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Abstract We analyze the families of central configurations of the spatial 5-body problem
with four masses equal to 1 when the fifth mass m varies from 0 to +∞. In particular we
continue numerically, taking m as a parameter, the central configurations (which all are
symmetric) of the restricted spatial (4+ 1)-body problem with four equal masses and m = 0
to the spatial 5-body problem with equal masses (i.e. m = 1), and viceversa we continue
the symmetric central configurations of the spatial 5-body problem with five equal masses
to the restricted (4 + 1)-body problem with four equal masses. Additionally we continue
numerically the symmetric central configurations of the spatial 5-body problem with four
equal masses starting withm = 1 and ending inm = +∞, improving the results of Alvarez-
Ramírez et al. (Discrete Contin Dyn Syst Ser S 1: 505–518, 2008). We find four bifurcation
values of m where the number of central configuration changes. We note that the central
configurations of all continued families varying m from 0 to +∞ are symmetric.
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1 Introduction

A configuration of n bodies is central if the force due to acceleration on each body is
proportional to the position vector of the body with respect to the center of mass. Central
configurations are very important in the study of the n-body problem; for instance, they
allow to compute all the homographic solutions, every motion starting and ending in a total
collision is asymptotic to a central configuration, and every parabolic motion of the n bodies
is asymptotic to a central configuration (Saari and Hulkower 1981; Chenciner 1998). For the
3-body problem the set of central configurations is completely known, but the problem of
finding the central configurations when n > 3 is far to be completely solved. We only know
the entire set of central configurations in some particular cases where some of the masses are
equal or the configurations satisfy some geometrical properties.

The objective of this paper is to study the central configurations of the spatial 5-body
problem with four equal masses when the non equal mass varies from 0 to infinity. More
precisely, we will continue numerically all the symmetric central configurations of the spatial
5-body problem with the five masses equal to 1 to the restricted spatial (4+1)-body problem
with four masses equal to 1 and a fifth infinitesimal mass, and vice versa; that is, we vary
the non equal mass from 1 to 0, and viceversa. This study completes the one presented in
Alvarez-Ramírez et al. (2008) where the authors continue numerically the symmetric central
configurations from the spatial 5-body problemwith the fivemasses equal to 1 to the restricted
spatial (1+ 4)-body problem with four infinitesimal masses equal to m = 0 and a fifth mass
equal to 1. Note that the study in Alvarez-Ramírez et al. (2008) is equivalent to study the
symmetric central configurations of the 5-body problem with four masses equal to 1 varying
the fifth mass 1/m from 1 to infinity. This explains why the work of this paper completes
the study of Alvarez-Ramírez et al. (2008). Thus the work done in Alvarez-Ramírez et al.
(2008) and the one in the present paper provide a skeleton of the families of symmetric central
configurations of the spatial 5-body problem with four equal masses and their bifurcations.
The results that we have obtained are represented in Fig. 1. Each one of the families of classes
of central configurations which appear in Fig. 1 are described later on.

This paper is structured as follows, in Sect. 2 we provide the equations for the central
configurations of the spatial 5-body problem. In Sect. 3 we give a brief summary of the
known results on symmetric central configurations for the spatial 5-body problem with five
equal masses, we provide all the symmetric classes of central configurations of this problem
and the positions of a representative of each class. In Sect. 4 we give all the classes of central
configurations of the spatial restricted (4 + 1)-body problem with four equal masses and
one infinitesimal, and we also give a representative of each class. In Sect. 5 we continue
numerically the known families of central configurations from the spatial restricted (4+ 1)-
body problem with 4 equal masses to the spatial 5-body problem with equal masses, and vice
versa, taking one of the masses m as a parameter. The results that we obtain are summarized
in Sect. 6. In Sect. 7 we revisit and improve the work in Alvarez-Ramírez et al. (2008).

2 Equations of central configurations in the 5-body problem

The spatial 5-body problem is given by

mi q̈i = −
5∑

j=1
j �=i

G mi m j
qi − q j

r3i j
, i = 1, . . . , 5,
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On the central configurations in the spatial 5-body problem

m = 0 m = 1 m = +∞

mB = 1
mb

≈ 1.6771887

mA = 1
ma

≈ 1.06246712

mc ≈ 0.26449596

mf ≈ 0.66345045

Fig. 1 Connections between the families of classes of central configurations of the 5-body problem with four
equal masses when the non-equal mass goes from 0 to +∞. The four equal masses are represented by a small
black ball whereas the non-equal mass is represented by a circle
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M. Alvarez-Ramírez et al.

whereqi ∈ R
3 is the position vector of the bodywithmassmi in an inertial coordinate system,

ri j = |qi − q j | is the distance between the masses mi and m j , and G is the gravitational
constant which can be taken equal to one by scaling the time.

In these coordinates the configuration space of the spatial 5-body problem is

P = {
(q1, . . . ,q5) ∈ R

3n : qi �= q j , for i �= j
}
.

It is known that given m1, . . . ,m5 the configuration (q1, . . . ,q5) ∈ P is central if the
acceleration vector of each body is a common scalar multiple of its position vector (with
respect to the center of mass). That is, if there exists a positive constant λ such that

q̈i = −λ (qi − qm), i = 1, . . . , 5,

where

qm =
∑5

i=1 miqi∑5
i=1 mi

is the position vector of the center of mass of the system. In other words, the given configu-
ration (q1, . . . ,q5) ∈ P of the 5-body problem with positive masses m1, . . . ,m5 is central
if there exists λ such that (λ,q1, . . . ,q5) is a solution of the system

λ (qi − qm) =
5∑

j=1
j �=i

m j
qi − q j

r3i j
, i = 1, . . . , 5. (1)

We say that two central configurations belong to the same class if they are invariant under
rotations, scaling and permutations of the particles with equal masses.

We assume that the center of mass qm of the system is fixed at the origin of coordinates.
Then system (1) can be written as

fi = 0, i = 1, . . . , 5, (2)

where

fi =
5∑

j=1
j �=i

m j
qi − q j

r3i j
− λqi .

Since the center of mass is at the origin the following linear combination of the fi ’s

m1f1 + m2f2 + m3f3 + m4f4 + m5f5 = 0,

is satisfied. So, if the mass mi �= 0 then the vectorial function fi is a linear combination of
the other ones, and we can eliminate the equation fi = 0 from system (2).

Without loss of generality we can assume that the mass m1 is fixed at q1 = (0, 0, 1). We
also can fix x3 = 0, this avoids the rotation of the configuration except when the mass m3 is
located on the z-axis. In this last case, to avoid rotations we should fix a variable different
from x3. Moreover if mi �= 0 we can isolate (xi , yi , zi ) from the equation qm = 0. Thus,
assuming that m2 �= 0, we can fix the variables x2, y2 and z2 as follows

x2 = −m4x4 + m5x5
m2

, y2 = −m3y3 + m4y4 + m5y5
m2

,

z2 = −m1 + m3z3 + m4z4 + m5z5
m2

.
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On the central configurations in the spatial 5-body problem

On the other hand, from the third component of the vectorial equation f1 = 0 we get

λ = −
5∑

i=2

mi (zi − 1)
(
x2i + y2i + (zi − 1)2

)3/2 .

Therefore system (2) can be reduced to a set of eleven equations, denoted by ei for i =
1, . . . 11, and eight unknowns, namely, the position variables y3, z3, x4, y4, z4, x5, y5, z5.
Clearly these eleven equations are not all independent.

We note that if m2 = 0, then we can proceed in the same way by taking a mass mi �= 0
instead of m2 and we would arrive to a similar set of equations but with different unknowns.

