used =5)
and the VIF threshold (value used VIF=2). The VIF is equal to 1/(1-R*2) where RA2 is the multiple

correlation coefficient for a SNP being regressed on all other SNPs simultaneously. That is, this
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considers the correlations between SNPs but also between linear combinations of SNPs. A VIF=2

implies R"2=0.5. These are the default LD pruning parameters in PLINK.

Both pruning actions, MAF and LD, have been implemented via PLINK software.

50 5NPs 50 SNPs

5 5NPs 55NPs 5 SNPs

First Step Second Step

Figure 5.5: LD-based SNP pruning: generates a subset of SNPs that are in approximate LD. Sliding window 50
SNPs and calculate LD. Select representative SNPs which have low LD (R"2< 0.5).

Sampling Summary.

Recapitulating and bearing in mind the six starting full models from the two demographic designs with
three different migration rates (Table 5.1), each one of them have generated a total of 12 additional
subsets (2x2x3): 2 variants due to random or contagious spatial population sampling, 2 variants due to

within equal or unequal population sampling, 3 variants due to non filtering or MAF or LD filtering.

In total we have built 78 experimental scenarios and each one is represented by its PLINK-BED file, as

shown in Table 5.2A and Table 5.2B.
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Table 5.2A: Experimental Dataset Generation for 2D Stepping Stone models

Demographic Migration Population  Num Individual  Num Num plink-bed MAF LD
# Maodel Rate (m) Sampling Pops Sampling Inds SNPs  Fsize(Mb) Filtering Filtering
1 2DS.Stone 0.001  Full model 225 Equal 2250 944,093 531.5 No Mo
2 2D S.Stone 0.005  Full model 225 Equal 2250 874,491 4923 No No
3 2DS.Stone 0.020  Full model 225 Equal 2250 861,222 484.9 No Mo
4 2D S.Stone 0.001  Random 75  Equal 750 944,668 177.6 No No
5 2D S.Stone 0.001 Random 75  Equal 750 328,919 61.8 0.05 No
6 2D S.Stone 0.001 Random 75  Equal 750 440,162 82.8 No R2=0.5
7 2D S.Stone 0.001 Random 75 Unequal 225 944 668 538 No No
8 2D S5.5tone 0.001  Random 75  Unequal 225 327,575 18.7 0.05 No
9 2DS.Stone 0.001 Random 75  Unegual 225 337,558 19.2 MNo R2=0.5
10 2D 5.5tone 0.001 Contagious 74 Equal 740 944,668 174.8 No No
11 2D S.Stone 0.001 Contagious 74 Equal 740 328,454 60.8 0.05 No
12 2D S5.5tone 0.001 Contagious 74  Equal 740 442,412 81.8 No R2=0.5
13 2D S5.Stone 0.001 Contagious 74 Unequal 211 944,668 50.1 No No
14 2D 5.5tone 0.001 Contagious 74 Unequal 211 325,174 17.2 0.05 No
15 2D 5.5tone 0.001 Contagious 74 Unequal 211 334,111 17.7 No R2=0.5
16 2D S5.Stone 0.005 Random 75 Equal 750 874,975 164.5 No No
17 2D S.Stone 0.005 Random 75  Equal 750 296,178 557 0.05 No
18 2D S.Stone 0.005 Random 75  Equal 750 422,053 79.3 No R2=0.5
19 2D S5.5tone 0.005 Random 75  Unegual 225 874,975 49.9 No No
20 2D 5.5tone 0.005 Random 75  Unequal 225 295,573 16.8 0.05 No
21 2D S5.5tone 0.005 Random 75  Unequal 225 314,910 17.9 No R2=0.5
22 2D S5.5tone 0.005 Contagious 74  Equal 740 874,975 161.9 No No
23 2D S5.5tone 0.005 Contagious 74 Equal 740 296,679 54.9 0.05 No
24 2D 5.5tone 0.005 Contagious 74 Equal 740 421,628 78.0 No R2=0.5
25 2D 5.5tone 0.005 Contagious 74  Unequal 211 874,975 46.4 No No
26 2D 5.5tone 0.005 Contagious 74 Unequal 211 294,351 15.6 0.05 No
27 2D S5.5tone 0.005 Contagious 74 Unequal 211 309,956 16.4 No R2=0.5
28 2D S5.5tone 0.020 Random 75 Equal 750 861,222 161.9 No No
29 2D S.Stone 0.020 Random 75  Equal 750 290,521 546 0.05 No
30 2D S.Stone 0.020 Random 75  Equal 750 424,465 79.8 No R2=0.5
31 2D S5.Stone 0.020 Random 75  Unequal 225 861,222 491 No No
32 2D S.5tone 0.020 Random 75  Unequal 225 290,163 16.5 0.05 No
33 2D S5.5tone 0.020 Random 75  Unegual 225 314,317 17.9 No R2=0.5
34 2D 5.Stone 0.020 Contagious 74 Equal 740 861,222 159.3 No No
35 2D S5.5tone 0.020 Contagious 74 Equal 740 290,841 53.8 0.05 No
36 2D S5.5tone 0.020 Contagious 74  Equal 740 421,952 78.1 No R2=0.5
37 2D S5.S5tone 0.020 Contagious 74 Unequal 211 861,222 456 No No
38 2D S5.5tone 0.020 Contagious 74 Unequal 211 288,025 15.3 0.05 No
39 2D 5.Stone 0.020 Contagious 74  Unequal 211 309,480 16.4 No R2=0.5
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Table 5.2B: Experimental Dataset Generation for Anisotropic models

Demographic Migration Population  Num Individual Num Num plink-bed MAF LD
# Model Rate (m) Sampling Pops Sampling Inds SNPs  Fsize(Mb) Filtering Filtering
40 Anisotropic  0.001  Full model 125 Equal 1250 503,182 157.5 No No
41 Anisotropic  0.005  Full model 125 Equal 1250 462,441 144.7 No No
42 Anisotropic  0.020  Full model 125 Equal 1250 451,116 141.2 No No
43 Anisotropic  0.001 Random 45  Equal 450 503,390 56.9 No No
44 Anisotropic  0.001 Random 45  Equal 450 186,436 211 0.05 Mo
45 Anisotropic  0.001 Random 45  Equal 450 213,424 24.1 No R2=0.5
46 Anisotropic  0.001 Random 45  Unequal 143 503,390 18.1 No Mo
47 Anisotropic  0.001  Random 45  Unequal 143 185,538 6.7 0.05 No
48 Anisotropic  0.001 Random 45  Unequal 143 159,830 5.8 No R2=0.5
49 Anisotropic  0.001  Contagious 45  Equal 450 428,046 48.4 No Mo
50 Anisotropic  0.001 Contagious 45  Equal 450 186,857 211 0.05 No
51 Anisotropic  0.001 Contagious 45  Equal 450 216,714 24.5 No R2=0.5
52 Anisotropic  0.001 Contagious 45  Unequal 137 503,390 17.6 No Mo
53 Anisotropic  0.001 Contagious 45  Unequal 137 186,885 6.5 0.05 Mo
54 Anisotropic  0.001 Contagious 45  Unequal 137 158,802 5.6 No R2=0.5
55 Anisotropic  0.005 Random 45  Equal 450 462,587 52.3 No No
56 Anisotropic  0.005 Random 45  Equal 450 164,598 18.6 0.05 Mo
57 Anisotropic  0.005 Random 45  Equal 450 207,715 235 No R2=0.5
58 Anisotropic  0.005 Random 45  Unequal 143 462,587 16.7 No No
59 Anisotropic  0.005 Random 45  Unequal 143 163,384 5.9 0.05 Mo
60 Anisotropic  0.005 Random 45  Unequal 143 151,457 5.5 No R2=0.5
61 Anisotropic  0.005 Contagious 45  Equal 450 462,587 52.3 No Mo
62 Anisotropic  0.005 Contagious 45  Equal 450 164,530 18.6 0.05 Mo
63 Anisotropic  0.005 Contagious 45  Equal 450 209,720 23.7 No R2=0.5
64 Anisotropic  0.005 Contagious 45  Unequal 137 462,587 16.2 No Mo
65 Anisotropic  0.005 Contagious 45  Unequal 137 164,583 5.8 0.05 Mo
66 Anisotropic  0.005 Contagious 45  Unequal 137 149,677 5.2 No R2=0.5
67 Anisotropic  0.020 Random 45  Equal 450 451,116 51.0 No Mo
68 Anisotropic  0.020 Random 45  Equal 450 160,374 18.1 0.05 Mo
69 Anisotropic  0.020 Random 45  Equal 450 207,884 235 Mo R2=0.5
70 Anisotropic  0.020 Random 45  Unequal 143 451,116 16.2 No No
71 Anisotropic  0.020 Random 45  Unequal 143 158,862 5.7 0.05 Mo
72 Anisotropic  0.020 Random 45  Unequal 143 148,636 5.4 No R2=0.5
73 Anisotropic  0.020 Contagious 45  Equal 450 451,116 51.0 No No
74 Anisotropic  0.020 Contagious 45  Equal 450 160,560 18.1 0.05 Mo
75 Anisotropic  0.020 Contagious 45  Equal 450 208,853 23.6 No R2=0.5
76 Anisotropic  0.020 Contagious 45  Unequal 137 451,116 15.8 No Mo
77 Anisotropic  0.020 Contagious 45  Unequal 137 160,477 5.6 0.05 Mo
78 Anisotropic  0.020 Contagious 45  Unequal 137 147,651 5.2 No R2=0.5
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5.5 Statistics for comparing inferred ancestry with coordinates and ancestry proportions.

Procrustes Test

In statistic terms, Procrustes analysis determines a linear transformation of the points in matrix Y to
best conform them to the points in matrix X. The transformation includes translation, reflection,
orthogonal rotation, and scaling. The goodness-of-fit criterion is the sum of squared errors. Procrustes

algorithm returns the minimized value of this dissimilarity measure.

In general terms, Procrustes transformation compare the shapes of two or more objects that must be
first optimally overlapped or superimposed. Procrustes superimposition is performed by optimally
translating, rotating and uniformly scaling the objects. Both the placement in space and the size of the
objects are freely adjusted. The aim is to obtain a similar placement and size, by minimizing a measure

of shape difference called the Procrustes distance between the objects.

Crignal After translation
2 2
0 Q 1}
2 2
-4 -2 0 2 4 -4 -2 1} 2 4
After scaling After aligning
0.2 0z
0 i}
02 a2
0.4 0.2 u] 0.z 0.4 -0.4 0.2 u] 0z 0.4

Figure 5.6: Procrustes transformation steps applied to a simple visual pair of objects.

For our study, Procrustes transformation is useful for comparisons between two or more maps that
involve population-genetic data. This kind of analysis has generally been assessed in a qualitative
manner, by visual evaluation. Procrustes method provides a sensible quantitative approach for map
comparison: each of two maps is transformed, preserving relative distances among pairs of points
within each map [Wang 2010]. The objective is to identify the transformations that maximize the
similarity of the transformed maps and obtain the similarity score between the two optimally
transformed maps. A permutation test can then evaluate the probability that a randomly chosen
permutation of the points in one of the maps leads to a greater similarity score than that observed for

the actual data points.

More formally, Procrustes method aims to find the transformations, f* and g*, that minimize a function

d(f(X),g(Y))over all choices f and g that preserve relative pairwise distances between points in X
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and Y. Being both X and Y a couple of n x k matrices, only X is transformed so g*(Y) =Y can be assumed.

: , T . .
The transformation f can be written as f(x,) = pA" X, + b , where p is a scalar to produce matrix

dilation, A is a k x k orthogonal matrix representing a rotation and possibly a reflection, andbisakx1

translation vector.

The objective function “d” to be minimized is as follows:

For the 78 experimental scenarios defined above (Tables 2A-2B), we have sequentially performed the
algorithm free methods PCA and MDS as well as the model-based algorithm SPA. The three methods
return a two columns matrix with the estimated coordinates of the N individuals (rows) present in the

corresponding 78 PLINK-BED files described before.

We have applied Procrustes method using function "protest" from R package "vegan" which rotates a
matrix to maximum similarity with a target matrix minimizing sum of squared differences. This function
has been recursively executed to obtain the Procrustes correlation coefficient returned when
comparing each of the 78x3 (PCA,MDS,SPA) coordinates matrices with the real geographical positions of
the individuals: we have used the algorithms PCA,MDS and SPA to solve a problem for which we know
the answer in advance. The three programs have estimated the geographical coordinates of the
individuals (78 times) and we can compare their results with the real coordinates of the demographical
models as described in Figure 5.1 and Figure 5.2. For instance, for the 2D stepping stone model,
individuals belonging to population number 50 have real geographical coordinates (5,4), individuals

belonging to population 100 have coordinates (10,7), and so on. Same simplicity for anisotropic model.

Mantel Test
The Mantel test is a non-parametric statistical method that computes the correlation between two

distance matrices. The Mantel test was proposed in 1967 to test the association between two matrices
and was first applied in population genetics by Sokal in 1979. It computes the significance of the
correlation through permutations of the rows and columns of one of the input distance matrices. The
test statistic is the Pearson product-moment correlation coefficient "r" which falls in the range of -1 to
+1, where being close to -1 indicates strong negative correlation and +1 indicates strong positive
correlation. An rvalue of Oindicates no correlation.

Formally the Mantel test is given by:
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where gij and dij are the two distance matrices to be evaluated [Diniz-Filho 2013]. Because Zm is given

by the sum of products of distances its value depends on how many populations are studied, as well as
the magnitude of their distances. The Zm-value can be compared with a null distribution, and Mantel

originally proposed to test it by the standard normal deviate (SND), given by

SND = Z,/var(Z,)"*

The rationale behind Mantel Test is that if there is a relationship between matrices G and D, the sum of
products Zm will be relatively high, and randomizing rows and columns will destroy this relationship so
that Zm values, after permutations, will tend to be lower than the observed [Diniz-Filho 2013].
Therefore if the null hypothesis of there being no relation between the two matrices is true, then
permuting the rows and columns of the matrix should be equally likely to produce a larger or a smaller
coefficient. In contrast to the ordinary use of the correlation coefficient, in Mantel test correlation is
recalculated after each permutation. The p-value of the observed correlation is the proportion of such
permutations that lead to a higher correlation coefficient.

We have converted the 78x3 (PCA,MDS,SPA) coordinate matrices and the real geographical positions of

the individuals into Euclidean distance matrices. Then, function "mantel" from R package "ade4" has
been recursively executed to obtain the correlation coefficient returned when comparing each of the
78x3 (PCA,MDS,SPA) distance matrices with the distance matrix from real geographical positions.
Similar procedural approach as before with Procrustes test: we are assessing which of the experimental

designs reconciles better with the real geographical coordinates.