In short the problem of finding the central configurations of the 5-body problem is reduced
to find the solutions of a system of eleven equations and eight unknowns.

3 Spatial central configurations in the 5-body problem with equal masses

Faugère and Kotsireas (1999), and Kotsireas and Lazard (2002) by using linear algebra and
Gröbner bases studied the central configurations of the spatial 5-body problem with equal
masses. In Faugère and Kotsireas (1999) the authors showed that a convex central configu-
ration of this problem has always a plane of symmetry, see also the Habilitation Thesis of
Albouy, section 3.4, first theorem, page 92 (Albouy 1997). In Kotsireas and Lazard (2002)
the authors classified the symmetric spatial central configurations with axial symmetry in
the 5-body problem with equal masses. In particular, they found four classes of central
configurations having an axis of symmetry, two convex and two concave (see Fig. 2), and
they conjectured that these are all the central configurations of the spatial 5-body problem
with equal masses. Alvarez-Ramírez et al. (2008) proved that if there are other central con-
figurations of the 5-body problem with equal masses they must be non-symmetric. Lee and
Santoprete (2009) used a computer algebra algorithm, which is devised to find all the isolated
solutions of a polynomial system, to find all the isolated central configurations of the 5-body
problem with equal masses. They did not find anything more than the central configurations
of Kotsireas and Lazard.

Next we describe these four classes of symmetric central configurations given in Kotsireas
and Lazard (2002), and we also give the positions qi and the mutual distances ri j for a
representative of each class in the variables that we are working, see Alvarez-Ramírez et al.
(2008) for more details. Without loss of generality we assume that m1 = m2 = m3 = m4 =
m5 = 1.

K1: (5 cc) Four masses located at the vertices of a regular tetrahedron and one mass located
at the barycenter, see Fig. 2a.

Positions: q1 = (0, 0, 1), q2 =
(

−
√

2
3 ,

√
2
3 ,− 1

3

)
, q3 =

(
0,− 2

√
2

3 ,− 1
3

)
,q4 =

(√
2
3 ,

√
2
3 ,− 1

3

)
, q5 = (0, 0, 0).

Mutual distances: r15 = r25 = r35 = r45 = 1, r12 = r13 = r14 = r23 = r24 = r34 =
2
√

2
3 = 1.6329931 . . ..

K2: (15 cc) Five masses located at the vertices of a regular pyramid having a square base,
see Fig. 2b.
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Fig. 2 Central configurations of
the spatial 5-body problem with
equal masses. a Class K1, b class
K3, c class K2, d class K4

m1

m2

m3

m4

m5

m1

m2

m3

m4

m5

m1

m2

m3

m4

m5

m1

m2

m3

m4

m5

(a)

(b) (d)

(c)

Positions: q1 = (0, 0, 1), q2 =
(
− 5

α
, 0,− 1

4

)
,q3 =

(
0,− 5

α
,− 1

4

)
,q4 =

(
5
α
, 0,− 1

4

)
,q5 =

(
0, 5

α
,− 1

4

)
, where

α =
√

64

(
2

7

)2/3
3
√
9 − 4

√
2 − 16.

Mutual distances: r12 = r13 = r14 = r15 = 1.5944855 . . ., r23 = r25 = r34 = r45 =
1.3999173 . . ., r24 = r35 = 1.9797821 . . ..

K3: (20 cc) Four masses located at the vertices of a regular pyramid having a base formed
by an equilateral triangle and a fifth mass on its axis of symmetry and in the interior of
the pyramid, see Fig. 2c.
Positions:

q1 = (0, 0, 1),q2 = (−0.71312666 . . . , 0.41172387 . . . ,−0.38049250 . . .),

q3 = (0,−0.82344774 . . . ,−0.38049250 . . .),

q4 = (0.71312666 . . . , 0.41172387 . . . ,−0.380492504 . . .),

q5 = (0, 0, 0.14147751 . . .).

Mutual distances: r12 = r13 = r14 = 1.6074283 . . . , r25 = r35 = r45 =
0.97494558 . . . , r15 = 0.85852248 . . . , r23 = r24 = r34 = 1.4262533 . . ..

K4: (10 cc) Three masses located at the vertices of an equilateral triangle and two masses
with symmetric positions on the axis orthogonal to the plane defined by the triangle
that passes through its barycenter, see Fig. 2d.
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On the central configurations in the spatial 5-body problem

Positions: q1 = (0, 0, 1),q2 = (−0.84812349 . . . , 0.48966432 . . . , 0),q3 = (0,−0.9
7932865 . . . , 0),q4 = (0.84812349 . . . , 0.48966432 . . . , 0),q5=(0, 0,−1).
Mutual distances: r12 = r13 = r14 = r25 = r35 = r45 = 1.3996730 . . . , r15 =
2, r23 = r24 = r34 = 1.6962469 . . ..

4 Central configuration in the restricted spatial (4+ 1)-body problem
with four equal masses

The restricted (4 + 1)-body problem is a particular case of the 5-body problem with 4 equal
masses plus an infinitesimal mass, where the four particles with positive masses are disposed
in a central configuration. From now on, when we say the spatial (4 + 1)-body problem we
mean the restricted spatial (4 + 1)-body problem.

It is known that the planar 4-body problem with equal masses has three different classes
of central configurations. These consist of a square, an equilateral triangle with one mass
at its barycenter, and an isosceles triangle with another mass on its axis of symmetry, see
Albouy (1995). However, there exists a unique class of spatial central configurations of the
4-body problem given by the regular tetrahedron, see for instance Lehmann-Filhés (1891).

In the following subsections we shall discuss the central configurations of the spatial
(4+1)-body problem for each class of central configurations of the planar and spatial 4-body
problem with equal masses.

4.1 Central configurations of the (4+ 1)-body problem with four masses
at the vertices of a regular tetrahedron

Santos (2004) proved that all central configurations of the (4 + 1)-body problem with the
four positive equal masses forming a regular tetrahedron have either two planes of sym-
metry (planar type symmetry), or one axis of symmetry (axis type symmetry). Using these
symmetries he found the central configurations of the problem, in particular, he proved that
there are 25 central configurations of which 12 are non-convex. Later, Tsai (2012) found
the same result using Gröebner bases. These 25 central configurations provide 6 different
classes of central configurations. Leandro (2008) gives a different proof of the fact that the
spatial central configurations of the restricted (4 + 1)-body problem with equal masses are
symmetric.

Next we describe these 6 classes and we give the positions qi and the mutual distances
ri j for a representative of each class in the variables that we are working, see Santos (2004)
for more details.

We will assume that m1 = · · · = m4 = 1 and that the positions of the vertices of

the tetrahedron are q1 = (0, 0, 1), q2 = (−
√

2
3 ,

√
2
3 ,− 1

3 ), q3 = (0,− 2
√
2

3 ,− 1
3 ),q4 =

(

√
2
3 ,

√
2
3 ,− 1

3 ). Then we have the following mutual distances

r12 = r13 = r14 = r23 = r24 = r34 = 2

√
2

3
.

(Tb) Axis and planar type symmetry simultaneously: (1 cc) The infinitesimal mass is
located at the barycenter of the tetrahedron; that is, q5 = (0, 0, 0) (see Fig. 3).
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Fig. 3 Central configurations of
the spatial (4 + 1)-body problem
with four equal masses at the
vertices of a regular tetrahedron.
a Axis type symmetry, b planar
type symmetry

m1

m2

m3

m4

Tb

Ta,1

Ta,2

Ta,3

m1

m2

m3

m4

Tb
Tp,1

Tp,2

Tp,3

Tp,4

(a) (b)

Mutual distances: r15 = r25 = r35 = r45 = 1.