CLUMPP
As discussed above, several algorithms for inferring ancestry proportions such as ADMIXTURE or SNMF

result on a matrix where for each individual (rows) is given a membership coefficient for each cluster or
ancestry populations (columns), being these coefficients the ancestry fractions (probabilities) assigned
to every individual and summing to 1 across the K columns. The random initial conditions of these
clustering algorithms introduce a degree of randomness in the output results, and independent
analyses of the same input data may result in several distinct outputs. According to [Rosenberg 2007]
the main differences across replicates are of two types: “label switching” and “genuine multimodality”.
“Label switching” refers to the case in which different replicates obtain the same numerical ancestry

fractions but placed in different columns (clusters are permuted). Due to the meaning of each cluster
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label is not known in advance, a clustering algorithm may be equally likely to reach any of Kl
permutations of the same collection of estimated membership coefficients. In contrast to label
switching, “genuine multimodality” appears when different admixture scenarios can similarly explain
the observed genetic diversity in the data.

These matrices with ancestry fractions from multiple runs of a clustering program are the input for
CLUMPP program, which outputs these same matrices, permuted so that all replicates have as close as
possible a match. CLUMPP resolves the “label switching” heterogeneity so that the “genuine
multi-modality’ can be detected and quantified.

Having a CxK matrix of membership coefficients for a single cluster analysis where “C” are the
individuals or populations and the “K” columns correspond to clusters, and R replicates of the

admixture analysis, CLUMPP attempts to maximize a measure of similarity of the replicates of the
original CxK matrix over all (K!)R'1 possible alignments of the replicates. The coefficient G’ used by

CLUMPP to measure the similarity is defined as follows:

1Qi — QjliF
2C

G'(0:,0) =1~

“” and we calculate Frobenius

Where Qi and Qj are a couple of input matrices coming from runs “i” and

awsn
J

norm on their difference matrix Qi-Qj:

. K

ldllr= D) a4

c=1 k=1

The output coefficient G’ is a value in the range [0,1] and the maximum G’=1 corresponds to an

identical pair of input matrices, decreasing G’ as the similarity of the input matrices decreases.

CLUMPP program has been used to evaluate the degree of similarity between the matrices obtained
from the 78 runs of ADMIXTURE and SNMF algorithms. In particular, we have compared by blocks the
resulting matrices from sampling runs against their corresponding full model matrices: the resulting
matrices from ADMIXTURE and SNMF on 2D stepping stone full model basic case (migration rate
m=0.001) with all the sampling cases generated on this basis (12 cases). The same for the other five
blocks: 2D stepping stone/migration rate 0.005 and 0.02 and anisotropic models with the three

migration rates variants.
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6. Results

6.1 Experimental Workflow.

We have constructed an experimental model for testing the performance of currently algorithms
applied for estimating population substructure which starts by designing two ideal prototypes of
spatially structured populations (2D stepping stone and anisotropic). From each model we have
generated a pool of 78 experimental datasets, simulating the genomic molecular diversity with
Fastsimcoal2, performing the sampling of individuals and populations and selecting different filtering
strategies (MAF, LD). Those 78 datasets (plink bed files) have been processed to evaluate the response
of commonly applied algorithms to SNP data for quantifying individual population substructure: PCA,
MDS, SPA, ADMIXTURE and SNMF. For those algorithms in which the output isa coordinate (PCA, MDS
and SPA), we have evaluated the correlation (via Mantel and Procrustes tests) of these estimated
coordinates with the geographic sampling coordinates of individuals in our original ideal artifacts. For
ADMIXTURE and SNMF we have applied different algorithms for assessing the best K number of
ancestries and we have applied CLUMPP software to compare their output matrices. Figure JJ describes

the work-pipeline that we have applied.
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Figure 6.1: Workflow for the full experimental procedure detailing the two main stages of the pipeline: First,
dataset pool generation by simulation and sampling from step [A] to [F] and second, the analysis and obtention of
results from step [G] to[l].

[A] Generation of the two demographic models which are the basis of the analysis as described in Figure 5.1 (2D
stepping stone) and Figure 5.2 (anisotropic), a squared grid of 15x15(225) populations and a cross-shaped grid with
125 populations respectively.

[B] Our design introduces three levels of migration rate applied to each of demographic models to evaluate the
impact of migration degree on final results.

[C] Prior steps [A] and [B] are just conceptual and graphical: the models do not become computational artifacts until
we build the parameter file for fastsimcoal2 . By completing the input file (PAR file) we are defining how we want
to simulate the molecular diversity through fastsimcoal2 (populations, mutation rate, recombination , etc).

[D] After 6 runs of fastsimcoal2 and once the six Arlequin result files have been converted to plink-BED format,
spatial sampling schema is applied by generating subsets based on random and contagious distributions as shown
in Figure DD and EE. Two new plink-BED files are generated from each one of the 6 basic scenarios. Taking the

plink-fam files from the 6 basic datasets and executing a short script in R, a new pool of plink-fam files have been
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created with the reduced number of populations being the process guided by the random or contagious sampling
schema. Then, using plink with option "keep" we have generated the new plink datasets for random and
contagious experimental cases (see column "Population Sampling" in Table 5.2A and 5.2B).

[E] From each of the previous datasets we have generated a new version of them by randomly selecting between 1
and 5 individuals per population (unequal sampling).

[F] Finally each of the combinations has been filtered by keeping only those SNPs that are above MAF>0.05 (new
subset) and in a separated variant by keeping those SNPs which have low LD (R*2< 0.5). At this point we have
generated the 78 datasets as shown in Table 5.2A and 5.2B.

[G] The five algorithms under analysis have been sequentially executed on each of the 78 datasets using a Linux
shell script.
[H] Two types of output files coming from the prior massive program execution: MDS, PCA and SPA generate
simple matrices where rows are the individuals and the columns are coordinates in two columns (the number of
rows-individuals of each case will depend on the specific sampling case). Admixture and SNMF generate matrices
where again rows are the individuals and columns are the K=4 inferred ancestry fractions.
[l] Coordinate matrices coming from MDS, PCA and SPA are evaluated through Mantel and Procrustes Test
obtaining the correlations against real individuals coordinates. Cross validation and cross entropy procedures have
been performed to identify which value of K has the best predictive value and CLUMPP software has been applied
for determining the degree of similarity between the ancestry fractions matrices from Admixture and SNMF of the

different sampling cases and its corresponding base full sampling case.

6.2 Algorithmic Approach: Performance of PCA, MDS and SPA algorithms for detecting global
individual ancestry in a 2D stepping stone and anisotropic model and the impact of
migration rate.

The results from applying Mantel and Procrustes tests to the matrices generated by PCA, MDS and SPA
compared to the geographic sampling origin of the simulated individuals are shown in Table 6.1A and
6.1B. The p-value for all Mantel and Procrustes tests is 0.001 indicating that our results are statistically
significant at an alpha of 0.05. Since the significance is assessed by permutation tests, we determined

the p-value by specifying 999 permutations both in Mantel and Procrustes tests.
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Table 6.1A: 2D 5.5tone - Mantel and Procrustes correlations between MDS, SPA and PCA inferred coordinates and real coordinates [pvalue = 1.10 5:I

Demographic Migr Population Num  Individual MNum  Num plink MAF LD MOs MDS SPA SPA PCA PCA
# Model rate Sampling Pops Sampling Inds SNPs [MB]  File Filt Mantel Procrust Mantel Procrust Mantel  Procrust
1 2D55tone 0.001 Full model 225  Equal 2250 944093 5315 No Mo 05564 09848 09377 05810 09654 05376
2 2D55tone  0.005 Full model 225 Equal 2250 874,491 492.3 No Mo 059221 09705 05303 0359765 0.9447 09795
3 2D55tone  0.020 Full model 225 Equal 2250 861,222 484.9 No MNo 0.7540 0.8590 0.8616 05500 0.8585 0.9449
4 2DS55tone  0.001 Random 75  Equal 750 944668 1776 No Mo 09508 09818 05274 059761 0.9598 0.9849
5 2D 35.5tone 0.001 Random 75  Equal 750 328913 &1.8 005 N 05454 09812 02469 05807 09523 09823
6 2D3&5tone 0.001 Random 75  Equal 750 440,162 828 No R2=0.5 09500 0.9823 08957 09657 0.9659 0.9873
7 2D 55tone  0.001 Random 75  Unequal 225 944668 538 No N 0.8582 09528 08741 05526 0.8571 0.9530
8 2DS5.5tone 0.001 Random 75 Unequal 225 327575 187 0.05 N 0.8%43 (09502 08851 (095210 (0.881% 0.9448
9 2D55tone  0.001 Random 75  Unequal 225 337,558 132 No R2=05 0.83% 05572 03402 05468 05106 09611
10 2D 5.5tone  0L001 Contagious 74 Equal 740 2446523 1748 No M 03586 09849 08211% 05715 09681 0.9373
11 2D 5.5tone  0.001 Contagious 74  Equal 740 328454 60.8 0.05 N 09577 09835 05524 0959828 09611 0.9353
12 2D 5.5tone  0.001 Contagious 74 Equal 740 442412 818 No R2=0.5 05573 (09852 08932 098659 09705 0.938%

13 2D 5.5tone 0.001 Contagious 74 Unequal 211 944668 501 No Mo 05512 09Ble 05042 05686 0.9581 0.5334
14 2D 55tone  0L001 Contagious 74 Unequal 211 325174 17.2 Q.05 Mo 05454 09B08 02455 (9803 (0.3487 0.9308
15 2D 5.5tone  0.001 Contagious 74  Unequal 211 334111 177 No R2=05 09508 0.59822 03751 059601 0.9622 0.9858

16 2D 55tone  0.005 Random 75  Equal 750 874975 1645 No M 09108 09662 03078 09674 09357 09758
17 2D 5.5tone  0.005 Random 75  Equal 750 296,178 55.7 0.05 N 05037 09633 03099 09660 0.507% 0.9650
185 2D 5.5tone  0.005 Random 7%  Equal 750 422053 793 MNo R2=05 059244 059719 032021 0292673 09500 09813
13 2D 5.5tone  0.005 Random 75  Unequal 225 8745975 499 No Mo 0.8514 09336 08245 059275 0.8659 0.94028
20 2D 535tone  0.005 Random 75 Urnequal 225 295573 168 0.05 Mo 0.8435 09235 (08294 (09251 03343 059247
21 2D 5.5tone  0.005 Random 75 Unequal 225 3145910 179 No R2=05 (0.Bed4 05404 0.5452 06846 08825 09493
22 2D 535tone  0.005 Contagious 74 Equal 740 874975 1619 No Mo 05174 09687 092152 09717 05404 05778
21 2D E5tone  0.005 Contagious 74 Equal 740 295679 549 0.05 Me 09099 09656 02182 09895 05131 0.9670
24 2D 55tone  0.005 Contagious 74 Equal 740 421628 7830 No R2=05 05321 059743 09119 029718 05543 09331

25 2D 55tone  0.005 Contagious 74 Urnequal 211 874975 464 No Me 0.8%28 09583 05134 05500 09124 0.9601
26 2D 5.5tone  0.005 Contagious 74  Unequal 211 294351 156 0.05 Mo 0.8835 09555 08771 05527 0.8852 0.9557
27 2D 5.5tone  0.00L Contagious 74 Unegual 211 309956 164 No R2=05 09112 09673 08180 09274 08404 09779

28 2D 55tone  0.020 Random 75  Equal 750 861,222 1619 No N 06600 08504 0.7826 05132 0.7845 0.9127
22 2D 55tone  0.020 Random 75 Equal 750 290521 t4.6 0.05 M 05243 08209 06043 0EB1B3  0kbee  0.249%
30 20 5.5tone 0,020 Random 75  Equal 750 424465 798 No R2=05 0.7451 0.8939 0.8127 09287 08471 05409
31 2D 55tone 0.020 Random 75 Urnequal 215 861,222 431 No Mo 0.378% 06593 0.0937 02527 05390 0.7565
32 2D 5.5tone  0.020 Random 75  Unequal 225 290,163 165 0.05 Mo 03357 06214 02430 04784 03846 0.6555
31 2D S5tone  0.020 Random 75 Urnequal 215 314317 179 MNeo R2=05 05196 07566 0.1058 02717 06531 0.2306
34 2D 55tone  0.020 Contagious 74 Equal 740 861,222 155.2 No Mo 0.7152 028797 0.8243 05254 08251 0.9301
35 2D 5.5tone  0.020 Contagious 74 Equal 740 290841 538 0.05 Me 05792 08521 0&662 08554 07056 0.8754
36 2D ES5tone  0.020 Contagious 74 Equal 740 421952 721 Neo R2=05 073952 09141 032200 09313 08782 (0.9518

37 2D 55tone  0.020 Contagious 74 Unequal 211 861,222 456 No Me 04083 07171 02052 04263 06122 0.8334
38 2D 5S5tone  0.020 Contagious 74 Urnequal 211 288025 153 0.05 Me 0.2426 08717 01238 032163 03928 0.70EL
3% 2D55tone 0020 Contagious 74 Urnequal 211 305480 164 No R2=05 05663 08048 00270 01633 07230 0.3366
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Table £.1B: Anisotropic - Mantel and Procrustes correlations between MDS, 5PA and PCA inferred coordinates and real coordinates [pvalue = 1.10 3}

Demaographic Iigr Population Mum  Individual MNum  Num plink  MAF LD MDS MDS5 SPA SPA PCA PCA
# Moedel rate  Sampling Pops Sampling  Inds SNPs {Mb)}  File Filt Mantel Procrust Mantel Proorust Mantel Procrust
40 Anisotropic 0,001 Full model 125 Equal 1250 503,182 1575 No No 0.3318 09668 0.9137 05677 09413 0.9699
41 Anisotropic 0,005 Fuli model 125 Equal 1250 462441 1447 No No 0.B300 059459 0.8763 05490 05143 09571
42 Anisotropic 0,020 Full model 125 Equal 1250 451116 1412 Nao No 0.7444 08754 0.8072 0.9164 03383 0.5237
43 Apisotropic 0,001 Random 45  Equal 450 503350 569 MNo No 0.871F 09138 08748 05383 03383 0.8998
44 Anizotropic 0,001 Random 45  Equal 450 186436 211 Q.05 MNo 0.8692 0910z 0.883%9 0.5379 08243 0.B831
45 Anisotropic 0,001 Random 45  Equal 450 213424 241 MNo R2=05 08675 09120 038572 05214 038556 0.5199
46 Anisotropic 0,001 Random 45 Unequal 143 503,350 181 MNo MNo 0.8462 09129 06743 06447 08286 09075
47 Anisotropic 0,001 Random 45  Unequal 143 185538 6.7 0.05 Mo 0.8406 09072 08185 0.5250 03038 0.B324
48 Anisotropic 0,001 Random 45 Unequal 143 159,830 58 No R2=05 0.8280 09067 0.8130 05221 08515 0.9253
43 Anizotropic 0,001 Contagious 45 Equal 450 428046 434 MNo Mo 0.9168 09614 0.7132 05129 09272 0.9643
50 Anisotropic 0.001 Contagious 45 Equal 450 1B6,857 211 0.05 MNo 0.9123 09554 08763 05494 09150 09601
51 Anizotropic 0,001 Contagious 45  Equal 450 216714 245 Mo R2=05 05109 0960% 0.8435 05415 059331 0.59661

52 Anisotropic 0.001 Contagious 45 Unequal 137 503350 176 Neo No 0.8830 059484 08513 05469 08827 0.5455
E3 Anizotropic  0.001 Contagious 45 Urnequal 137 1Bg BES 6.5 005 Mo 0.8747 059444 02913 059543 08570 0.9384
54 Anisotropic  0.001 Contagious 45  Urequal 137 158 802 56 MNo R2=05 08910 0954& 07363 08874 09048 05583

ES Anizotropic  0.005 Random 45 Equal 450 462587 512 No Mo 0.842e 09129 02871 059508 02304 0.209%
EE Anisotropic  0.005 Random 45 Equal 450 184533 136 006 Mo 0.8382 09057 03316 095169 08122 08981
L7 Anisotropic  0.005 Random 45 Equal 450 207,715 235 No R2=05 0.8533 09178 032718 005443 02435 09181
B8 Anisotropic  0.005 Random 45 Urequal 143 462587 167 No Mo 07730 08781 07718 05012 07625 0.8306
ES Anisotropic  0.005 Random 45 Urequal 143 163384 59 0.05 Mo 0.7e51 08726 07403 08596 07356 0.2609
60 Anizotropic  0.005 Random 45 Urequal 143 151457 55 No R2=05 07854 08832 08021 07271 0.786% 0.8522
Bl Anisotropic  0.005 Contagious 45 Equal 450 462587 523 No Mo 0.8722 09359 02734 0959473 0900% 09522
61 Anizotropic  0.005 Contagious 45 Equal 450 14530 136 005 Mo 0.8e48 0059358 02925 059501 08691 09371
63 Anisotropic 0.005 Contagious 45  Equal 450 209,720 237 No R2=05 0.8868 05453 08625 05502 05185 09594

64 Anizotropic 0.005 Contagious 45 Unequal 137 462587 1621 MNo No 0.B357 09255 07838 0.9074 038536 0.2380D
65 Anisotropic 0.005 Contagious 45 Unequal 137 164,583 58 0.05 MNo 0.8292 09262 0.8124 05155 048317 0.9268
bt Anisotropic 0,005 Contagious 45 Unequal 137 149,677 52 No R2=05 0.8544 09367 0.7212 0.B821 08793 0.948%

67 Anisotropic 0,020 Random 45  Equal 450 451116 510 No No 06408 07843 05626 06721 07140 0.8274
62 Anisotropic  0.020 Random 45 Equal 450 160,274 181 0.05 Mo 06090 07666 06091 07697 080E1 07657
63 Anisotropic 0,020 Random 45  Equal 450 207,884 235 MNe R2=05 07216 08355 0.6963 0.B322 07616 0.B670
70 Anisotropic  0.020 Random 45 Urnequal 143 451116 162 No Mo 04472 0413 03142 04286 04745 08412
71 Anisotropic  0.020 Random 45 Urequal 143 158862 57 0.05 Mo 04292 06316 04633 06719 04256 0.5280
72 Anisotropic  0.020 Random 45 Urnegqual 143 14Ee3e 54 No R2=05 05364 07152 03389 05105 05599 07045
73 Anisotropic  0.020 Contagious 45 Equal 450 451116 510 No MNo 06383 08275 07162 08672 07484 0.8352
74 Anisotropic 0.020 Contagious 45  Equal 450 160,560 181 0.05 No 0.c028 08069 05938 0798 06172 0.8157
75 Anisotropic  0.020 Contagious 45 Equal 450 208853 236 No R2=05 07202 08701 06953 08615 08123 09160

76 Anisotropic 0020 Contagious 45 Unequal 137 451,116 158 No No 0.4688 07367 02042 03551 05956 0.8170
77 Anizotropic 0,020 Contagious 45 Unequal 137 160477 56 0.05 No 0.3892 06823 03284 06016 04778 07462
78 Anisotropic  0.020 Contagious 45  Unequal 137 147,651 52 No R2=0.5 05064 07600 00789 0.2631 0.6586 0.8522

Before performing a more formal statistical assessment of the results we can identify some trends by a
simple visual inspection of Table 6.1A and 6.1B: there is a high degree of correlation between the
coordinates estimated by the three algorithms and the real data, specially for the six full model used as
a reference (highlighted in grey in both tables). The average correlation for these 2D stepping stone
and Anisotropic full models with the three algorithms together is 0.93 and 0.91 respectively.
Additionally, from the total number of coefficient correlations calculated (78 cases x 3 algorithms x 2
tests = 468) there are 344 correlations (74%) above 0.80 and the rest of the measures (124) showing that
low degree of correlation are mainly present (81%) in the high migration rate sections (m=0.02),

suggesting in a first approach an inverse relationship between correlation results and migration rate.
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Best global correlation mean on the 78 experimental datasets corresponds to PCA with 0.82 and 0.91 for
Mantel and Procrustes respectively followed by MDS with 0.78 and 0.89 and finally SPA with 0.72 and
0.83. Itis also evident the higher correlation values of Procrustes test compared with Mantel.

In order to identify the best performing algorithm we have applied the one-tail paired Wilcoxon
signed-rank test on PCA, MDS and SPA correlations resulting from Mantel and Procrustes tests. The
Wilcoxon signed-rank test is a non-parametric statistical hypothesis test used when comparing
repeated measurements on a single sample to assess whether their population mean ranks differ.
Wilcoxon test has been employed fragmenting the results by the two basic demographic models and by
the three levels of migration rate and comparing the three algorithms in pairs.

Table 6.2 shows the resulting p-values from all Wilcoxon test rounds: in all the cases PCA is the most

robust algorithm followed by MDS.
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Table 6.2: One-tail paired Wilcoxon signed-rank test on PCA, MDS and SPA correlations

Migration Wilcoxon Best Parformance vs
Demographic Model Rate (m) Caorrelation Algorithml  Algorithm2 p-value Real Geographic Sites

2D Stepping Stone 0.001 Mantel PCA MD5 0.0133 PCA

20 Stepping Stone 0.001 Mantel PCA SPA 0.0002 PCA

2D Stepping Stone 0.001 Mantel MDS SPA 0.0001 MDS5

20 Stepping Stone 0.005 Mantel PCA MD5 0.0009 PCA

2D Stepping Stone 0.005 Mantel PCA SPA 0.0009 PCA

2D Stepping Stone 0.005 Mantel MDS SPA 0.0133 MD5S

20 Stepping Stone 0.020 Mantel PCA MDS5 0.0001 PCA

2D Stepping Stone 0.020 Mantel PCA SPA 0.0006 PCA

20 Stepping Stone 0.020 Mantel MD5 SPA 0.1219 MDS (pvaluez0.05)

2D 5tepping Stone 0.001 Procrustes PCA MDS 0.0164 PCA

20 Stepping Stone 0.001 Procrustes PCA 5PA 0.0017 PCA

20 Stepping Stone 0.001 Frocrustes MD35 SPA 0.0012 MD5

2D 5tepping Stone 0.005 Procrustes PCA MDS 0.0009 PCA

2D 5tepping Stone 0.005 Procrustes PCA SPA 0.0017 PCA

20 Stepping Stone 0.005 Procrustes MDS 5PA 0.0471 MDS

2D Stepping Stone 0.020 Procrustes PCA MDS5 0.0001 PCA

2D 5tepping Stone 0.020 Procrustes PCA SPA 0.0009 PCA

2D 5tepping Stone 0.020 Procrustes MDS SPA 0.0839 MDS
Anisatropic 0.001 Mantel PCA MDS 0.7928 MDS/PCA
Anisotropic 0.001 Mantel PCA SPA 0.0732 PCA
Anisotropic 0.001 Mantel MD5 SPA 0.0040 MD3%
Anisotropic 0.005 Mantel PCA MD5 0.2939 PCA ipvalues0.05)
Anisotropic 0.005 Mantel PCA SPA 0.1367 PCA |pvalue>n.05)
Anisotropic 0.005 Mantal MDS SPA 0.1082 MDS (pvalueso.0s)
Anisotropic 0.020 Mantel PCA MDS 0.0006 PCA
Anisotropic 0.020 Mantel PCA SPA 0.0017 PCA
Anisotropic 0.020 Mantel MD35 SPA 0.0471 MD5
Anisotropic 0.001 Procrustes PCA MDS 0.6323 MDS/PCA
Anisotropic 0.001 Procrustes PCA SPA 0.2274 PCA ipvalug=0.05)
Anisotropic 0.001 Procrustes MDS SPA 0.3677 MDS/SPA
Anisotropic 0.005 Procrustes PCA MD5 0.0732 PCA
Anisotropic 0.005 Procrustes PCA 5PA 0.2934 PCA/SPA
Anisotropic 0,003 Procrustes MD5 SPA 0.5337 SPA/MDS
Anisotropic 0.020 Procrustes PCA MDS 0.00&7 PCA
Anisotropic 0.020 Procrustes PCA SPA 0.0023 PCA
Anisotropic 0.020 Procrustes MDS SPA 0.0341 MD5

We can visualise by plotting the full set of Mantel and Procrustes correlations to double check this
conclusion: Figures 6.2, 6.3, 6.4 and 6.5 display the boxplots comparing the three algorithms in the two

demographic models split by the three migration rates:
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2D steeping Stone - Mantel Correlation with Geographic sampling site
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Figure 6.2: Plot with Mantel correlations for 2D Stepping Stone model results from PCA (gray), MDS (red) and SPA

(blue) split by migration rates. PCA results show the highest degree of correlation with the geographic sampling

origin of the simulated samples.

2D Steeping Stone - Procrustes Correlation with Geographic sampling site
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Figure 6.3: Plot with Procrustes correlations for 2D Stepping Stone model results from PCA (gray), MDS (red) and

SPA (blue) split by migration rates. PCA results show the highest degree of correlation with the geographic

sampling origin of the simulated samples.
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Figure 6.4: Plot with Mantel correlations for Anisotropic model results for 2D Stepping Stone model results from

PCA (gray), MDS (red) and SPA (blue) split by migration rates. PCA results show the highest degree of correlation

with the geographic sampling origin of the simulated samples.
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Figure 6.5: Plot with Procrustes correlations for Anisotropic model results for 2D Stepping Stone model results

from PCA (gray), MDS (red) and SPA (blue) split by migration rates. PCA results show the highest degree of

correlation with the geographic sampling origin of the simulated samples.

All the different boxplot suggest that PCA is the most robust algorithm for estimating the coordinates

or geographical location of individuals, closely followed by MDS. They also suggest that the more

50



migration rate, the lower accuracy in the results. To illustrate this relationship, Figure 6.6 displays PCA

Mantel correlations in their three levels of migration rate:
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Figure 6.6: PCA Mantel correlations between the 78 datasets and real geographic coordinates split in the three
levels of migration rate, becoming evident the decrease of accuracy as the migration increases. Similar behavior
has been detected for MDS and SPA algorithms, being the fall due migration more stronger for SPA. Procrustes

tests follows the same trend for the three algorithms.

Algorithmic Approach: Impact of the Demographic Model on the Performance of PCA, MDS and SPA

Taking the correlation Mantel and Procrustes results for PCA, MDS and SPA from Table 6.1A and 6.1B and
making them independent of migration rate, we can perform Wilcoxon test to evaluate how the
demographic design (2D stepping stone or anisotropic) is impacting on the algorithm performance. In
this case we are interested in comparing the Mantel correlations for PCA on the 2D stepping stone with
PCA on the anisotropic model and also pairing the two measures of MDS and the two measures of SPA.

Table 6.3 shows the Wilcoxon test p-values that lead us to conclude that the three algorithms perform

more robustly under 2D Stepping Stone scenario.
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Table 6.3: One-tail paired Wilcoxon signed-rank test on PCA, MDS and SPA
between demographic models: Anisotropic vs 2D Stepping Stone

Correlation Algorithm Wilcoxon p-value Best Performance
Mantel PCA 7.840E-09 2D Stepping Stone
Mantel MDS 3.385E-05 2D 5tepping Stone
Mantel SPA 6.853E-03 2D 5tepping Stone

Procrustes PCa 5.273E-08 2D Stepping Stone

Procrustes MDS 5.273E-08 2D Stepping Stone

Procrustes SPA 9.475E-03 2D 5tepping Stone

Similar results are observed when estimating the correlation between the simulated datasets and the

sampling location by means of Mantel test
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Figure 6.7: Boxplot comparing the three algorithms and their Mantel test correlations with the geographic sampling

origin of the simulated samples in the two different scenarios: 2D stepping stone and anisotropic. Each algorithm,

PCA (gray), MDS (red) and SPA (blue) performs better under the 2D stepping stone model.

And for Procrustes correlations:

52



Procrustes Correlation with Demographic Model
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Figure 6.8: Boxplot comparing the three algorithms and their Procrustes test correlations with the geographic
sampling origin of the simulated samples in the two different scenarios: 2D stepping stone and anisotropic. Each

algorithm performs better under the 2D stepping stone model.

Additionally, and for illustrating purposes, graph (Figure 6.9) shows MDS Mantel correlations comparing

by pairs the 39 anisotropic cases with their corresponding 39 2D stepping stone scenarios:
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2D SteppingStone VS Anisotropic - MDS - Mantel Test
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Figure 6.9: Using Mantel Test to estimate the correlation between the coordinates from MDS and the geographic
sampling origin of the simulated samples we have obtained these coefficients for the 78 datasets that, paired by

the two demographic scenarios, evidence the higher performance of MDS under the 2D stepping stone design.

Algorithmic Approach: Impact of the Population Sampling Method on the Performance of PCA, MDS and

SPA

Taking the correlation Mantel and Procrustes results for PCA, MDS and SPA from Table 6.1A and 6.1B and
making them independent of all factors except for the population sampling method (Contagious or
Random), we can perform Wilcoxon test to evaluate how the way we have selected the populations
from the full models is impacting on the algorithm performance. In this case we are interested in
comparing the Mantel correlations for PCA on the Contagious Sampling method with PCA on the
Random method and also pairing the two measures of MDS and the two measures of SPA.

Table 6.4 show the Wilcoxon test p-values that lead us to conclude that PCA and MDS algorithms
perform more robustly under Contagious scenario (according to SPA p-values we can not determine

which is the best population sampling method for this algorithm):
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Table 6.4: One-tail paired Wilcoxon on PCA, MDS and SPA correlations
between Population Sampling Methods: Contagious vs Random

Correlation  Algorithm Wilcoxon p-value Best Performance
Mantel PCA 1455E-11 Contagious
Mantel MDS 1.264E07 Contagious
Mantel SPA 2.748E-01 Contagious/Random
Procrustes PCA 8.758E-08 Contagious
Procrustes MDS 8.762E08 Contagious
Procrustes SPA 28461E-02 Contagious (pvalue=0.05)
And visually,

Mantel Correlation with Population Sampling Method
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Figure 6.10: Boxplot comparing the Mantel correlations of the three algorithms under the Contagious and Random
population sampling methods denoting a slightly stronger degree of correlation for Contagious scenarios when

using PCA and MDS algorithms while is not conclusive for SPA algorithm.