(Ta) Axis type symmetry: (12 cc) The infinitesimal mass is located on the line that passes
through a vertex and the barycenter of the tetrahedron, see Fig. 3a.

Ta,1: (4 cc) Position of m5: q5 = (0, 0, 1.889991 . . .)

Mutual distances: r15 = 0.88999157 . . . , r25 = r35 = r45 = 2.14149663 . . ..
Ta,2: (4 cc) Position of m5: q5 = (0, 0,−1.3981650 . . .)

Mutual distances: r15 = 2.3981650 . . . , r25 = r35 = r45 = 1.4222360 . . . .

Ta,3: (4 cc) Position of m5: q5 = (0, 0,−0.1529969 . . .)

Mutual distances: r15 = 1.1529969 . . . , r25 = r35 = r45 = 0.95990109 . . . .

(Tp) Planar type symmetry: (12 cc) The infinitesimal mass is located on an edge bisector
line passing through the barycenter of the tetrahedron, see Fig. 3b.

Tp,1: (6 cc)
Position of m5: q5 = (0.29790401 . . . ,−0.17193722 . . . ,−0.24315596 . . .)

Mutual distances: r15 = r25 = 1.2898396 . . . , r35 = r45 = 0.83130171 . . ..
Tp,3: (6 cc)

Position of m5: q5 = (1.0542556 . . . ,−0.60867481 . . . ,−0.86079617 . . .)

Mutual distances: r15 = r25 = 2.2236237 . . . , r35 = r45 = 1.2252827 . . . .

We note that the central configurations Tp,2 and Tp,4 which appear in Fig. 3b belong to the
classes Tp,1 and Tp,3 respectively.

4.2 Central configurations of the spatial (4+ 1)-body problem with four masses
at the vertices of a planar central configuration of the 4-body problem

Here we provide the coordinates of the bodies for central configurations in the spatial (4+1)-
body problem with four coplanar equal masses in a central configuration of the 4-body
problem. Also, we show the uniqueness (up to rotations and scalings) of this kind of central
configurations.
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On the central configurations in the spatial 5-body problem

4.2.1 Central configurations of the spatial (4 + 1)-body problem with the four equal
masses at the vertices of a square

Fayçal (1996) proved the following result for the pyramidal central configurations of the
5-body problem with a square base. Recall that here a pyramidal central configuration of
the 5-body problem means a configuration with four coplanar bodies and a fifth being off the
plane.

Theorem 1 (Theorem 4.1 in Fayçal 1996) There exists a unique pyramidal central config-
uration with a square base, the one of mutual distances

r12 = r23 = r34 = r14 = 1, r13 = r24 = √
2,

ri5 = 2
3
√
4 + √

2
, i = 1, . . . , 4, (3)

where the masses on the base m1, m2, m3 and m4 are equal, and the mass at the top vertex
m5 is arbitrary.

Sincem5 is arbitrary, form5 = 0 we have the following for the spatial (4+1)-body problem.

Corollary 1 There exists a unique (up to rotations and scalings) central configuration of the
spatial (4+ 1)-body problem with four equal masses m1 = m2 = m3 = m4 = 1 in a square
and the fifth mass, which is infinitesimal, being off the plane formed by the first four, it is the
one with the mutual distances given by (3); or equivalently, the one with positions

q1 =
(
1

2
,−1

2
, 0

)
, q2 =

(
1

2
,
1

2
, 0

)
, q3 =

(
−1

2
,
1

2
, 0

)
,

q4 =
(

−1

2
,−1

2
, 0

)
, q5 =

⎛

⎝0, 0,

√

2

(
2

7

)2/3
3
√
9 − 4

√
2 − 1

2

⎞

⎠ .

4.2.2 Central configurations of the spatial (4 + 1)-body problem with the coplanar
equal masses at the vertices of an equilateral triangle with one mass in its
barycenter

In a recent work Santos and Vidal (2007) proved for the central configurations of the spatial
(4 + 1)-body problem that when four equal masses are at the vertices of an equilateral
triangle with a mass at the barycenter, the infinitesimal mass must be on a plane of symmetry.
In particular, naming the masses in such a way that m1, m2, and m3 are at the vertices of
the triangle, m4 is at the barycenter and m5 is the infinitesimal mass, they proved that the
mutual distances should satisfy either r15 = r25, or r25 = r35, or r15 = r35. However, they
do not compute these mutual distances and they do not prove the uniqueness of these classes
of central configurations. Since we cannot find in the literature these computations we have
calculated them in what follows.

From Theorem 2 in Bang and Elmabsout (2003) we know that the gravitational field
generated at the point q by n equal masses at the vertices of and n-gon is directed towards the
centre of the n-gon if and only if q belongs to an axis of symmetry of the n-gon, or to the axis
orthogonal to the plane defined by the n-gon that passes through its center. Clearly if there is a
mass in the center of the n-gon the result remains valid. Thismeans that the infinitesimalmass
of the spatial (4+1)-body problem, when three of the four equal masses are at the vertices of
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an equilateral triangle and the fourth one is at its barycenter, should be placed on the straight
line orthogonal to the plane defined by the triangle that passes through its barycenter.

To compute those central configurations, the most convenient equations are the Dziobek–
Laura–Andoyer equations (see for instance Hampton and Santoprete 2007 and the references
therein)

fi jh =
∑

k �=i, j,h

mk(Rik − R jk)Δi jhk = 0. (4)

Here Ri j = 1/r3i j and Δi jhk = (qi − q j ) ∧ (q j − qh) · (qh − qk) is six times the signed
volume of the tetrahedron formed by mi , m j , mh and mk . Clearly Ri j = R ji . Moreover if
P(i, j, h, k) is a permutation of the indices i, j, h, k, then ΔP(i, j,h,k) = sign(P)Δi jhk where
sign(P) is the sign of the permutation. In particular fi jh = f j ih . Note that in these equations
Δ1234 = 0 because m1,m2,m3,m4 are assumed to be coplanar.

We assume that the masses are m1 = m2 = m3 = m4 = 1, m5 = 0 and that their vector
positions are q1 = (1, 0, 0), q2 = (− 1

2 ,
√
3
2 , 0), q3 = (− 1

2 ,−
√
3
2 , 0), q4 = (0, 0, 0) and

q5 = (0, 0, z). It is easy to check that the following relations are satisfied

r12 = r23 = r13 = √
3, r14 = r24 = r34 = 1, r15 = r25 = r35.

Moreover using the symmetry given by the Bang-Elmabsout result and the fact that the
volume of a pyramid is the product of the area of the base by the height divided by three, we
have the following relations

Δ1245 = −Δ1345 = Δ2345.

By substituting these values into system (4), it becomes equivalent to the equation

f152 = Δ1235

(
R15 − 1

3
√
3

)
+ Δ2345(R45 − 1) = 0.

Therefore

R15 = −Δ2345

Δ1235
(R45 − 1) + 1

3
√
3
. (5)

On the other hand it is easy to check that r15 =
√
1 + z25 and r45 = z5. Moreover

Δ1235 = −3
√
3 z5/2 andΔ2345 = −√

3 z5/2. Then from the relation (5) we get the equation

h = 1

9

(
3

z35
+ 9

(
z25 + 1

)3/2 − √
3 − 3

)
= 0. (6)

Here we have assumed that z5 > 0, but this is not restrictive. It is easy to check that

d h

d z5
= − 1

z45
− 3z5

(
z25 + 1

)5/2 < 0,

for all z5 > 0. Moreover h is continuous for z5 ∈ (0,+∞), lim
z5→0+ h = +∞ and

lim
z5→+∞ h = (−√

3 − 3)/9. Therefore Eq. (6) has a unique real solution with z5 > 0, which

can be found numerically and it is given by

z5 = 1.1264766 . . .