And for Procrustes correlations:
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Procrustes Correlation with Population Sampling Method
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Figure 6.11: Boxplot comparing the Procrustes correlations of the three algorithms under the Contagious and
Random population sampling methods denoting a slightly stronger degree of correlation for Contagious scenarios

when using PCA and MDS and SPA algorithms.

Figure 6.12 shows PCA Mantel correlations comparing by pairs the 36 contagious cases with their
corresponding 36 Random scenarios, making it clear that Contagious values are above Random:
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Figure 6.12: Contagious vs Random correlations for PCA (Mantel values): the comparison by pairs of the 36 PCA
Mantel correlations for the Contagious models (red) to their equivalent 36 Random (green) denotes the best
performance achieved by Contagious population sampling method. Full models are shown on the left (blue) as

reference.
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Algorithmic Approach: Impact of the Individuals Sampling Method on the Performance of

PCA-MDS-SPA

Taking the correlation Mantel and Procrustes results for PCA, MDS and SPA from Table 6.1A and 6.1B and
making them independent of all factors except for the individuals sampling method (Equal or
Unequal), we can perform Wilcoxon test to evaluate how the way we have selected the individuals
within populations is impacting on the algorithm performance. In this case we are interested in
comparing the Mantel correlations for PCA on the Equal Sampling method with PCA on the Unequal
method and also pairing the two measures of MDS and the two measures of SPA.

Table 6.5 show the Wilcoxon test p-values that lead us to conclude that the three algorithms perform
more robustly under Equal scenarios:

Table 6.5: One-tail paired Wilcoxon on PCA, MD5 and SPA correlations
between Individuals Sampling Methods: Equal vs Unequal

Correlation  Algorithm Wilcoxon p-value Best Performance
Mantel PCA 1.455E-11 Equal
Mantel MD5 1455E-11 Equal
Mantel SPA 9.313E09 Equal

Procrustes PCA 1.281E-05 Equal

Procrustes MDS 8.762E-03 Equal

Procrustes SPA, 1.368E06 Equal

Visually:
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Figure 6.13: The comparison of Mantel correlations split by the two individuals sampling methods (Equal vs
Unequal) indicates a higher degree of correlation with the geographic origin of the simulated samples for Equal

method and for the three algorithms.
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The same for Procrustes test:

Procrustes Correlation with Individuals Sampling Method
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Figure 6.14: Likewise, Procrustes correlations split by the two individuals sampling methods (Equal vs Unequal) also
indicates a higher degree of correlation with the geographic origin of the simulated samples for Equal method and
for the three algorithms.

And one sample graph showing the behaviour of MDS algorithm under the Equal and Unequal

individuals sampling methods (Procrustes):
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Figure 6.15: Equal vs Unequal Procrustes correlations for MDS: the comparison by pairs of the 36 MDS Procrustes
correlations for the Equal sampling models (red) to their equivalent 36 Unequal (green) denotes the best
performance achieved by Equal population sampling method in all cases. Full models are shown on the left (blue)

as reference.
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Algorithmic Approach: Robustness against different levels of data cleaning

We have repeated previously described procedures to assess the impact of filtering methods (MAF and
LD) on the three algorithms performance. Now we are comparing three cases: no filtering, MAF<0.05
and LD (R2<0.5).

Table 6.6 show the Wilcoxon test p-values that lead us to conclude that PCA and MDS algorithms
perform more robustly under LD data cleaning case, while SPA p-values indicate a better performance
for MAF method:

Table 6.6: One-tail paired Wilcoxon on PCA, MDS and SPA correlations
between Filtering Methods: LD vs MAF vs No Filtering

Correlation  Algorithm Filtering Methods Compared  Wilcoxon p-value Best Performance
Mante| PCA LD ws MAF 5.960E-08 LD
Mantel PCA LD vs Mo Filtering 5.960E-08 LD
Mantel MD3 LD s MWAF 7.229E-05 LD
Mantel DS LD vs No Filtering 1.391E-04 LD
Mantel SPA LD ws MAF 9.803E-01 MAF
Mantel SPA, LD vs Mo Filtering 8.854E-01 -

Procrustes PCA LD ws MAF 9.702E-06 LD

Procrustes PCA LD vs Mo Filtering 9.692E-06 LD

Procrustes MD5 LDvs MAF 1.192E-07 LD

Procrustes MD5 LD vs No Filtering 2.664E-05 LD

Procrustes SPA LD ws MAF 9.755E-01 VIAF

Procrustes SPA LD vs Mo Filtering 6.683E-01 —
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Figure 6.16: Plot with Mantel correlations split by the three cleaning data strategies: LD (left), MAF (center) and No
Filtering (right). PCA (gray) and MDS (red) perform with stronger degree of correlation when LD is applied followed
by the non filtering case and denoting MAF as the more weak strategy. In contrast, SPA (blue) performs with higher

intensity of Mantel correlation when MAF is applied.
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Procrustes Correlation with Filtering Method
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Figure 6.17: Similarly, the Procrustes correlations split by the three cleaning data strategies: LD (left), MAF (center)
and No Filtering (right) indicate that PCA (gray) and MDS (red) perform with stronger degree of correlation when LD
is applied followed by the non filtering case and denoting MAF as the more weak strategy. In contrast, SPA (blue)

performs with higher intensity of Mantel correlation when MAF is applied.

MAF & LD - PCA - Mantel Test

Mantel Test

—Mo Filtering
—MAF Filtered
—LD Filtered

24 x 3 Models

Figure 6.18: The three different cleaning data methods applied to the particular case of PCA (Mantel correlations):
the comparison by trios of the 24 PCA Mantel correlations for the LD filtering method (green), MAF (red) and “No
Filtering” (blue) denotes the best performance achieved by LD cleaning method in all cases followed by the “No

Filtering” strategy.
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6.3 Model Based Approach: Performance of ADMIXTURE and SNMF.

Determining the most predictive K number of ancestry populations

We have sequentially applied the cross validation method (ADMIXTURE) and the cross entropy criterion
(SNMF) to identify the best K on the 78 experimental datasets for K={4,5,6,10}. The huge computational
resources required for doing this assessment has forced us to narrow the inspection to these particular
four values. Additionally, and for having an improved visibility, we have performed a full assessment
for K between 1 and 10 using the cross entropy criterion (SNMF) in the particular case of Anisotropic full

model with migration rate=0.001 (one of the six reference models):

Cross Entropy applied to Anisotropic Model with Migration Rate m=0.001 {Full Model)
0.333 L\

0.328 \

0.323 \

0.318 \

0.313 \
0.308 \
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1 2 3 4 5 6 7 8 8 10

Figure 6.19: Cross entropy error for K between 1and 10 on Anisotropic referential full model with m=0.001

In this key case, the cross entropy error obtained declines from 0.3343 for K=1to 0.2995 for K=10 with a
dynamic margin of 0.0348 ( 10% of the maximum value) suggesting a pure asymptotic trend, being K=4 a
number of ancestry populations that can be a balanced point in which we minimize the error for
ADMIXTURE and SNMF algorithms as well as it makes possible to estimate it in a reasonable amount of
time given the high demanding computation time. In fact, the cross entropy error for K=4 is just 20%
higher than the error for K=10 (executing ADMIXTURE for K=10 on the 78 experimental datasets need to
be measured in “months” rather than hours or days on a server with 64 GB of RAM, 4 processors and

Linux 64bits). For these reasons, we have selected K=4 for the 78 runs of ADMIXTURE and SNMF.

Applying CLUMMP test on ADMIXTURE and SNMF

As opposed to the algorithmic approach where PCA, MDS and SPA produce output matrices of N
individuals as rows and just 2 columns with the resulting inferred coordinates that can be directly
compared with the known real geographical locations, model based algorithms (ADMIXTURE and SNMF)

generates output matrices of N individuals and K columns with the estimated ancestry fractions, the
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elements of each row adding to one. This lack of symmetry is a serious obstacle for the direct
comparison of the K ancestry proportions with the geographic origin of the simulated samples. A
possible shortcut to coerce matrices symmetry could be based on transforming the K ancestries
matrices in an euclidean distance matrix making them comparable to the real geographic origin by
using Mantel or Procrustes tests, but this implies some statistical inconsistencies which require further
analysis and investigation. As a consequence of this, we have limited our analysis to perform the
comparison of the K ancestries matrices from ADMIXTURE and SNMF with their corresponding full
sampling cases by means of CLUMPP.

The results from applying CLUMPP test to the matrices generated by ADMIXTURE and SNMF compared
to their corresponding full sampling case are shown in Table 6.7. The results also include a third
column result showing the CLUMPP correlation results on a paired comparison between ADMIXTURE
and SNMF in every experimental dataset.

We can identify some trends by a simple visual inspection of Table 6.7: there is a relatively strong
(ADMIXTURE) or high (SNMF) degree of correlation between the K ancestry proportions estimated by
the two algorithms and the output matrices for the basic scenarios. The average CLUMPP similarity
level (G’) for all the ADMIXTURE and SNMF runs are 0.80 and 0.87 respectively, suggesting a better
performance of SNMF. The paired comparison ADMIXTURE vs SNMF shows an average similarity of 0.80.
Obviously the CLUMPP result for the six full models (highlighted in gray) is equal to 1 since we are
comparing their output with themselves. Additionally, from the total number of similarity coefficients
G’ (72 cases x 2 algorithms = 144) there are 102 correlations (71%) above 0.80 and the rest of the
measures (42) showing that low degree of similarity are mainly present (79%) in the high migration rate
level (m=0.02), suggesting in a first approach an inverse relationship between correlation results and

migration rate.
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Table 6.7: CLUMPP correlations betwesn ADMIXTURE and SNMF

Demographic Migr Population Mum  Individual Num  MNum plink MAF LD CLUMPP correlations (G')

# Model rate  Sampling Pops Sampling Inds SNPs  [Mb) Filt Filt ADMIXTURE SHNMF ADMIE ws SMMF
1 2DS5Stone 0001 Full model 225 Equal 2250 934093 5315 Mo Nao 1.0000 1.0000 0.9415
2 2D55Stone 0.005 Full model 225  Equal 2250 B7F4431 4313 MNo Mo 1.0:000 1.0000 0.8896
3 2D55Stone 0.D20 Full model 225  Equal 2250 BB1,22Z 4849 MNo Mo 1.0:000 1.0000 0.8051
4 2D 355tone 0.001 Ramdom 75  Equal 750 944668 1776 No Nao 0.3440 0.3506 0.9344
5 2D5.5Stone 0.001 Random 75 Equal 750 328591% 618 005 No 0.8337 0.5516 0.9650
6 2D55tone 0.001 Random 75  Equal 750 440,162 828 No R2=05 0.8364 0.5208 0.8454
7 2D55Stone 0.001 Ranmdom 75 Unegual 225 944566E 538 MNo Nao 0.2481 0.86328 0.9180
8 2DS5.Stone 0.001 Random 75  Unegusal 25 327575 1B7 005 No 0.8545 0.E700 0.9643
5 2D55tone 0.001 Random 75  Unegusal 225 337558 152 Mo RI=05 0.8002 0.6322 0.5334
10 2D 55Stone 0.001 Contagious 74 Equal 740 95345668 17483 No Nao 0.5714 0.5753 0.9339
11 2D55tone 0.001 Contagious 74 Equal 740 328454 60.8 005 No 0.3421 0.5732 0.9737
12 2D & 5Stone 0.001 Contagious 74  Equal 740 442412 818 No R2=05 0.2036 0.5575 0.Ba44
13 2D55tone  0.001 Contagious 73 Unequal 211 944668 501 MNo Mo 0.2426 0.9497 0.9197
14 2D5Stone 0.001 Contagious 74 Unegual 211 325174 17.2 005 No 0.9339 0.9522 09715
15 2D55tone 0.001 Contagious 74 Unequsl 211 334111 177 MNo R2I=05 0.4827 0.3341 0.4308
16 2D 55tone 0.005 Random 75  Equal 750 BF4975 1645 MNo Nao 0.9353 0.3478 0.8788
17 2D 55tone 0.005 Ramdom 75  Equal 750 296,178 557 005 MNo 0.2857 0.9420 0.9861
18 2D55tone 0.005 Random 75  Equal 750 422053 793 No R2=05% 0.8438 0.91%0 0.8234
19 2D55tone 0.005 Random 75 Unequal 125 BF4975 499 MNo Nao 0.8168 0.6658 0.5742
20 2D5Stone 0.005 Ramdom 75 Unegusal 225 285573 16.8 005 MNo 06314 0.8626 0.6515
21 2D55Stone  0.005 Ramdom 75 Unequsal 125 314910 179 MNo RI=05 0.6877 0.E2E9 0.7524
22 2D5Stone 0.005 Contagious 74 Equal 740 E&745975 1619 No No 0.3487 0.9570 0.6743
23 2D55Stone 0.005 Contagious 74  Equal 740 236679 549 005 Ne 0.8745 0.5515 0.9672
24 2D55Stone  0.005 Contagious 74  Equal 740 42162E TEO No R2=05 0.2953 0.5313 0.8472
25 2D 5 5Stone 0.005 Contagious 74 Unegual 211 874575 464 No Nao 0.8726 0.5149 0.8305
26 2D55tone  0.005 Contagious 74  Unequal 211 234351 156 005 No 0.2634 0.5233 0.9423
27 2D55tone  0.005 Contagious 74  Unequal 211 305956 164 Mo RI=05 0.7870 0.8811 0.7784
28 2D55tone  0.020 Ramdom 75  Equal 750 861,222 1619 No Nao 0.8655 0.B8E8 0.7623
29 2D55Stone  0.020 Random 75  Equal 750 290521 546 005 Neo 0.7659 0.8839 0.9404
30 2D55Stone  0.020 Ramdom 75 Equal 750 424465 798 No R2=05 0.7632 0.8551 0.6851
31 2D55Stone  0.020 Ramdom 75 Unegual 225 881222 451 No Nao 0.5944 0.7428 0.6462
32 2DS55tone  0.020 Ramdom 75 Unegusal 225 290,163 165 005 No 06459 0.7241 0.7875
33 2D55tone  0.020 Random 75 Unequsal 225 314317 179 MNo RI=05 03416 0.7051 0.3664
34 2D55Stone 0.020 Contagious 74 Equal 740 881,222 1553 No Nao 0.8335 0.3080 0.7775
35 2D5Stone  0.020 Contagious 74 Equal 740 230841 538 005 No 0.7712 0.B658 0.8935
36 2D55Stone  0.020 Contagious 74 Equal 740 421952 7TE1 No R2=05 08106 0.8670 0.7393
37 2D&Stone 0.020 Contagious 74 Unegual 211 881222 456 No Mo 0.5352 0.7701 0.5471
38 2D55Stone 0.020 Contagious 74 Unegusl 211 288025 153 005 No .e434 0.7009 0.6745
39 2D55tone  0.020 Contagious 74 Unequal 211 305480 164 Mo RI=05 0.2980 0.7252 0.3175
40 Anisotropic  0.001 Full model 125 Equal 1250 503,182 1575 No Mo 1.0000 1.0000 0.94581
41 Anisotropic 0.005 Full model 125 Equal 1250 482,441 1447 No No 1.0a00 1.0000 0.8938
42 Anisotropic  0.020 Full model 135  Equal 1250 451,116 1412 No Mo 1.0000 1.0000 0.7910
43 Anisotropic 0.001 Ramdom 45  Equal 450 503,380 569 MNo Nao 0.3453 0.5489 0.9334
44 Apisotropic  0.001 Random 45  Equal 450 186436 211 005 No 0.9240 0.9387 09816
45 Anisotropic  0.001 Random 45  Equal 450 213424 241 Mo RI=05 0.9053 0.3443 0.8353
46 Anisotropic  0.001 Random 45 Unequal 143 503,330 1B1 Mo Nao 0.8959 0.3059 09322
47 Anisotropic  0.001 Ramdom 45 Unequsal 143 185,538 6.7 0.05 HNo 0.5217 0.3036 0.9543
48 Anisotropic 0.001 Random 45 Unequsl 143 159,830 58 No R2=0.5 0.7974 0.8983 0.8497
49 Anisotropic  0U001 Contagious 45 Equal 450 428046 484 Mo Mo 0.9629 0.9682 0.940%
50 Anisotropic  0.001 Contagious 45  Equal 450 186857 211 005 MNo 0.9574 0.9638 049715
51 Anisotropic 0.001 Contagious 45  Equal 450 215714 245 MNo RI=05 0.8904 0.2445 0.8397
52 Anisotropic 0001 Contagious 45 Unegual 137 503330 176 MNo Mo 09304 0.3433 09324
53 Anisotropic 0001 Contagious 45 Unegusl 137 186,885 65 005 No 05424 0.3445 09663
54 Anisotropic  0.001 Contagious 45  Unegual 137 158,802 56 MNo R2=0.5 0.8324 0.5208 0.8551
55 Anisotropic 0.005 Ramdom 45  Equal 450 482587 523 No Nao 0.93561 0.5405 0.8778
56 Anisotropic 0.005 Random 45  Equal 450 1p45%E 186 005 MNo 0.2826 0.3328 0.9535
57 Anisotropic  0.005 Ramdom 45  Equal 450 207715 235 MNo RI=05 0.8306 0.9187 0.8547
58 Anisotropic 0.005 Random 45 Unequsl 143 462587 167 Mo Nao 0.8406 0.5068 0.8353
59 Anisotropic 0.005 Random 45  Unegual 143 163,384 59 005 No 0.2833 0.8999 0.9308
60 Anisotropic 0.005 Random 45 Unegual 143 151,457 55 Ne R2=0.5 0.7624 0.8901 0.7865
8l Anisotropic 0L005 Contagious 45 Equal 450 462587 523 No Mo 09447 0.9532 08798
62 Anisotropic  0.005 Contagious 45  Equal 450 14530 186 005 No 0.3048 0.9556 0.9592
63 Anisotropic  0.005 Contagious 45  Equal 450 205720 237 MNo RI=05 0.8765 0.3183 0.8474
&4 Anisotropic 0005 Contagious 45 Unegual 137 452587 162 MNo Mo 0.8907 0.9020 [ul:1:3:1)
65 Anisotropic 0.005 Contagious 45 Unequal 137 164,583 58 0.05 HNo 0.3086 0.5121 09371
56 Anisotropic 0005 Contagious 45 Unegusl 137 145,677 5.2 MNo R2=05 07864 0.8748 0.7715
&7 Anisotropic 0.020 Ramdom 45  Equal 450 451,116 510 No Nao 0.8537 0.7754 0.6241
68 Anisotropic  0.020 Random 45  Equal 450 180374 181 005 MNo 0.7313 0.8268 0.B624
&3 Anisotropic  0.020 Random 45  Equal 450 207884 235 MNo RI=05 0.7748 0.E380 0.7237
70 Anisotropic  0.020 Ramdom 45 Unequal 143 451,116 162 No Nao 0.5565 0.7031 0.5410
71 Anisotropic 0.020 Random 45 Uneqgusl 143 158,882 57 005 HNeo 0.e036 0.7435 0.7076
72 Anisotropic 0.020 Random 45 Unegual 143 148,636 54 No RZ=0.5 0.2521 0.7618 0.3113
73 Anisotropic 0.020 Contagious 45  Equal 450 45111 510 No Mo 0.871s 0.7571 0.5886
74 Anisotropic  0.020 Contagious 45  Equal 450 180560 181 005 No 0.7558 0.8325 0.8903
75 Anisotropic  0.020 Contagious 45  Equal 450 208853 236 Mo RI=05 0.7843 0.8358 0.7151
76 Anisotropic 0020 Contagious 45 Unegusl 137 451116 158 MNo Ma 0.5371 0.6728 0.515%
77 Anisotropic  0.020 Contagious 45  Unegusl 137 160477 56 0.05 HMNo 0.e079 0.6910 0.6306
78 Anisotropic  0.020 Contagious 45  Unegusl 137 147,651 52 HNo R2=0.5 0.3689 0.7480 0.3589
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In order to identify the best performing algorithm we have applied the one-tail paired Wilcoxon
signed-rank test on ADMIXTURE and SNMF similarity coefficients resulting from CLUMPP tests. Wilcoxon
test has been employed fragmenting the results by the two basic demographic models and by the three
levels of migration rate and comparing the two algorithms in pairs.

Table 6.8 shows the resulting p-values from all Wilcoxon test rounds: in all the cases SNMF is the most
robust algorithm. In the second exercise showed in Table 6.8 the resulting Wilcoxon p-values are not

conclusive comparing Anisotropic vs 2D Stepping Stone in either of the two algorithms.

Tahle 6.8: One-tail paired Wilcoxon on ADMIXTURE and SMMF coefficients of similarity

Test Migration Rate (m) Algorthml Algorithm2 Wilcoxon p-velue  Best Performance
CLUMPE 0.001 SMMF ADMIXTURE 2 838604 SHMF
CLUPFPE 0.005 SMMF ADMIXTURE 3.815E-05 SHMF
CLUMPFF 0.02 SMMF ADMIXTURE 3.815E05 SNMF

Test Demographic Modell  Demographic Model 2 Algorithm Wilcoxon p-value  Best Performance
CLUMPP Anisotropic 2D Stepping Stone ADMIXTURE 2 301F-01 pralue == 0.05
CLUMPP Anisotropic 20 Stepping Stone SMMF 8.188E-01 pvalue == 0.05

We can visualise by plotting the CLUMPP correlations to double check these conclusions: Figures 6.20
and 6.21 display the boxplots comparing the two algorithms split by the three migration rates and split

by the two demographic models respectively:
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Figure 6.20: ADMIXTURE (green) and SNMF (orange) similarity coefficients (G’) estimated by CLUMPP displayed by
the three levels of migration rate and corroborating the best performance of SNMF in all cases and also ratifying

the decreasing trend of both algorithms as migration rate grows.
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Figure 6.21: ADMIXTURE (green) and SNMF (orange) similarity coefficients (G’) estimated by CLUMPP displayed by
the two demographic models, corroborating the best performance of SNMF but not establishing a significant

difference between demographic models.

Finally, aligning the CLUMPP similarity values (G’) for all the 78 experimental datasets in a graph:
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Figure 6.23: ADMIXTURE (green) and SNMF (orange) similarity coefficients (G’) estimated by CLUMPP displayed

along the 78 experimental models, corroborating again the best performance of SNMF algorithm.
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7. Conclusions

The performance of five algorithms widely used in the field of population genetics for quantifying

global population substructure has been tested under realistic spatial models. The validity and accuracy

of the experimental model we have constructed is based on two pillars: first, the statistical predictive

power of the 78 demographic scenarios designed and second, the robustness of Fastsimcoal2

performing coalescent simulations of DNA sequences. On the one hand, the set of demographic

scenarios have been designed covering a broad range of sampling schemes. In the other hand,

Fastsimcoal2 has been previously validated [Yang 2014] as highly scalable and flexible in simulating

many different demographic histories and diverse DNA sequence structures such as SNPs.

Assuming that these initial conditions are well established, the analysis of the performance of

commonly applied algorithms has determined that:

1)

The five programs (PCA, MDS, SPA, ADMIXTURE and SNMEF) show a strong robustness for

detecting global ancestry in complex controlled geographic demographic scenarios. This is
evidenced by the high degree of correlation between the estimated coordinates and the real
geographical origin of individuals.

With regard to “Algorithmic” based methods, the best performing algorithm is smart-PCA

(Eigensoft) since it shows the strongest level of correlation with the geographic sampling
location and performing in a very fast and efficient way. Smart-PCA performance is followed
very closely by MDS (PLINK) in terms of high correlation with the real geographical origin of
individuals. A large number of computational tasks for processing SNP data can be easily
performed via PLINK, and this is an additional advantage for performing global ancestry
detection with the MDS-PLINK algorithm without changing the program platform. By using SPA,
we have obtained a poorest correlation degree and we have experienced a shocking
computational response time: while smart-PCA and MDS-PLINK solved the ancestry estimation
of bigger datasets in minutes (2250 individuals - 944,000 SNPs), SPA required days with the
same datasets.

With respect to “Model” based methods, the best performing algorithm is SNMF since it shows

the highest degree of similarity between the different sampling cases and the reference
datasets. In contrast, ADMIXTURE resulted in a lowest level of correlation between sampling
and base datasets and, similarly to SPA, suffers from a disproportionate and severe response
time that makes difficult to coordinate the different stages of the pipeline.

The migration rate level has a very significant impact on the validity of the results from the five

algorithms: the higher the migration rate, the lower accuracy in the results. For instance, the
best performing “algorithmic” program, smartPCA, experiences a Mantel correlation decreases

from 0.97 when migration rate is m=0.001, to 0.86 when migration rate is 20 times greater
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(m=0.02), in line with the principle which asserts that migration has a homogenizing effect on
the genetic variation in populations.

The 2D stepping stone demographic model exhibits a slightly higher degree of correlation than

anisotropic model for all algorithms. In average, the 2D stepping stone obtain Mantel and
Procrustes correlations that are 6% and 4% above anisotropic model respectively.

The contagious sampling method performs slightly better than selecting populations randomly.

For instance, for MDS-PLINK program under Procrustes test, the mean for the 36 contagious
datasets is 0.90 while the mean for 36 two stepping stone models is 0.85 (6.4% below
contagious). Similarly, for SNMF program under CLUMPP test, the mean for the 36 contagious
datasets is 0.89 while the mean for the 36 two stepping stone models is 0.83 (5.8% below
contagious).

The Equal sampling shows a stronger degree of correlation than unequal sampling method for
all algorithms but this has to be taken with caution as the average number of individuals for
unequal datasets are significantly lower than equal cases and this can partially explain the
deviation.

The LD filtering method performs slightly better correlated than No Filtering strategy while

MAF cleaning is the worst method. This conclusion is applicable to the whole experimental
dataset pool.

The comparison between Mantel and Procrustes test is a question that can not go unnoticed:
while Mantel test shows a total mean of 0.77 for the three algorithmic methods and for the 78
datasets (a total of 234 cases), Procrustes test exhibits a total mean of 0.88, 13% higher than
Mantel. This can lead us to a very different conclusion: or a less demanding behavior for

Procrustes test or a dysfunction in Mantel test amplifying artificially the decorrelation.
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8. Appendices: Linux Shell Scripts and “R” Code

pop_train1

HHHARHRRRH S POPULATION ALGORITHM
#Notes:

#FASTSIMCOAL? installed at /home/ubuntu/fast and executable renamed as fsc
#ARLEQUIN2PLINK CONVERSOR installed at /home/ubuntu/dist

#ADMIXTURE installed at /home/ubuntu/admix

#SNMF installed at /home/ubuntu/snmf

#EIGENSOFT installed at /home/ubuntu/eigen

#SPA installed at /home/ubuntu/spa

#PLINK(MDS) installed at /home/ubuntu/plink

#TREEMIX installed at /home/ubuntu/tree
#R installed

#R package OriGen installed
HHHHHHARAHHARAE Just to force linux format
dos2unix $1.par

HHHHHHHRRARAA# Running FASTSIMCOAL2
cp $1.par /home/ubuntu/fast

cd /home/ubuntu/f ast

## one simulation -n1, four cores and four baches
fsc -i $1.par -n1 -c4 -B4

cd $1

cp $1_1_1.arp /home/ubuntu/dist

cd ..

mv $1.par /home/ubuntu/dist

m -r $1

read -p "Process finished, ENTER to show files ........
HHHHHHHAHHARAE Conv erting Arlequin to Plink #HHHHHHHHHHHHHHHHHHHHHHHHHHHT

cd /home/ubuntu/dist

mv $1_1_1.arp $1.arp

java -jar Conv ertArlequinToPlink.jar $1.arp $1

HiHHHHHRAHH#AA Creating ped and Removing missing snp #HHHHHHHHHHHHHHHHAHH

grep "[G|T|A|C] 0" $1.bim|awk '{ print $2}' > remov e.snp

/home/ubuntu/plink/plink.107 --bfile $1 --recode --tab --out $1 --noweb

read -p "NOW EDIT WITH VI AND CHANGE SAMPLE O ........ "

## tail -n +2 $1.ped > pedped2

## head -n 1 $1.ped > pedped1

## vi pedped1 CHANGE SAMPLE 0

## rm $1.ped

## cat pedped1 pedped2 > $1.ped

## rm pedped1 pedped2

## SPA is reluctant to run with missing values

/home/ubuntu/plink/plink.109 --file $1 --exclude remov e.snp --noweb --make-bed --out $1bis
rm $1.bed $1.bim $1.fam

mv $1bis.bed $1.bed

mv $1bis.bim $1.bim

mv $1bis.fam $1.fam
HHHAHHRAAHHRH# Running ADMIXTURE
/home/ubuntu/admix/admixture $1.bed 4 -j4
## K ancestries = 4

mv $1.4.Q $1_admix.4.Q

m $1.4.P

HHHHHHRAHAHHR#H Running SNMF
/home/ubuntu/snmf/bin/ped2geno $1.ped $1.geno
## K ancestries = 4

/home/ubuntu/snmf/bin/sNMF -x $1.geno -K 4

mv $1.4.Q $1_snmf.4.Q

m $1.4.G

HHHHHHHHRRARAH Running EIGENSOFT SMartPCA
## just two principal components -k 2

read -p "CONTROL BEFORE PCA ........ "
smartpca.perl -i $1.bed -a $1.bim -b $1.fam -0 $1.pca -q NO -k 2 -p $1.pca -e $1.pca -l $1.pca
read -p "CONTROL AFTER PCA "