In short we have the following result.
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On the central configurations in the spatial 5-body problem

Theorem 2 There exists a unique class of central configurations of the spatial (4+ 1)-body
problem with four coplanar equal masses, three at the vertices of an equilateral triangle and
the fourth at its barycenter. A representative of this class is

q1 = (1, 0, 0), q2 =
(

−1

2
,

√
3

2
, 0

)
, q3 =

(
−1

2
,−

√
3

2
, 0

)
, q4 = (0, 0, 0),

q5 = (0, 0, 1.1264766 . . .) .

4.2.3 Central configurations of the spatial (4 + 1)-body problem with the coplanar
equal masses at the vertices of an isosceles triangle with one mass on the axis
of symmetry

The configuration of the 4-body problemwith three equalmasses at the vertices of an isosceles
triangle with another equal mass on its axis of symmetry is well known, see Albouy (1995);
Llibre (1976). From Llibre (1976) we know that if the base of the nonequal side of the
triangle is 2, then the height of the triangle is 1.81723939472383 . . . and the fourth mass is
at a distance from the base equal to 0.6503784729520659 . . ..

Assume that m1 = m2 = m3 = m4 = 1 and that the positions of the masses are
q1 = (−1/2,−a, 0), q2 = (1/2,−a, 0), q3 = (0, c, 0) and q4 = (0, b, 0). Since the center
of mass is fixed at the origin of coordinates b = 2a − c. Then from Llibre (1976) we have
that

(a, c) = (a∗, c∗) = (0.3084522 . . . , 0.6001674 . . .).

Nowwe find the central configurations of the spatial (4+1)-body problemwith 4masses equal
to 1 at q1 = (−1/2,−a∗, 0), q2 = (1/2,−a∗, 0), q3 = (0, c∗, 0) and q4 = (0, 2a∗ − c∗, 0)
and an infinitesimal mass at q5 = (x5, y5, z5). Clearly,

r12 = 1, r13 = r23, r14 = r24,

and Δ1234 = 0. By using the symmetry of the isosceles triangle of the base of the pyramid
and the fact that the volume of a pyramid is the product of the area of the base by the height
divided by three, we get Δ1345 = −Δ2345. Then

f354 = Δ2345(R15 − R25) = 0,

so R15 = R25 because Δ2345 �= 0. Substituting these conditions to (4) we get the system

f1 = Δ1235(1 − R23) − Δ2345(R34 − R24) = 0,
f2 = Δ1245(1 − R24) − Δ2345(R23 − R34) = 0,
f3 = Δ1235(R23 − R35) + Δ1245(R24 − R45) = 0,
f4 = Δ1235(R15 − 1) − Δ2345(R24 − R45) = 0,
f5 = Δ1245(R15 − 1) − Δ2345(R35 − R23) = 0.

(7)

It is easy to check, by substituting the values of qi , that the first two equations of (7) are
always satisfied.
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From condition R25 = R15 we get x5 = 0. After some computations we get

Δ1235 = −(a∗ + c∗)z5, Δ1245 = (−3a∗ + c∗)z5, Δ2345 = (a∗ − c∗)z5,

R23 = 1
(
(a∗ + c∗)2 + 1/4

)3/2 , R24 = 1
(
(c∗ − 3a∗)2 + 1

4

)3/2 ,

R34 = 1

(2(c∗ − a∗))3
, R15 = 1

r315
= 1

((a∗ + y5)2 + z25 + 1/4)3/2
,

R35 = 1

r335
= 1

((c∗ − y5)2 + z25)
3/2

, R45 = 1

r345
= 1

((2a∗ − c∗ − y5)2 + z25)
3/2

.

Since we are not interested in the solutions of (7) with z5 = 0, we can consider the system
of equations f 3 = f3/z5 = 0, and f 4 = f4/z5 = 0, where

f 3(y5, z5) = −(a∗ + c∗)R23 − (3a∗ − c∗)R24 + a∗ + c∗

r335
+ 3a∗ − c∗

r345
,

f 4(y5, z5) = a∗ + c∗ − (a∗ − c∗)R24 − a∗ + c∗

r315
+ a∗ − c∗

r345
= 0.

We note that a∗ + c∗ > 0, a∗ − c∗ < 0 and 3a∗ − c∗ > 0.
Next we analyze the functions f 3 and f 4. Notice that r15 is always different from zero

r35 = 0 when (y5, z5) = (c∗, 0) and r45 = 0 when (y5, z5) = (2a∗ − c∗, 0).
It is easy to check that the analytic function f 4 is defined in D4 = R

2 \ {(2a∗ − c∗, 0)},
that it has no critical points, and that lim(y5,z5)→(2a−c,0) f 4(y5, z5) = −∞. Therefore all the
level curves of f 4 consist of a unique single closed curve. Since a

∗+c∗ > 0 and a∗−c∗ < 0,
f 4(y5, z5) < a∗ + c∗ − (a∗ − c∗)R24 = 2.283438 . . . for all (y5, z5) ∈ D, then we can
assure that the level curve f 4(y5, z5) = 0 is a single closed curve surrounding the point
(2a∗ − c∗, 0).

The function f 3 is analytic in D3 = R
2 \ {(2a∗ − c∗, 0) ∪ (c∗, 0)} and it satisfies that

f 3(y5, z5) > −(a∗ + c∗)R23 − (3a∗ − c∗)R24 = −2.3471168 . . . for all (y5, z5) ∈ D3.
Moreover lim(y5,z5)→(2a∗−c∗,0) f 3(y5, z5) = +∞ and lim(y5,z5)→(c∗,0) f 3(y5, z5) = +∞.
Then the level curves f 3(y5, z5) = K for K sufficiently large consist of two closed curves,
one surrounding the point (2a∗ − c∗, 0) and the other one surrounding the point (c∗, 0),
because the function f 3 has a unique critical point α = (0.27118903 . . . , 0) which is a
saddle with f 3

∣∣
(y5,z5)=α

= β = 42.911529 . . .. More precisely, the curves f 3(y5, z5) = K
for K > β consist of two closed curves that join in a single curve with two loops when
K = β, and became a single closed curve when K < β. Since f 3(y5, z5) > −2.3471168 . . .

for all (y5, z5) ∈ D3 we can assure that the level curve f 3(y5, z5) = 0 is a single closed
curve surrounding the points (2a∗ − c∗, 0) and (c∗, 0).

In short, we have proved that each of the level curves f 3(y5, z5) = 0 and f 4(y5, z5) = 0
consist of a single closed curve.We plot these two closed curves with the help ofMathematica
in Fig. 4. We see that they intersect at two points which are symmetric with respect to the y5
axis. We compute them numerically and we get

(y5, z5) = (−0.0030046492 . . . ,±0.66658830 . . .).

These solutions satisfy the remaining equation f5 = 0 so they provide spatial central configu-
rations of the (4+1)-body problemwith four equal masses. Notice that, due to the symmetry,
these solutions belong to the same class.

This provides proof of the following numerical result.
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Fig. 4 The level curves
f 3(y5, z5) = 0 (continuous line)
and f 4(y5, z5) = 0 (dashed line)

2 1 0 1 2
y5

1.5

1.0

0.5

0.0

0.5

1.0

1.5

z 5

Result 1 We have a unique class of spatial central configurations of the (4 + 1)-body
problem with the four equal masses in a central configuration of the 4-body problem
with three masses m1, m2, m3 at the vertices of an isosceles triangle and one mass
m4 on its axis of symmetry. A representative of this class is the configuration given
q1 = (−1/2,−a∗, 0), q2 = (1/2,−a∗, 0), q3 = (0, c∗, 0) and q4 = (0, 2a∗ − c∗, 0)
and q5 = (0,−0.0030046492 . . . , 0.66658830 . . .).

4.2.4 Summary of results

Next we give the positions qi and the mutual distances ri j for a representative of each class
of central configurations of the spatial (4 + 1)-body problem with four equal masses in a
coplanar central configurations satisfying the assumptions on qi made in Sect. 2. We also
assume that m1 = · · · = m4 = 1.

Ps : (6 cc) The four equal masses are located at the vertices of a square and the infinitesimal
mass at the straight line passing through the barycenter of the square and perpendicular
to it, see Fig. 5a.
Positions: q1 = (0, 0, 1),q2 = (1, 0, 0),q3 = (0, 0,−1),q4 = (−1, 0, 0),q5 =
(0,

√
−1 + 4

( 2
7

)2/3 3
√
9 − 4

√
2, 0).

Mutual distances: r12 = r14 = r23 = r34 = √
2 = 1.4142135 . . . , r13 = r24 =

2, r15 = r25 = r35 = r45 = 2 3

√
2
7

(
2
√
2 − 1

)
= 1.6107687 . . ..

Recall that in all configurations we have assumed that q1 = (0, 0, 1) and that x3 = 0
(see Sect. 2). For this particular configuration, these conditions are satisfied only when
themassm3 is located on the z-axis. So in this case to avoid rotations of the configuration
we should fix for instance y4 = 0 instead of x3 = 0.

Pet : (24 cc) Three masses are located at the vertices of an equilateral triangle with one
mass at its barycenter and the infinitesimal mass at the straight line passing through the
barycenter of the triangle and perpendicular to it, see Fig. 5b.
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Fig. 5 Central configurations of
the spatial (4 + 1)-body problem
with four equal masses at the
vertices of a planar central
configuration. a Class Ps , b class
Pet , c class Pit m1

m2

m3

m4

m5

m1

m2

m3m4

m5

m1 m2

m3

m4

m5

(a) (b) (c)

Positions:q1 = (0, 0, 1),q2 = (0,−
√
3
2 ,− 1

2 ),q3 = (0,
√
3
2 ,− 1

2 ),q4 = (0, 0, 0),q5 =
(1.1264766 . . . , 0, 0).
Mutual distances: r12 = r13 = r23 = √

3 = 1.7320508 . . . , r14 = r24 = r34 =
1, r15 = r25 = r35 = 1.5063032, r45 = 1.1264766 . . ..

Pit : (24 cc) Three masses located at the vertices of an isosceles triangle with one mass on
its axis of symmetry and the infinitesimal mass on the plane perpendicular to the plane
of the triangle that contains its axis of symmetry, see Fig. 5c.
Positions: q1 = (0, 0, 1),q2 = (0,−0.89369458 . . . ,−0.44867581 . . .),q3 =
(0, 0.024246491 . . . ,−0.014957768 . . .),q4 = (0, 0.86944809 . . . ,−0.53636641 . . .),

q5 = (−1.1346405 . . . ,−0.0043527627 . . . , 0.0026852387 . . .).
Mutual distances: r12 = 1.7021608 . . . , r13 = r23 = 1.0152473 . . . , r14 =
r24 = 1.7653219 . . . , r34 = 0.99309250 . . . , r15 = r25 = 1.5106504 . . . , r35 =
1.1351380 . . . ,

r45 = 1.5302005 . . ..

5 Analytic continuation of the central configurations

In this section we continue numerically the families of central configurations from the spatial
(4+ 1)-body problem with 4 equal masses to the spatial 5-body problem with equal masses,
and vice versa considering one of the masses m as a parameter. In Sect. 2, assuming that
m2 �= 0, we have reduced the equations of central configurations to a set of eleven equations
ei = 0 with i = 1, . . . , 11 and eight unknowns, namely y3, z3, x4, y4, z4, x5, y5, z5. So we
should find numerically the solutions of that set of eleven equations as m varies from 0 to 1
or vice versa.

Let

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂e1
∂y3

∂e1
∂z3

∂e1
∂x4

∂e1
∂y4

∂e1
∂z4

∂e1
∂x5

∂e1
∂y5

∂e1
∂z5

∂e2
∂y3

∂e2
∂z3

∂e2
∂x4

∂e2
∂y4

∂e2
∂z4

∂e2
∂x5

∂e2
∂y5

∂e2
∂z5

. . . . . . . . . . . . . . . . . . . . . . . .

∂e11
∂y3

∂e11
∂z3

∂e11
∂x4

∂e11
∂y4

∂e11
∂z4

∂e11
∂x5

∂e11
∂y5

∂e11
∂z5

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We say that a central configuration given by z0 = (y03 , z
0
3, x

0
4 , y

0
4 , z

0
4, x

0
5 , y

0
5 , z

0
5) for a fixed

value ofm = m0 is degenerate if the rank of the matrix M is not maximal atm0 and z0. From
the Implicit Function Theorem every non-degenerate central configuration can be continued
to a unique family of central configurations as the parameter m varies. As a consequence of
the Implicit Function Theorem, the number of central configurations can only change if the
degeneracy condition is fulfilled.
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Table 1 For each representative of the classes of central configurations given in Sect. 3 and 4, except for the
class Ps , we provide the values of the minors of order 8 different from zero, and the equations that we have
used for computing these minors

Configuration |Mesi
| Equations esi

K1 −3.8792768 . . .

e1, e2, e3, e4, e5, e6, e8, e11

K2 −0.22353716 . . .
K3 106.13353 . . .
K4 0.38988999 . . .
Tb 0.18040672 . . .
Ta,1 0.41952832 . . .
Ta,2 0.099424864 . . .
Ta,3 −0.59862385 . . .
Tp,1 5.27579804 . . .
Tp,3 −0.13695605 . . .
Pet −0.080517418 . . .

e1, e4, e5, e6, e7, e8, e9, e11Pit −0.01076149028 . . .

In order to continue the central configurations from the (4+1)-body problem to the 5-body
problem or vice versa, we have used the followingmethodology. First, for each representative
of the classes of central configurations given in Sect. 3 and 4, we choose a subset of eight
equations esi = 0 with si ∈ {1, . . . , 11} for i = 1, . . . , 8 such that the associated minor of
order 8 of the matrix M , denoted by |Mesi |, evaluated on that representative does not vanish
(see Table 1). This can be done for all the classes except Ps because the matrix M evaluated
at the representative of the class Ps has rank 7. This is due to the fact that the representative
of the class Ps satisfying conditions q1 = (0, 0, 1) and x3 = 0 has the mass m3 on the
z-axis. Thus any rotation of this configuration satisfies also conditions q1 = (0, 0, 1) and
x3 = 0 and consequently it provides a solution of system esi = 0 making the configuration
degenerate. In this case, we will avoid this degeneracy by working with the new system of
equations ẽi = 0 instead of ei = 0, where the new equations ẽi are computed as in Sect. 2
but fixing the variable y4 = 0 instead of x3 = 0. The new Jacobian Matrix M̃ evaluated at
the representative of the class Ps has rank 8. In particular, the subset of equations ẽ1, ẽ3, ẽ4,
ẽ5, ẽ8, ẽ9, ẽ10, ẽ11 has an associated determinant |Mẽsi | equal to 0.13603300 . . . �= 0.