HHHHHHAAH#### Running SPA
#/home/ubuntu/spa/spa --bfile $1 --location-output $1.spa -r 0.0001
HHHHHHAAAHH##H# Running MDS
## Pairwise IBS estimation
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/home/ubuntu/plink/plink.109 --bfile $1 --genome --noweb --out $1
rm $1.log $1.nosex
/home/ubuntu/plink/plink.109 --bfile $1 --read-genome $1.genome --cluster --mds-plot 2 --noweb --out $1
HHHHAHHHAAHHHAE Saving RESULTS ## H

mkdir /home/ubuntu/results/$1

mv $1.par $1.arp $1.bed $1.bim $1.fam $1_admix.4.Q $1_snmf.4.Q $1.ped $1.map $1.geno $1.pca.evec $1.spa $1.genome $1.mds $1.cluster*

/home/ubuntu/results/$1

rm $1.pca.* *.log *.nosex $1.pca remove.snp $1bis.* *.mod
cd /home/ubuntu/results/$1

read -p "Process finished, ENTER to show files ........
Is -l

STEP 2 - SHELL SCRIPT FOR AUTOMATING SAVIPLING ON BASE CASES (POP,IND, MAF, LD)

pop_train2

mkdir /home/ubuntu/results/tss/tss_m2_cont_eq
mkdir /home/ubuntu/results/tss/tss_m2_cont_eq_Id
mkdir /home/ubuntu/results/tss/tss_m2_cont_eq_maf
mkdir /home/ubuntu/results/tss/tss_m2_cont_un
mkdir /home/ubuntu/results/tss/tss_m2_cont_un_Id
mkdir /home/ubuntu/results/tss/tss_m2_cont_un_maf
mkdir /home/ubuntu/results/tss/tss_m2_kpop_eq
mkdir /home/ubuntu/results/tss/tss_m2_kpop_eq_Id
mkdir /home/ubuntu/results/tss/tss_m2_kpop_eq_maf
mkdir /home/ubuntu/results/tss/tss_m2_kpop_un
mkdir /home/ubuntu/results/tss/tss_m2_kpop_un_Id
mkdir /home/ubuntu/results/tss/tss_m2_kpop_un_maf
mkdir /home/ubuntu/results/ani/ani_m2_cont_eq
mkdir /home/ubuntu/results/ani/ani_m2_cont_eq_Id
mkdir /home/ubuntu/results/ani/ani_m2_cont_eq_maf
mkdir /home/ubuntu/results/ani/ani_m2_cont_un
mkdir /home/ubuntu/results/ani/ani_m2_cont_un_Id
mkdir /home/ubuntu/results/ani/ani_m2_cont_un_maf
mkdir /home/ubuntu/results/ani/ani_m2_kpop_eq
mkdir /home/ubuntu/results/ani/ani_m2_kpop_eq_Id
mkdir /home/ubuntu/results/ani/ani_m2_kpop_eq_maf
mkdir /home/ubuntu/results/ani/ani_m2_kpop_un
mkdir /home/ubuntu/results/ani/ani_m2_kpop_un_Id
mkdir /home/ubuntu/results/ani/ani_m2_kpop_un_maf

read -p "ENTER to continue ........ "

/home/ubuntu/plink/plink.109 --file /home/ubuntu/results/tss/tss_m2_fm/tss_m2_fm --keep tss_kpop_eq.fam --make-bed --out
/home/ubuntu/results/tss/tss_m2_kpop_eq/tss_m2_kpop_eq --noweb

/home/ubuntu/plink/plink.109 --file /home/ubuntu/results/tss/tss_m2_fm/tss_m2_fm --keep tss_kpop_un.fam --make-bed --out
/home/ubuntu/results/tss/tss_m2_kpop_un/tss_m2_kpop_un --noweb

/home/ubuntu/plink/plink.109 --file /home/ubuntu/results/tss/tss_m2_fm/tss_m2_fm --keep tss_cont_eq.fam --make-bed --out
/home/ubuntu/results/tss/tss_m2_cont_eqg/tss_m2_cont_eq --noweb

/home/ubuntu/plink/plink.109 --file /home/ubuntu/results/tss/tss_m2_fm/tss_m2_fm --keep tss_cont_un.fam --make-bed --out
/home/ubuntu/results/tss/tss_m2_cont_un/tss_m2_cont_un --noweb

/home/ubuntu/plink/plink.109 --file /home/ubuntu/results/ani/ani_m2_fm/ani_m2_fm --keep ani_kpop_eq.fam --make-bed --out
/home/ubuntu/results/ani/ani_m2_kpop_eqg/ani_m2_kpop_eq --noweb

/home/ubuntu/plink/plink.109 --file /home/ubuntu/results/ani/ani_m2_fm/ani_m2_fm --keep ani_kpop_un.fam --make-bed --out
/home/ubuntu/results/ani/ani_m2_kpop_un/ani_m2_kpop_un --noweb

/home/ubuntu/plink/plink.109 --file /home/ubuntu/results/ani/ani_m2_fm/ani_m2_fm --keep ani_cont_eq.fam --make-bed --out
/home/ubuntu/results/ani/ani_m2_cont_eqg/ani_m2_cont_eq --noweb

/home/ubuntu/plink/plink.109 --file /home/ubuntu/results/ani/ani_m2_fm/ani_m2_fm --keep ani_cont_un.fam --make-bed --out
/home/ubuntu/results/ani/ani_m2_cont_un/ani_m2_cont_un --noweb

read -p "Principal files created continue ........
#HH/ home/ubuntu/plink/plink. 109 --bfile ani_kpop_eq --maf 0.00001 --make-bed --out ani_kpop_eq_000 --noweb
HHHHAHHERAHHRAAH# MAF generation
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_kpop_eqg/tss_m2_kpop_eq --noweb --maf 0.05 --make-bed --out
/home/ubuntu/results/tss/tss_m2_kpop_eq_maf/tss_m2_kpop_eq_maf
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_kpop_un/tss_m2_kpop_un --noweb --maf 0.05 --make-bed --out
/home/ubuntu/results/tss/tss_m2_kpop_un_maf/tss_m2_kpop_un_maf
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_cont_eqg/tss_m2_cont_eq --noweb --maf 0.05 --make-bed --out
/home/ubuntu/results/tss/tss_m2_cont_eq_maf/tss_m2_cont_eq_maf
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_cont_un/tss_m2_cont_un --noweb --maf 0.05 --make-bed --out
/home/ubuntu/results/tss/tss_m2_cont_un_maf/tss_m2_cont_un_maf
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/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_kpop_eqg/ani_m2_kpop_eq --noweb --maf 0.05 --make-bed --out
/home/ubuntu/results/ani/ani_m2_kpop_eq_maf/ani_m2_kpop_eq_maf
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_kpop_un/ani_m2_kpop_un --noweb --maf 0.05 --make-bed --out
/home/ubuntu/results/ani/ani_m2_kpop_un_maf/ani_m2_kpop_un_maf
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_cont_eqg/ani_m2_cont_eq --noweb --maf 0.05 --make-bed --out
/home/ubuntu/results/ani/ani_m2_cont_eq_maf/ani_m2_cont_eq_maf
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_cont_un/ani_m2_cont_un --noweb --maf 0.05 --make-bed --out
/home/ubuntu/results/ani/ani_m2_cont_un_maf/ani_m2_cont_un_maf

read -p "MAF done continue ........
HHHHHHAHEHHAAAH# LD generation ##H
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_kpop_eqg/tss_m2_kpop_eq --noweb --indep 50 5 2
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_kpop_eqg/tss_m2_kpop_eq --noweb --extract plink.prune.in --make-bed --out
/home/ubuntu/results/tss/tss_m2_kpop_eq_ld/tss_m2_kpop_eq_Id

rm /home/ubuntu/sampling/plink.*

/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_kpop_un/tss_m2_kpop_un --noweb --indep 50 5 2
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_kpop_un/tss_m2_kpop_un --noweb --extract plink.prune.in --make-bed --out
/home/ubuntu/results/tss/tss_m2_kpop_un_ld/tss_m2_kpop_un_Id

rm /home/ubuntu/sampling/plink.*

/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_cont_eqg/tss_m2_cont_eq --noweb --indep 50 5 2
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_cont_eq/tss_m2_cont_eq --noweb --extract plink.prune.in --make-bed --out
/home/ubuntu/results/tss/tss_m2_cont_eq_ld/tss_m2_cont_eq_Id

rm /home/ubuntu/sampling/plink.*

/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_cont_un/tss_m2_cont_un --noweb --indep 50 5 2
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/tss/tss_m2_cont_un/tss_m2_cont_un --noweb --extract plink.prune.in --make-bed --out
/home/ubuntu/results/tss/tss_m2_cont_un_ld/tss_m2_cont_un_Id

rm /home/ubuntu/sampling/plink.*

/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_kpop_eqg/ani_m2_kpop_eq --noweb --indep 50 5 2
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_kpop_eg/ani_m2_kpop_eq --noweb --extract plink.prune.in --make-bed --out
/home/ubuntu/results/ani/ani_m2_kpop_eq_ld/ani_m2_kpop_eq_Id

rm /home/ubuntu/sampling/plink.*

/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_kpop_un/ani_m2_kpop_un --noweb --indep 50 5 2
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_kpop_un/ani_m2_kpop_un --noweb --extract plink.prune.in --make-bed --out
/home/ubuntu/results/ani/ani_m2_kpop_un_Id/ani_m2_kpop_un_Id

rm /home/ubuntu/sampling/plink.*

/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_cont_eqg/ani_m2_cont_eq --noweb --indep 50 5 2
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_cont_eqg/ani_m2_cont_eq --noweb --extract plink.prune.in --make-bed --out
/home/ubuntu/results/ani/ani_m2_cont_eq_ld/ani_m2_cont_eq_Id

rm /home/ubuntu/sampling/plink.*

/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_cont_un/ani_m2_cont_un --noweb --indep 50 5 2
/home/ubuntu/plink/plink.109 --bfile /home/ubuntu/results/ani/ani_m2_cont_un/ani_m2_cont_un --noweb --extract plink.prune.in --make-bed --out
/home/ubuntu/results/ani/ani_m2_cont_un_ld/ani_m2_cont_un_Id

rm /home/ubuntu/sampling/plink.*

read -p "Process finished, ENTER to show files ........

STEP 3 AND 4 - SHELL SCRIPT AUTOMATING ALL ALGORITHMS ON ALL SUBCASES

pop_train3

cd /home/ubuntu/results/ani/ani_m2_cont_eq
/home/ubuntu/pop_train4 ani_m2_cont_eq

cd /home/ubuntu/results/ani/ani_m2_cont_eq_Id
/home/ubuntu/pop_train4 ani_m2_cont_eq_Id

cd /home/ubuntu/results/ani/ani_m2_cont_eq_maf
/home/ubuntu/pop_train4 ani_m2_cont_eq_maf
cd /home/ubuntu/results/ani/ani_m2_cont_un

/home/ubuntu/pop_train4 tss_m2_kpop_un

pop_train4

HHHHHHHAAHHHAE Creating ped and Removing missing snp #HHHHHHHHHHHHHHHHRAHHE

grep "[G|T|A|C] 0" $1.bim|awk '{ print $2}' > remove.snp

/home/ubuntu/plink/plink.109 --bfile $1 --recode --tab --out $1 --noweb
/home/ubuntu/plink/plink.109 --file $1 --exclude remov e.snp --noweb --make-bed --out $1bis
rm $1.bed $1.bim $1.fam

mv $1bis.bed $1.bed

mv $1bis.bim $1.bim

mv $1bis.fam $1.fam
HHHHHHHRAAARARH Running ADMIXTURE
/home/ubuntu/admix/admixture $1.bed 4 -j4
mv $1.4.Q $1_admix.4.Q

m $1.4.P




HHHHHHRAAHHRAE Running SNMF
/home/ubuntu/snmf/bin/ped2geno $1.ped $1.geno
/home/ubuntu/snmf/bin/sNMF -x $1.geno -K 4

mv $1.4.Q $1_snmf.4.Q

m $1.4.G

HHHAHHRAAHHRAE Running EIGENSOFT SMartPCA
smartpca.perl -i $1.bed -a $1.bim -b $1.fam -0 $1.pca -g NO -k 2 -p $1.pca -e $1.pca -l $1.pca
W Running SPA HHHHHHHHH - HH A HH
/home/ubuntu/spa/spa --bfile $1 --location-output $1.spa -r 0.0001

W Running MDS HHHHHHHHHH
/home/ubuntu/plink/plink.109 --bfile $1 --genome --noweb --out $1

rm $1.log $1.nosex

/home/ubuntu/plink/plink.109 --bfile $1 --read-genome $1.genome --cluster --mds-plot 2 --noweb --out $1
HHHHHHERAHH#H Saving RESULTS

rm *.cluster? *.pca *.pca.par *.ps *.xtxt *.nosex *.log remove.snp $1bis.*

STEP 5 - R SCRIPT FOR GENERATING PLINK FAV FILES FOR FURTHER SAVIPLING SUBCASES]

ani_cont_eq.R

linies <- vector()

<1

kpop <-
sort(c(11,13,23,2,4,15,20,21,24,27,28,41,43,45,59,88,89,90,32,46,48,49,50,62,63,65,93,37,51,52,53,54,55,66,69,100,101,104,107,108,111,114,118,119,
120))

for (k in c(1:45))

{
for (i in (1:10))
{
linies[j] <- paste("Sample",kpop[k]," ",kpop[k]*10-11+i,sep="")
j<j+1}
}

write(linies, file="/home/ubuntu/sampling/ani_cont_eq.fam")

ani_cont_un.R

linies <- vector()
kpop <-
sort(c(11,13,23,2,4,15,20,21,24,27,28,41,43,45,59,88,89,90,32,46,48,49,50,62,63,65,93,37,51,52,53,54,55,66,69,100,101,104,107,108,111,114,118,119,
120))
llevo <- 1
for (k in c(1:45))
{j <- sample(1:5,1)
ind <- sort(sample(c((kpop[k]*10-10):(kpop[k]*10-1)).j))
for (i in (1:j))
{linies[llev o] <- paste("Sample",kpop[k]," ",ind[i],sep="")
llevo <- llevo+1}

}

write(linies, file="/home/ubuntu/sampling/ani_cont_un.fam")

ani_kpop_eq.R

linies <- vector()
j<1
kpop <- sort(sample(c(1:125),45))
for (k in c(1:45))
{
for (i in (1:10))
{
linies[j] <- paste("Sample", kpop[k]," ", kpop[k]*10-11+i,sep="")
if (linies[j] == "Sample1 0")linies[j] <- "Sample1 A"}
j<*1}
}

write(linies, file="/home/ubuntu/sampling/ani_kpop_eq.fam")

ani_kpop_un.R

linies <- vector()
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kpop <- sort(sample(c(1:125),45))
llevo <-1
for (k in c(1:45))
{j <- sample(1:5,1)
ind <- sort(sample(c((kpop[k]*10-10): (kpop[k]*10-1)),}))
for (i in (1))
{linies[llev o] <- paste("Sample",kpop[k]," ",ind[i],sep="")
if (linies[llevo] == "Sample1 0"){linies[llevo] <- "Sample1 A"}
llevo <- llevo+1}