Once chosen the appropriate subset of equations esi = 0 we continue numerically the
solution of the system esi = 0 fromm = 0 (respectivelym = 1), either tom = 1 (respectively
m = 0), or to a value m∗ such that the determinant |Mesi

| evaluated at the corresponding
solution becomes 0. The continuation method is based in the Newton’s algorithm for finding
zeros of a vectorial function. We must take some care for finding the values m∗ according to
the parity of the multiplicity of the zeros of |Mesi

|. Later on we will specify this parity for
the different zeros of the determinant at m∗.

Finally we check that the solutions of the system esi = 0 that we have obtained satisfy
the remaining three equations ei . In the following we describe the results obtained.

5.1 Continuation from the (4+ 1)-body problem to the 5-body problem

Tb: The representative of the class Tb can be continued up to m = mc with mc =
10368+1701

√
6

54952 = 0.26449596 . . . through the family of central configurations with
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q1(m) = qc1 = (0, 0, 1), q2(m) = qc2 = (−
√

2
3 ,

√
2
3 ,− 1

3 ),q3(m) = qc3 =
(0,− 2

√
2

3 ,− 1
3 ),q4(m) = qc4 = (

√
2
3 ,

√
2
3 ,− 1

3 ), and q5(m) = qc5 = (0, 0, 0) which
consists of a regular tetrahedron with four masses equal to 1 and the variable mass at
its barycenter. The valuemc corresponds to the degenerate central configuration found
by Schmidt (1988) and Santos (2004). The parity of mc as a zero of |Mesi

| is odd.
From now on we will denote by qc the degenerate configuration with (q1,q2,q3,
q4,q5) = (qc1,q

c
2,q

c
3,q

c
4,q

c
5) and m = mc.

Ta,1: The representative of the class Ta,1 can be continued to a family that ends whenm = 1
at a central configuration of mutual distances

r12 = r13 = r14 = α(0.97494558 . . .), r23 = r24 = r34 = α(1.4262533 . . .),

r25 = r35 = r45 = α(1.6074283 . . .), r15 = α(0.85852248 . . .),

where α = 7.0682611 . . .. This configuration corresponds to the representative of class
K3 scaled by a factorα andwith the positions of themassesm1 andm5 interchanged.All
the configurations of this family satisfy the symmetry r12 = r13 = r14, r23 = r24 = r34,
r25 = r35 = r45.

Ta,2: The representative of the class Ta,2 can be continued to a family that ends whenm = 1
at a central configuration of mutual distances

r12 = r13 = r14 = r25 = r35 = r45 = 1.3999673 . . . , r15 = 2,
r23 = r24 = r34 = 1.6962469 . . . .

This configuration corresponds to the representative of class K4. All the configurations
of this family satisfy the symmetry r12 = r13 = r14, r23 = r24 = r34, r25 = r35 = r45.

Ta,3: The representative of the class Ta,3 can be continued to a family that ends at the
degenerate configuration qc. Here the parity of mc as zero of |Mesi

| is even. All the
configurations of this family satisfy the symmetry r12 = r13 = r14, r23 = r24 = r34,
r25 = r35 = r45.

Tp,1: The representative of the class Tp,1 can be continued to a family that ends at the degen-
erate configuration qc. The parity of mc as zero of |Mesi

| is odd. All the configurations
of this family satisfy the symmetry r13 = r14 = r23 = r24, r15 = r25, r35 = r45.

Tp,3: The representative of the classTp,3 can be continued to a family that ends at a degenerate
configuration with m = m f = 0.66345045 . . . and with position vectors

q1 = q f
1 = (0, 0, 1),

q2 = q f
2 = (−0.89217754 . . . , 0.12568104 . . . ,−0.43384732 . . .),

q3 = q f
3 = (0,−0.99969077 . . . ,−0.087625913 . . .),

q4 = q f
4 = (0.27617240 . . . , 0.96078637 . . . ,−0.087625913 . . .),

q5 = q f
5 = (0.92848703 . . . ,−0.13079596 . . . ,−0.58919373 . . .),

see Fig. 6. The corresponding mutual distances are

r13 = r14 = r23 = r24 = 1.47726496 . . . , r15 = r25 = 1.84519172 . . . ,

r35 = r45 = 1.36698085 . . . , r12 = 1.69342689 . . . ,

r34 = 1.97983379 . . . .

The parity of m f as zero of |Mesi
| is odd. All the configurations of this family satisfy

the symmetry r13 = r14 = r23 = r24, r15 = r25, r35 = r45.
From now on we will denote by q f the class of degenerate central configurations with

representative (q1,q2,q3, q4,q5) = (q f
1 ,q f

2 ,q f
3 ,q f

4 ,q f
5 ) and m = m f .
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Fig. 6 Configuration q f
corresponding to m = m f

m1

m2

m3

m4

m5

Notice that the bifurcation pointm f shows a bifurcation inside the set of convex spatial
central configurations, while it is conjectured that in the planar 4-body problem there
is no bifurcation inside the set of convex planar central configurations, see for instance
Albouy and Fu (2007).

Ps : The representative of the class Ps can be continued to a family ending at m = 1 with
the configuration of mutual distances

r12 = r14 = r23 = r34 = α(1.39991735 . . .), r13 = r24 = α(1.97978210 . . .),

r15 = r25 = r35 = r45 = α(1.59448559 . . .),

with α = 0.97945856 . . .. This configuration corresponds to the representative of the
class K2 scaled by the factor α and with the masses m1 and m5 interchanged. We note
that the central configurations of this family for all the values of m between 0 and 1
correspond to the pyramidal configuration provided by Fayçal (see Theorem 1). The
changes in the size of the configuration as m varies are due to the fact that the position
ofm1 is fixed at (0, 0, 1) and also to the fact that the center of mass of the configuration
is fixed at the origin.

Pet : The representative of the class Pet can be continued to a family ending at m = 1 with
the configuration of mutual distances

r12 = r13 = r15 = r23 = r25 = r35 = 1.63299316 . . . ,

r14 = r24 = r34 = r45 = 1.

This configuration corresponds to the representative of the class K1 with the masses
m4 and m5 interchanged. All the configurations of this family satisfy the symmetry
r12 = r13 = r23, r14 = r24 = r34, r15 = r25 = r35.

Pit : The representative of the class Pit can be continued to a family ending at m = 1 with
the configuration of mutual distances

r12 = r15 = r25 = α(1.42625333 . . .), r13 = r23 = r35 = α(0.97494558 . . .),

r14 = r24 = r45 = α(1.60742830 . . .), r34 = α(0.85852248 . . .),

with α = 1.10240737 . . .. This configuration corresponds to the representative of the
class K3 by interchanging the masses m1 and m4 and the masses m3 and m5. All the
configurations of this family satisfy the symmetry r13 = r23, r14 = r24, r15 = r25.
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5.2 Continuation from the 5-body problem to the (4+ 1)-body problem

Weonly analyze the continuation of the representatives of the classes of central configurations
Ki that can provide different classes of central configurations of the 5-body problem with 4
equal masses. Since all the central configurations Ki are non-degenerate, from the Implicit
Function Theorem, each central configuration can be continued to a unique family of central
configurations. So the families that have already been obtained in Sect. 5.1 from continuation
of central configurations of the (4 + 1)-body problem are not described here.