}

write(linies, file="/home/ubuntu/sampling/ani_kpop_un.fam")

tss_cont_eq.R

linies <- vector()
j<1
kpop <-

sort(sample(c(1,17,33,6,20,19,37,22,7,11,12,27,13,29,45,46,47,48,79,80,65,67,53,54,55,71,72,74,60,90,106,93,123,107,121,123,113,97,99,130,116, 102

,10,118,119,138,153,168,154,155,156,172,157,174,175,147,162,165,164,179,196,212,183,184,200,214,217,187,219,190,191,206,210,223,224),75))

for (k in c(1:75))

{

for (i in (1:10))
{
linies[j] <- paste("Sample",kpop[k]," ",kpop[k]*10-11+i,sep="")
if (linies[j] == "Sample1 0"){linies[j] <- "Sample1 A"}
j<i*1)
}

write(linies, file="/home/ubuntu/sampling/tss_cont_eq.fam")

tss_cont_un.R

linies <- vector()
kpop <-

sort(sample(c(1,17,33,6,20,19,37,22,7,11,12,27,13,29,45,46,47,48,79,80,65,67,53,54,55,71,72,74,60,90,106,93,123,107,121,123,113,97,99,130,116, 102

,10,118,119,138,153,168,154,155,156,172,157,174,175,147,162,165,164,179,196,212,183,184,200,214,217,187,219,190,191,206,210,223,224),75))

llevo <- 1
for (k in c(1:75))
{j <- sample(1:5,1)
ind <- sort(sample(c((kpop[k]*10-10):(kpop[k]*10-1)),j))
for (i in (1:)))
{linies[llev o] <- paste("Sample",kpop[k]," ",ind[i],sep="")
if (linies[llevo] == "Sample1 0"){linies[llevo] <- "Sample1 A"}
llevo <- llevo+1}

}

write(linies, file="/home/ubuntu/sampling/tss_cont_un.fam")

tss_kpop_eq.R

linies <- vector()
j<1
kpop <- sort(sample(c(1:225),75))
for (k in c(1:75))
{
for (iin (1:10))
{
linies[j] <- paste("Sample",kpop[k]," ",kpop[k]*10-11+i,sep="")
if (linies[j] == "Sample1 0")linies[j] <- "Sample1 A"}
j<i+1}
}

write(linies, file="/home/ubuntu/sampling/tss_kpop_eq.fam")

tss_kpop_un.R

linies <- vector()
kpop <- sort(sample(c(1:225),75))
llevo <- 1
for (k in c(1:75))
{j <- sample(1:5,1)
ind <- sort(sample(c((kpop[k]*10-10): (kpop[k]*10-1)),j))
for (i in (1:j))
{linies[llev o] <- paste("Sample", kpop[k],

,ind[i],sep="")
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if (linies[llevo] == "Sample1 0")linies[llevo] <- "Sample1 A"}
llevo <- llevo+1}

}

write(linies, file="/home/ubuntu/sampling/tss_kpop_un.fam")

STEP 6 - R SCRIPT FOR APPLYING MANTEL AND PROCRUSTES ON PCA MDS AND SPA

mantel.R

library (vegan)

library (ade4)

library (prabclus)

conn <- file("/home/ubuntu/results/task",open="r")

linn <-readLines(conn)

theheader1 <-
"case,m_mds_cor,m_mds_sig,p_mds_cor,p_mds_sig,m_spa_cor,m_spa_sig,p_spa_cor,p_spa_sig,m_pca_cor,m_pca_sig,p_pca_cor,p_pca_sig,K4,K5,
K6,Gadm,Gsnm,Gas,NumInd,SNPs,BedSize"

write(theheader1,file="/home/ubuntu/results/res")

head1 <- "case fam bed mds pca spa adm  snm OK"

head2 <- "==
write(head1,file="/home/ubuntu/results/rec")
write(head2,file="/home/ubuntu/results/rec",append="TRUE")

for (i in 1:length(linn))

{

print(linn[i])

theroot <- substr(linn[i], 1,3)

thepath <- paste("/home/ubuntu/results/",theroot,"/",linn[i],"/",sep="")

if (substr(linn[i], 1,3)=="ani"){base_global <- read.table("/home/ubuntu/results/base_ani.txt")} else{base_global <-
read.table("/home/ubuntu/results/base_tss.txt")}

colnames(base_global) <- c("pop","ind","x","y ")
famfile <- list.files(path=thepath, pattern="*[a-z].fam")
if (length(famfile) == 0)}{a1<-O}else{a1<-1}

bedfile <- list.files(path=thepath,pattern="*.bed")

if (length(bedfile) == 0){a2<-O}else{a2<-1}

mdsfile <- list.files(path=thepath,pattern="*.mds")

if (length(mdsfile) == 0){a3<-0}else{a3<-1}

pcafile <- list.files(path=thepath, pattern="".evec")

if (length(pcafile) == 0)}{a4<-O}else{ad<-1}

spafile <- list.files(path=thepath, pattern="*.spa")

if (length(spafile) == 0)}{a5<-O}else{a5<-1}

admfile <- list.files(path=thepath,pattern="*admix*")
if (length(admfile) == 0){a6<-O}else{ab<-1}
snmfile <- list.files(path=thepath,pattern="*
if (length(snmfile) == 0){a7<-O}else{a7<-1}
aa <- al+a2+a3+a4+ab+a6+a7

if (aa==7)

{

case <- linn[i]

fam <- read.table(paste(thepath,famfile,sep=""))

fam <- fam[,1:2]

colnames(fam) <- c("pop","ind")

fam$ind[fam$ind == 0] <- "A"; fam$ind[fam$ind == "0"] <- "A"

base <- merge(base_global, fam, by =c("pop","ind"))

mds <- read.table(paste(thepath,case,".mds",sep=""),header=TRUE)

mds <- mds[,c(1,2,4,5)]

colnames(mds) <- c("pop","ind","mds_x","mds_y")

mds$ind[mds$ind == 0] <- "A"; mds$ind[mds$ind == "0"] <- "A"

base <- merge(base, mds, by=c("pop","ind"))

spa <- read.table(paste(thepath,case,".spa",sep=""))

spa <- spa[,c(1,2,7,8)]

colnames(spa) <- c("pop","ind","spa_x","spa_y")

spa$ind[spa$ind == 0] <- "A"; spa$ind[spa$ind == "0"] <- "A"

base <- merge(base, spa, by=c("pop","ind"))

pca <- read.table(paste(thepath,case,".pca.evec",sep=""))

pca <- pca[,c(1,2,3)]

pca$pop <- substr(pcal,1],1,as.numeric(regexpr(":", pcal,1]))-1)

pca$ind <- substr(pcal,1],as.numeric(regexpr(":", pcal,1]))+1,nchar(as.character(pcal,1])))
pca <- pcal,c(4,5,2,3)]

colnames(pca) <- c¢("pop","ind","pca_x","pca_y")

pca$ind[pca$ind == 0] <- "A"; pca$ind[pca$ind == "0"] <- "A"

base <- merge(base, pca, by =c("pop","ind"))

dbase <- coord2dist(coordmatrix=base[,3:4],file.f ormat="decimal2")

dmds <- coord2dist(coordmatrix=base[,5:6],file.f ormat="decimal2")

snmf*")
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mant <- mantel(dbase,dmds)

prot <- protest(base[,3:4],base[,5:6])

m_mds_cor <- mant$statistic

m_mds_sig <- mant$signif

p_mds_cor <- prot$scale

p_mds_sig <- prot$signif

dspa <- coord2dist(coordmatrix=base[,7:8],file.f ormat="decimal2")
mant <- mantel(dbase,dspa)

prot <- protest(base[,3:4],base[,7:8])

m_spa_cor <- mant$statistic

m_spa_sig <- mant$signif

p_spa_cor <- prot$scale

p_spa_sig <- prot$signif

dpca <- coord2dist(coordmatrix=base[,9:10],file.f ormat="decimal2")
mant <- mantel(dbase,dpca)

prot <- protest(base[,3:4],base[,9:10])

m_pca_cor <- mant$statistic

m_pca_sig <- mant$signif

p_pca_cor <- prot$scale

p_pca_sig <- prot$signif

## bestK results collection

bestfile <- list.files(path="/home/ubuntu/bestK/",pattern=paste(case,".snm",sep=""))
if (length(bestfile) == 0)

{

K4 <- -1

K5 <- -1

K6 <- -1

}

else

{

bestK <-readLines(paste("/home/ubuntu/bestK/",bestfile,sep=""))
K4<-substr(bestK[1],regexpr("0.",bestK[ 1]),regexpr("0.",bestK[1])+6)
K5<-substr(bestK[2],regexpr("0.",bestK[2]),regexpr("0.",bestK[2])+6)
K6<-substr(bestK[3],regexpr("0.",bestK[3]),regexpr("0.",bestK[3])+6)
}

#H# CLUMPP ADMIXTURE results collection

clumfile <- list.files(path="/home/ubuntu/results/clumpp",pattern=paste(case,".adm",sep=""))
if (length(clumfile) == 0)

{Ga < -1}

else

{

theG <-readLines(paste("/home/ubuntu/results/clumpp/",clumfile,sep=""))

Ga <- substr(theG[length(theG)],1,6)

}

### CLUMPP SNMF results collection

clumfile <- list.files(path="/home/ubuntu/results/clumpp",pattern=paste(case,".snm",sep=""))
if (length(clumfile) == 0)

{Gs <- -1}

else

{

theG <-readLines(paste("/home/ubuntu/results/clumpp/",clumfile,sep=""))

Gs <- substr(theG[length(theG)], 1,6)

}

#H# CLUMPP ADMIXTURE vs SNMF results collection

clumfile <- list.files(path="/home/ubuntu/results/clumpp",pattern=paste(case,".as",sep=""))
if (length(clumfile) == 0)

{Gas <- -1}

else

{

theG <-readLines(paste("/home/ubuntu/results/clumpp/",clumfile,sep=""))

Gas <- substr(theG[length(theG)],1,6)

## obtaining individuals, snps, bed file size

famfile <- list.files(path=thepath,pattern="*[a-z].fam")
if (length(famfile) == 0)
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{pumind <- -1}

else

{

fam <- read.table(paste(thepath,famfile,sep=""))
numind <- nrow(fam)

}

bimfile <- list.files(path=thepath, pattern="*[a-z].bim")
if (length(bimfile) == 0)

{SNPS <- -1}

else

{

bim <- read.table(paste(thepath,bimfile,sep=""))
SNPS <- nrow(bim)

}

bedfile <- list.files(path=thepath,pattern="*[a-z].bed")
if (length(bedfile) == 0)

{bedsiz <- -1}

else

{

bedsiz <- file.size(paste(thepath,bedfile,sep=""))/1000000
}

results1 <-

paste(case,m_mds_cor,m_mds_sig,p_mds_cor,p_mds_sig,m_spa_cor,m_spa_sig,p_spa_cor,p_spa_sig,m_pca_cor,m_pca_sig,p_pca_cor,p_pca_sig,K

4,K5,K6,Ga,Gs,Gas,numind, SNPS, bedsiz,sep=",")
write(t(results 1),file="/home/ubuntu/results/res",append=TRUE)
}

else

{

case <- linn[i]

case <- paste(case," ", sep="")

case <- substr(case,1,20)

recue <- paste(case,al,a2,a3,a4,a5,a6,a7,aa,sep="\t")

results1 <- paste(case,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,sep=",")
write(results 1,file="/home/ubuntu/results/res",append=TRUE)
write(recue, file="/home/ubuntu/results/rec",append=TRUE)

}

}

close(conn)

STEP 7- SHELL SCRIPTS FOR ESTIMATING BEST K NUMBER OF ANCESTRIES

mixK

forKin456

do

echo K=$K

/home/ubuntu/admix/admixture --cv /home/ubuntu/results/$2/$1/$1.bed $K -j4 > $1.$K.mix.log
done

grep -h CV $1*.mix.log > $1.mix

rm *.mix.log

cat $1.mix

snmfK

cd /home/ubuntu/bestK

cp /home/ubuntu/results/$2/$1/$1.geno .

forKin456

do

echo K=$K; /home/ubuntu/snmf/bin/sNMF -x $1.geno -p 4 -K $K -c > $1.$K.log
done

rm *.G *.Q $1.geno $1_I.geno

grep "Cross-Entropy (masked data):" $1*.log > $1.snm

rm $1*.log

cat $1.snm

STEP 8 - R SCRIPT FOR APPLYING CLUMPP ON ADMIXTURE VS BASE CASES]

clum_admix.R

library (vegan)
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library (ade4)

library (prabclus)

conn <- file("/home/ubuntu/results/task2",open="r")
linn <-readLines(conn)

for (i in 1:length(linn))

{

print(linn[i])

theroot <- substr(linn[i],1,3)

thepath <- paste("/home/ubuntu/results/",theroot,"/" linn[i],"/",sep="")

famfile <- list.files(path=thepath,pattern="*[a-z].fam")
if (length(famfile) == 0)}{a1<-O}else{al<-1}

admfile <- list.files(path=thepath,pattern="*admix*")
if (length(admfile) == 0){a6<-O}else{ab<-1}

aa <- al+ab
if (aa ==2)
{

case <- linn[i]

fam <- read.table(paste(thepath,famfile,sep=""))
fam <- fam[,2]

adm <- read.table(paste(thepath,admfile,sep=""))
adm <- cbind(fam,adm)

print(adm([1,1])

adm[,1] <- as.character(adml[,1])

if (adm[1,1]=="A"}{adm[1,1]<-"9999"}

if (adm[1,1]=="0"}{adm[1,1]<-"9999"}

#itHHH# READ BASE SNMF FILE

baseadm <- paste(substr(case,1,7),"fm",sep="")

thepathh <- paste("/home/ubuntu/results/",theroot,"/",baseadm,"/",sep="")
basefamfile <- list.files(path=thepathh,pattern="*[a-z].fam")

basefam <- read.table(paste(thepathh,basefamfile,sep=""))

basefam <- basefam[,2]

basefile <- list.files(path=thepathh,pattern="*admix*")

baseadm <- read.table(paste(thepathh,basefile,sep=""))

baseadm <- cbind(basefam,baseadm)

baseadm$basefam <- as.character(baseadm$basefam)

if (baseadm[1,1]=="A"){baseadm[1,1]<-"9999"}

if (baseadm[1,1]=="0"){baseadm[1,1]<-"9999"}

baseadm?2 <- baseadm[baseadm$basefam %in% adm$fam,]

adm <- cbind(adm[,1],adm[, 1],adm[,1],adm[, 1],adm)

baseadm?2 <- cbind(baseadm2[,1],baseadm?2[, 1],baseadm2[,1],baseadm2[, 1],baseadm?2)
adm[,5]<- ":"

baseadm2[,5]<- "

adm[,3]<- paste("(",adm[,3],")",sep="")

baseadm?2],3]<- paste("(",baseadm?2[,3],")",sep="")

rownames(adm) <- NULL

rownames(baseadm?2) <- NULL

colnames(adm) <- NULL

colnames(baseadm?2) <- NULL

#adml[,1]<- adm[,1]+1

#adml[,2]<- adm[,2]+1

#adm([,3]<- adm[,3]+1

#adml[,4]<- adm[,4]+1

#baseadm?2[, 1] <- as.numeric(baseadm2[,1])

#baseadm?2[,2] <- as.numeric(baseadm?2[,2])

#baseadm?2[,3] <- as.numeric(baseadm?2[,3])

#baseadm?2[,4] <- as.numeric(baseadm2[,4])

#baseadm?2[,1]<- baseadm2[, 1]+1

#baseadm?2[,2]<- baseadm?2[,2]+1

#baseadm?2[,3]<- baseadm?2[,3]+1

#baseadm2[,4]<- baseadm2[,4]+1
write.table(adm,"unouno”,sep="\t",row.names=F ALSE, quote=F ALSE)
write.table(baseadm?2,"dosdos",sep="\t",row.names=F ALSE,quote=FALSE)
sy stem(paste("cat unouno dosdos > thepop",sep=""))

sy stem("rm unouno dosdos")

prepcommand <- "/home/ubuntu/clum/CLUMPP /home/ubuntu/clum/paramfile -i thepop "
theoptions <- paste(" -c ",nrow(adm),sep="")

prepcommand <- paste(prepcommand,theoptions,sep="")

print (prepcommand)

sy stem(prepcommand, intern=TRUE, wait=TRUE)

sy stem(paste("mv loveo.miscfile ",case,".adm",sep=""))

#tsy stem("rm lov eo.outfile thepop")

}
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else

{

}

}

sy stem("tail -v -n 1 *.adm > CLUMPP.admix")
sy stem("rm *.adm")

close(conn)

STEP 9 - R SCRIPT FOR APPLYING WILCOXON AND BOXPLOTS TO FINAL RESULTS]

wilcox.R

res1 <- read.table("c:/vic/pop/wilcoxon_2DSS.csv",header=TRUE,sep=";")
boxplot(res1[,c(9,3,6,10,4,7,11,5,8)],col=c("grey ", "tomato", "roy alblue3","grey ","tomato", "roy alblue3","grey ", "tomato", "roy alblue3"),
names=c("PCA m=0.001","MDS m=0.001","SPA m=0.001","PCA m=0.005","MDS m=0.005","SPA m=0.005","PCA m=0.02","MDS m=0.02","SPA
m=0.02"),
ylab ="Mantel Correlation”, xlab ="Algorithms/Migration Rate",
main ="2D Steeping Stone - Mantel Correlation with Geographic sampling site"
)
boxplot(res1[,c(18,12,15,19,13,16,20,14,17)],col=c("grey ","tomato", "roy alblue3","grey ", "tomato", "roy alblue3", "grey ", "tomato","roy alblue3"),
names=c("PCA m=0.001","MDS m=0.001","SPA m=0.001","PCA m=0.005","MDS m=0.005","SPA m=0.005","PCA m=0.02","MDS
m=0.02","SPA m=0.02"),
ylab ="Procrustes Correlation", xlab ="Algorithms/Migration Rate",
main ="2D Steeping Stone - Procrustes Correlation with Geographic sampling site"

)

res2 <- read.table("c:/vic/pop/wilcoxon_ANIS.csv ", header=TRUE,sep=";")
boxplot(res2[,c(9,3,6,10,4,7,11,5,8)],col=c("grey ", "tomato", "roy alblue3","grey ","tomato", "roy alblue3","grey ", "tomato","roy alblue3"),
names=c("PCA m=0.001","MDS m=0.001","SPA m=0.001","PCA m=0.005","MDS m=0.005","SPA m=0.005","PCA m=0.02","MDS
m=0.02","SPA m=0.02"),
ylab ="Mantel Correlation", xlab ="Algorithms/Migration Rate",
main ="ANISOTROPIC - Mantel Correlation with Geographic sampling site"
)
boxplot(res2[,c(18,12,15,19,13,16,20,14,17)],col=c("grey ","tomato", "roy alblue3","grey ", "tomato", "roy alblue3","grey ", "tomato","roy alblue3"),
names=c("PCA m=0.001","MDS m=0.001","SPA m=0.001","PCA m=0.005","MDS m=0.005","SPA m=0.005","PCA m=0.02","MDS
m=0.02","SPA m=0.02"),
ylab ="Procrustes Correlation”, xlab ="Algorithms/Migration Rate",
main ="ANISOTROPIC - Procrustes Correlation with Geographic sampling site"
)

wilcox.test(res 1$pca_man_001,res1$mds_man_001,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res 1$pca_man_001,res 1$spa_man_001,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res1$mds_man_001,res1$spa_man_001,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res1$pca_man_005,res1$mds_man_005,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res 1$pca_man_005,res 1$spa_man_005,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res 1$mds_man_005,res 1$spa_man_005,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res 1$pca_man_02,res 1$mds_man_02,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res 1$pca_man_02,res1$spa_man_02, paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res 1$mds_man_02,res1$spa_man_02,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res1$pca_pro_001,res1$mds_pro_001,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res 1$pca_pro_001,res1$spa_pro_001,paired=TRUE,alternative="greater")$p.v alue
wilcox.test(res1$mds_pro_001,res1$spa_pro_001,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res 1$pca_pro_005,res 1$mds_pro_005, paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res 1$pca_pro_005,res1$spa_pro_005,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res 1$mds_pro_005,res1$spa_pro_005,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res 1$pca_pro_02,res1$mds_pro_02,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res1$pca_pro_02,res1$spa_pro_02,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res1$mds_pro_02,res1$spa_pro_02,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res2$pca_man_001,res2$mds_man_001,paired=TRUE, alternativ e="greater")$p.v alue
wilcox.test(res2$pca_man_001,res2$spa_man_001,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$mds_man_001,res2$spa_man_001,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res2$pca_man_005,res2$mds_man_005, paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$pca_man_005,res2$spa_man_005,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$mds_man_005,res2$spa_man_005,paired=TRUE,alternativ e="greater")$p.v alue
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wilcox.test(res2$pca_man_02,res2$mds_man_02, paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$pca_man_02,res2$spa_man_02,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$mds_man_02,res2$spa_man_02,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res2$pca_pro_001,res2$mds_pro_001,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$pca_pro_001,res2$spa_pro_001,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$mds_pro_001,res2$spa_pro_001,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res2$pca_pro_005,res2$mds_pro_005,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$pca_pro_005,res2$spa_pro_005,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$mds_pro_005,res2$spa_pro_005,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res2$pca_pro_02,res2$mds_pro_02,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$pca_pro_02,res2$spa_pro_02,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res2$mds_pro_02,res2$spa_pro_02,paired=TRUE,alternativ e="greater")$p.v alue

res3 <- read.table("c:/vic/pop/2DSS_ANIS.csv ", header=TRUE,sep=";")

boxplot(res3[,c(9,1,5,10,2,6)],col=c("grey ","tomato","roy alblue3","grey ","tomato", "roy alblue3"),
names=c("PCA 2DSS","MDS 2DSS","SPA 2DSS","PCA Aniso","MDS Aniso","SPA Aniso"),
ylab ="Mantel Correlation", xlab ="Algorithms/Demographic Model",
main ="Mantel Correlation with Demographic Model"

)

boxplot(res3[,c(11,3,7,12,4,8)],col=c("grey ","tomato", "roy alblue3","grey ", "tomato", "roy alblue3"),
names=c("PCA 2DSS","MDS 2DSS","SPA 2DSS","PCA Aniso","MDS Aniso","SPA Aniso"),
ylab ="Procrustes Correlation”, xlab ="Algorithms/Demographic Model",
main ="Procrustes Correlation with Demographic Model"

)

wilcox.test(res3$pca_man_tss,res3$pca_man_ani,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res3$mds_man_tss,res3$mds_man_ani,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res3$spa_man_tss,res3$spa_man_ani,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res3$pca_pro_tss,res3$pca_pro_ani,paired=TRUE,alternative="greater")$p.v alue
wilcox.test(res3$mds_pro_tss,res3$mds_pro_ani,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res3$spa_pro_tss,res3$spa_pro_ani,paired=TRUE,alternative="greater")$p.v alue

res4 <- read.table("c:/vic/pop/random_cont.csv ", header=TRUE,sep=";")
boxplot(res4[,c(9,1,5,10,2,6)],col=c("grey ","tomato", "roy alblue3","grey ","tomato", "roy alblue3"),
names=c("PCA Contagious","MDS Contagious","SPA Contagious","PCA Random","MDS Random","SPA Random"),
ylab ="Mantel Correlation", xlab ="Algorithms/Population Sampling Method",
main ="Mantel Correlation with Population Sampling Method"
)
boxplot(res4[,c(11,3,7,12,4,8)],col=c("grey ","tomato", "roy alblue3","grey ", "tomato", "roy alblue3"),
names=c("PCA Contagious","MDS Contagious","SPA Contagious","PCA Random","MDS Random","SPA Random"),
ylab ="Procrustes Correlation”, xlab ="Algorithms/Population Sampling Method",
main ="Procrustes Correlation with Population Sampling Method"

)

wilcox.test(res4$pca_man_con,res4$pca_man_rnd,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res4$mds_man_con,res4$mds_man_rnd,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res4$spa_man_con,res4$spa_man_rnd,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res4$pca_pro_con,res4$pca_pro_rnd,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res4$mds_pro_con,res4$mds_pro_rnd,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res4$spa_pro_con,res4$spa_pro_rnd,paired=TRUE,alternativ e="greater")$p.v alue

res5 <- read.table("c:/vic/pop/equal_unequal.csv ", header=TRUE,sep=";")

boxplot(res5[,c(9,1,5,10,2,6)],col=c("grey ","tomato","roy alblue3","grey ","tomato", "roy alblue3"),
names=c("PCA Equal","MDS Equal","SPA Equal","PCA Unequal","MDS Unequal","SPA Unequal"),
ylab ="Mantel Correlation", xlab ="Algorithms/Individuals Sampling Method",

main ="Mantel Correlation with Individuals Sampling Method"

)

boxplot(res5[,c(11,3,7,12,4,8)],col=c("grey ","tomato", "roy alblue3","grey ", "tomato", "roy alblue3"),
names=c("PCA Equal","MDS Equal","SPA Equal","PCA Unequal","MDS Unequal","SPA Unequal"),
ylab ="Procrustes Correlation”, xlab ="Algorithms/Individuals Sampling Method",
main ="Procrustes Correlation with Individuals Sampling Method"

)

wilcox.test(res5$pca_man_eq,res5$pca_man_un,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res5$mds_man_eq,res5$mds_man_un,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res5$spa_man_eq,res5$spa_man_un,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res5$pca_pro_eq,res5$pca_pro_un,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res5$mds_pro_eq,res5$mds_pro_un,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res5$spa_pro_eq,res5$spa_pro_un,paired=TRUE,alternative="greater")$p.v alue
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res6 <- read.table("c:/vic/pop/MAF_LD_NO.csv" ,header=TRUE,sep=";")

boxplot(res6[,c(13,1,7,14,2,8,15,3,9)],col=c("grey ","tomato", "roy alblue3","grey ", "tomato", "roy alblue3","grey ", "tomato", "roy alblue3"),
names=c("PCA LD","MDS LD","SPA LD","PCA MAF","MDS MAF","SPA MAF","PCA NoFilt","MDS NoFilt","SPA NoFilt"),
ylab ="Mantel Correlation", xlab ="Algorithms/Filtering Method",
main ="Mantel Correlation with Filtering Method"

)

boxplot(res6[,c(16,4,10,17,5,11,18,6,12)],col=c("grey ", "tomato", "roy alblue3","grey ","tomato", "roy alblue3","grey ", "tomato", "roy alblue3"),
names=c("PCA LD","MDS LD","SPA LD","PCA MAF","MDS MAF","SPA MAF","PCA NoFilt","MDS NoFilt","SPA NoFilt"),
ylab ="Procrustes Correlation", xlab ="Algorithms/Filtering Method",
main ="Procrustes Correlation with Filtering Method"

boxplot(res6[,c(11,3,7,12,4,8)],col=c("grey ", "tomato","roy alblue3","grey ", "tomato", "roy alblue3"),
names=c("PCA Equal","MDS Equal","SPA Equal","PCA Unequal","MDS Unequal","SPA Unequal"),
ylab ="Procrustes Correlation", xlab ="Algorithms/Individuals Sampling Method",
main ="Procrustes Correlation with Individuals Sampling Method"

)

wilcox.test(res6$pca_man_lId,res6$pca_man_maf,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res6$pca_man_ld,res6$pca_man_no,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res6$mds_man_Id,res6$mds_man_maf,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res6$mds_man_lId,res6$mds_man_no,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res6$spa_man_ld,res6$spa_man_maf,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res6$spa_man_ld,res6$spa_man_no,paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res6$pca_pro_ld,res6$pca_pro_maf,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res6$pca_pro_lId,res6$pca_pro_no,paired=TRUE,alternative="greater")$p.v alue
wilcox.test(res6$mds_pro_lId,res6$mds_pro_maf,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res6$mds_pro_Id,res6$mds_pro_no,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res6$spa_pro_ld,res6$spa_pro_maf,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res6$spa_pro_lId,res6$spa_pro_no,paired=TRUE,alternative="greater")$p.v alue

## CLUMPP on ADMIXTURE and SNMF

res7 <- read.table("c:/vic/pop/clumpp1.csv",header=TRUE,sep=";")

boxplot(res7[,c(1,4,2,5,3,6)],col=c("chartreuse4","orange2", "chartreuse4","orange2", "chartreuse4", "orange2"),
names=c("ADMIXTURE m=0.001","SNMF m=0.001","ADMIXTURE m=0.005","SNMF m=0.005","ADMIXTURE m=0.02","SNMF m=0.02"),
ylab ="G' CLUMPP Correlation", xlab ="Algorithms/Migration Rate", cex=0.7,
main ="CLUMPP [G'] Correlation of Model Based Algorithms with Migration Rate"

)

res8 <- read.table("c:/vic/pop/clumpp2.csv ", header=TRUE,sep=";")
boxplot(res8[,c(1,3,2,4)],col=c("chartreuse4","orange2","chartreuse4","orange2"),
names=c("ADMIXTURE 2D S.Stone","SNMF 2D S.Stone","ADMIXTURE Anisotropic","SNMF Anisotropic"),
ylab ="G' CLUMPP Correlation”, xlab ="Algorithms/Demographic Models", cex=0.7,
main ="CLUMPP [G'] Correlation of Model Based Algorithms with Demographic Models"
)

wilcox.test(res7$snmf_001,res7$adm_001,paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res7$snmf_005,res7$adm_005, paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res7$snmf_02,res7$adm_02, paired=TRUE,alternativ e="greater")$p.v alue

wilcox.test(res8%adm_ani,res8%adm_tss, paired=TRUE,alternativ e="greater")$p.v alue
wilcox.test(res8$snmf_ani,res8$snmf _tss,paired=TRUE,alternativ e="greater")$p.v alue
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