5.2.1 Continuation from the class K1

Due to the symmetry of the configuration it is sufficient to analyze the families withm5 → 0
and m1 → 0.

– (m5 → 0) The representative of the class K1 can be continued to a family that ends
at the degenerate configuration qc. The parity of mc as zero of |Mesi

| is odd. All the
configurations of this family consists of a regular tetrahedron with four masses equal to
1 and the variable mass at its barycenter.

– (m1 → 0) The representative of the class K1 can be continued to a family ending at
m1 = 0 with a representative of the class Pet (see Sect. 5.1).

5.2.2 Continuation from the class K2

Due to the symmetry of the configuration it is sufficient to analyze the families withm5 → 0
and m1 → 0.

– (m5 → 0) The representative of the class K2 can be continued to a family that ends at a
representative of the degenerate class q f . The parity of m f as zero of |Mesi

| is odd. All
the configurations of this family satisfy the symmetry r12 = r14, r23 = r34 = r25 = r45.

– (m1 → 0) The representative of the class K2 can be continued to a family ending at
m1 = 0 with a representative of the class Ps (see Sect. 5.1).

5.2.3 Continuation from the class K3

In this case we should analyze the families with m5 → 0, m1 → 0 and m3 → 0.

– (m5 → 0) The representative of the class K3 can be continued to a family that ends at
the degenerate configuration qc. Here the parity of mc as zero of |Mesi

| is even. All the
configurations of this family satisfy the symmetry r12 = r13 = r14, r23 = r24 = r34,
r25 = r35 = r45.

– (m1 → 0) The representative of the class K3 can be continued to a family ending at
m1 = 0 with a representative of the class Ta,1 (see Sect. 5.1).

– (m3 → 0) The representative of the class K3 can be continued to a family ending at
m3 = 0 with a representative of the class Pit (see Sect. 5.1).

5.2.4 Continuation form the class K4

Due to the symmetry of the configuration it is sufficient to analyze the families withm5 → 0
and m3 → 0.
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– (m5 → 0) The representative of the class K4 can be continued to a family ending at
m5 = 0 with a representative of the class Ta,2 (see Sect. 5.1).

– (m3 → 0) The representative of the class K4 can be continued to a family that ends at a
representative of the degenerate class q f . The parity of m f as zero of |Mesi

| is odd. All
the configurations of this family satisfy the symmetry r12 = r14 = r25 = r45, r13 = r35,
r23 = r34.

6 Summary of the main results

We have proved in Sect. 5 that all the central configurations of the spatial (4 + 1)-body
problemwith 4 equalmasses and all the symmetric central configurations of the spatial 5-body
problem with equal masses are non-degenerate. Applying the Implicit Function Theorem we
can guarantee that there is a unique family of central configurations parameterized by the
nonequal mass m emanating from each non-degenerate configuration. In short we have the
following result.

Theorem 3 The following statements hold.

(a) Let q0 be a central configuration of the spatial (4 + 1)-body problem with four equal
masses in a central configuration of the 4-body problem. Then, for m > 0 sufficiently
small, the central configuration q0 can be analytically continued to a unique family of
central configurations of the 5-body problem with four masses equal to one and the fifth
mass equal to m.

(b) Let q1 be a symmetric central configuration of the spatial 5-body problem with five
masses equal to one. Then, for ε sufficiently small, and for each choice of the mass
mi , the central configuration q1 can be analytically continued to a unique family qm of
central configurations of the 5-body problem with four masses equal to 1 and the fifth
mass mi = 1 − ε.

We emphasize that to complete the description of the spatial central configurations of the
5-body problem with four masses equal to one and the fifth mass varying in [0, 1] that come
from central configurations of the spatial (4 + 1)-body problem with four equal masses it is
sufficient to consider the families of central configurations that are different up to rotations
and scalings. In Sect. 5 we have continued numerically a representative of each class of the
families of central configurations provided by Theorem 3 either from m = 0 to m = 1
(or vice versa) or from m = 0 (or m = 1) to a value of m giving a degenerate central
configuration. The results that we have obtained are summarized in Fig. 7. Since there does
not exist spatial central configurations at the boundary between convex and non-convex
central configurations (see Proposition 12 in Albouy 2003), the results can be divided into
two disconnected diagrams, one for convex and one for concave central configurations,
see Fig. 7. Notice that all the families of central configurations that we have obtained are
symmetric.

In particular, we have proved the following numerical result.

Result 2 The following statements hold for the 5-body problem with four equal masses when
the non-equal mass takes values in the interval [0, 1].
(a) There exist two (up to rotations and scalings) degenerate central configurations, the one

corresponding to the nonequal mass values m = mc = 10368+1701
√
6

54952 = 0.26449596 . . .

and m = m f = 0.66345045 . . ..
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Fig. 7 Connections between the
classes of central configurations
of the (4 + 1)-body problem with
4 equal masses and the ones of
the spatial 5-body problem with
equal masses. Each line
corresponds to a different family
of central configurations of the
5-body problem with 4 equal
masses. The black dots represent
mass values where degenerate
central configurations occur
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(b) From the degenerate central configuration with m = mc bifurcate 5 different (up to
rotations and scalings) families of central configurations (see Fig. 7).

(c) From the degenerate central configuration with m = m f bifurcate 3 different (up to
rotations and scalings) families of central configurations (see Fig. 7).

The bifurcation at m = mc has been first studied by Schmidt (1988). He found four fam-
ilies of central configurations bifurcating from the regular tetrahedron with one mass at
its barycenter, each one symmetric with respect to one of the four axis of symmetry of
the regular tetrahedron. Later on Santos (2004) completes the study of Schmidt (1988).
In particular, after a complete analysis of the symmetries of the problem and using the
equivariant branching lemma, he found seven symmetric families of central configurations
bifurcating from the regular tetrahedron with one mass at its barycenter, four presenting a
so-called axis-type symmetry (they are symmetric with respect to the straight line passing
through a vertex and the barycenter of the tetrahedron) which correspond to the four families
found by Schmidt (1988); and three presenting a so-called planar-type symmetry (they have
two planes of symmetry and the intersection of these two planes is a straight line passing
through the middle points of two opposite edges of the tetrahedron formed by the four equal
masses).

Remarks (1) The branch connecting the configurations Tb with K1 through the bifurcation
mc corresponds to the central configuration formed by the vertices of a regular tetrahedron
and its barycenter.

(2) All the central configurations of the branch connecting the configurations Ta,3 with K3

through the bifurcation mc have the same symmetry satisfying r12 = r13 = r14, r23 =
r24 = r34 and r25 = r35 = r45, which corresponds to a symmetry with respect to an axis
passing through a vertex and the barycenter of the tetrahedron. This branch correspond
to the one found by Schmidt (1988) given by the solution a25 = a35 = a45 = α of
page 72. This branch corresponds also to one of the four axis-type symmetric branches
given by Theorem 4.22 in Santos (2004), the one with Δ2 = Δ3 = Δ4. The other three
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solutions of Schmidt (1988), a25 = −a35/3 = a45 = α, −a25/3 = a35 = a45 = α and
a25 = a35 = −a45/3 = α correspond to the other three axis-type symmetric branches
in Santos (2004), namely the branches with Δ1 = Δ2 = Δ4, Δ1 = Δ3 = Δ4 and
Δ1 = Δ2 = Δ3 respectively. The four branches are the same after renaming conveniently
the masses. So they are represented only once in Fig. 7.

(3) All the central configurations of the branch connecting the configurations Tp,1 with the
bifurcation mc have the same symmetry satisfying r13 = r14 = r23 = r24, r35 = r45
and r15 = r25, which corresponds to a symmetry with respect to a straight line passing
through the middle points of two opposite edges of the tetrahedron formed by the four
equal masses. This branch corresponds to one of the three families given by Theorem
4.22 in Santos (2004) presenting a planar-type symmetry. More precisely, it corresponds
to the branch in Santos (2004) with Δ1 = Δ2 and Δ3 = Δ4. The other two branches
(the one with Δ1 = Δ3 and Δ2 = Δ4 and the one with Δ1 = Δ4 and Δ2 = Δ3) are
the same after renaming conveniently the masses. In Fig. 7 we only present one of these
branches.

We conjecture that all the symmetric classes of central configurations of the 5-body problem
with four equal masses to one and the non-equal mass varying in [0, 1] are represented in
Fig. 7. If there are any other additional symmetric classes, these should neither start nor
end in the central configurations of the spatial 5-body problem with equal masses or in the
ones of the spatial (4 + 1)-body problem with four equal masses and one infinitesimal.
They must start or or end in either the bifurcations mc, m f or in some bifurcation value
m = m∗ �= mc,m f .

In fact, analyzing the degenerate configuration with m = m f we see that there are no
other classes of central configurations bifurcating from m = m f . Indeed, the configuration
(q f ,m f ) corresponds to a simple branch point (see for instance Section 4.1 in Beyn et al.
2001); that is, there are exactly two distinct solution branches passing through (q f ,m f ), the
branch connecting Tp,3 with K4 and an additional branch connecting two different represen-
tatives of the class K2.

7 Continuation from the (5)-body problem to the (1+ 4)-body problem

The restricted (1+4)-body problem is a limiting case of the 5-body problem having one unit
mass and four infinitesimal masses. Albouy and Llibre (2002) studied the restricted (1+ 4)-
body problem when the four infinitesimal masses are equal. They found the five classes of
central configurations detailed below.

R1: (2 cc) The four infinitesimal masses are at the vertices of a regular tetrahedron and the
larger mass is at its barycenter.

R2: (6 cc) The masses are at the vertices of a regular pyramid with a square base, the
infinitesimal masses are at the vertices of the square.

R3: (8 cc) The four infinitesimal masses are at the vertices of a regular pyramid with an
equilateral triangle base, the larger mass lies in the interior of the pyramid and on its
axis of symmetry.

R4: (8 cc) Three infinitesimal masses form an equilateral triangle. The other two masses
are on the axis orthogonal to the plane defined by the triangle passing through its
barycenter, one above the plane and the other one below.
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R5: (24 cc) Three infinitesimal masses form an isosceles triangle. The other two masses
are on the axis orthogonal to the plane defined by the triangle passing through the
barycenter of the triangle, one above the plane and the other one below.

In Alvarez-Ramírez et al. (2008) the authors continue numerically the symmetric central
configurations of the spatial 5-body problem to the restricted spatial (1 + 4)-body problem
with four infinitesimal masses. Here we have repeated the computations and the results made
in Alvarez-Ramírez et al. (2008) and we have corrected somemistakes. Thus here we present
the improved results of Alvarez-Ramírez et al. (2008), which are detailed below and they are
represented in Fig. 8. We also have analyzed the symmetries of the continued families.

K1: Whenwefixm5 = 1, the representative of the class K1 can be continued to a family that
ends at a representative of the class R1. All the configurations of this family consists of
a regular tetrahedronwith fourmasses equal to 1 and the variablemass at its barycenter.
When we fix m2 = 1, the representative of the class K1 can be continued to a family
that ends at a degenerate configuration qa (see Fig. 9) withm = ma = 0.94120559 . . .

and with mutual distances

r12 = r23 = r24 = 1.69174590 . . . , r13 = r14 = r34 = 1.59766522 . . . ,

r15 = r35 = r45 = 1.025631876 . . . , r25 = 0.969738526 . . .

All the configurations of this family satisfy the symmetry r13 = r14 = r34, r15 =
r35 = r45, r12 = r23 = r24.

Fig. 8 Connections between the
classes of central configurations
of the (5)-body problem with
equal masses and the ones of the
spatial (1 + 4)-body problem
with equal infinitesimal masses.
Each line corresponds to a
different family of central
configurations of the 5-body
problem with 4 equal masses.
The black dots represent mass
values where degenerate central
configurations occur
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K2: When we fix m2 = 1, the representative of the class K2 can be continued to a family
that ends at a representative of the class R5. All the configurations of this family satisfy
the symmetry r13 = r15, r23 = r25, r34 = r45.
Whenwefixm1 = 1, the representative of the class K2 can be continued to a family that
ends at a representative of the class R2 by passing trough a degenerate configuration
qb with m = mb = 0.59623579 . . .. All the configurations of this family consists of
a pyramid with square base, with the four equal masses on the square. The mutual
distances corresponding to the configuration with m = mb are

r12 = r13 = r14 = r15 = 1.81043914 . . . , r24 = r35 = 2.24791936 . . . ,

r23 = r25 = r34 = r45 = 1.58951902 . . . .

K3: When we fix m1 = 1, the representative of the class K3 can be continued to a family
that ends at a representative of the degenerate central configuration with m = ma . All
the configurations of this family satisfy the symmetry r13 = r14, r23 = r24, r35 = r45.
Whenwefixm5 = 1, the representative of the class K3 can be continued to a family that
ends at a representative of the class R3. All the configurations of this family satisfies
the symmetry r12 = r13 = r14, r23 = r24 = r34, r25 = r35 = r45.
When we fix m2 = 1, the representative of the class K3 can be continued to a family
that ends at a coalescent central configurationwith the largermass and two infinitesimal
masses located at three different vertices of a tetrahedron and two infinitesimal masses
coalescing at the remaining vertex the tetrahedron. This class of coalescent central
configurations is denoted by Rc. Notice that the configurations in Rc are in the boundary
between convex and nonconvex.

K4: When we fix m2 = 1, the representative of the class K4 can be continued to a family
that ends at a representative of the degenerate central configuration with m = mb. All
the configurations of this family satisfy the symmetry r12 = r25, r13 = r14, r23 = r24,
r35 = r45.
When we fix m5 = 1, the representative of the class K4 can be continued to a family
that ends at a representative of the class R4. All the configurations of this family satisfy
the symmetry r12 = r13 = r14, r23 = r24 = r34, r25 = r35 = r45.

Notice that all this families of central configurations are symmetric.
Analyzing the degenerate configurations qa and qb, we have that the configuration qa

with m = ma is a simple fold (see Section 3.2 in Beyn et al. 2001); that is, there is a
unique solution branch passing through (qa,ma) the branch connecting a representative of
the class K1 with a representative of the class K3. The configuration qb with m = mb is a
simple branch point (see again Section 4.1 in Beyn et al. 2001); that is, there are exactly two
distinct solution branches passing through (qb,mb), the branch connecting a representative
of the class K2 with a representative of the class R2 and an additional branch connecting two
different representatives of the class K4.

We conjecture that all the symmetric classes of central configurations of the 5-body prob-
lemwith four masses equal tom and the non-equal mass equal to 1 whenm varies in [1, 0] are
represented in Fig. 8. If there are any other additional symmetric classes, these should neither
start nor end in the central configurations of the spatial 5-body problem with equal masses
or in the ones of the spatial (1 + 4)-body problem with four infinitesimal equal masses.
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