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Infinitely Many Periodic Orbits for the
Octahedral 7-Body Problem

Montserrat Corbera and Jaume Llibre

Abstract. We prove the existence of infinitely many symmetric periodic orbits
for a regularized octahedral 7-body problem with six small masses placed at
the vertices of an octahedron centered in the seventh mass. The main tools
for proving the existence of such periodic orbits is the analytic continuation
method together with the symmetry of the problem.
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1. Introduction

In this paper we consider a particular case of the spatial 7-body problem defined
as follows. We consider a mass m0 = 1 located at the origin of coordinates with
zero initial velocity, two small masses m1 = m2 = μν1 with initial positions and
velocities on the x-axis symmetric with respect to the origin, two small masses
m3 = m4 = μν2 with initial positions and velocities on the y-axis symmetric with
respect to the origin, and finally two small masses m5 = m6 = μν3 with initial
positions and velocities on the z-axis symmetric with respect to the origin (see Fig-
ure 1). Our 7-body problem consists of describing the motion of the seven masses
under their mutual Newtonian gravitational attraction. Due to the symmetry of
the initial conditions and velocities, the six small bodies are located at any time
in the vertices of an octahedron with center at m0, and the mass m0 remains in
rest at the origin. We call the octahedral 7-body problem the study of the motion
of this 7-body problem.

Although this is a 7-body problem it can be formulated as a Hamiltonian
system of three degrees of freedom, one is the distance x ≥ 0 of m1 to the origin,
the other is the distance y ≥ 0 of m3 to the origin, and the third is the distance
z ≥ 0 of m5 to the origin (the distances of m2, m4 and m6 to the origin are
obtained by symmetry). The system has seven singularities, the triple collisions
between m0, m1 and m2, between m0, m3 and m4, and between m0, m5 and m6;
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Figure 1. The octahedral 7-body problem.

the quintuple collisions between m0, m1, m2, m3 and m4, between m0, m1, m2,
m5 and m6, and between m0, m3, m4, m5 and m6; and finally the total collision of
the seven bodies. Due to the symmetries doing a triple Levi–Civita transformation
we regularize the three triple collisions.

When μ = 0 using the symmetry the problem is reduced to three collision
2-body problems, between m0 and m1, between m0 and m3, and between m0 and
m5. Note that if we take into account the seven bodies, then really for μ = 0 we
have instead of the binary collisions m0 with m1, m0 with m3 and m0 with m5, the
triple collisions m0, m1 and m2, m0, m3 and m4, and m0, m5 and m6 respectively.
Since the solutions of the collision 2-body problem are known we can compute the
periodic solutions of the regularized system for μ = 0 in a fixed negative energy
level h < 0. The objective of this paper is to prove that the symmetric periodic
orbits of the regularized octahedral 7-body problem for μ = 0 can be continued to
symmetric periodic orbits of the regularized octahedral 7-body problem for μ > 0
sufficiently small. The main tool for proving this result is the classical analytic
continuation method of Poincaré.

In [5] applying the techniques applied in this paper the authors prove the
existence of infinitely many symmetric periodic orbits of the the planar regularized
rhomboidal 5-body problem for μ > 0 sufficiently small. The regularized octahedral
7-body problem has more symmetries and consequently is richer in families of
symmetric periodic orbits. The techniques applied here are also similar to the ones
applied in [4] and [6] in order to prove the existence of infinitely many periodic
orbits for the collinear 3-body problem.

The paper is structured as follows. In Section 2 we give the equations of
motion of the octahedral 7-body problem and we apply a triple Levi–Civita trans-
formation to regularize the triple collisions between m0, m1 and m2, between m0,
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m3 and m4 and between m0, m5 and m6. Notice that the quintuple collisions and
the total collision are not regularized.

In Section 3 we analyze the discrete symmetries of the regularized problem. In
particular, we see that there are four different symmetries that provide symmetric
periodic orbits of the problem. In fact all the symmetric periodic orbits that we find
are double symmetric periodic orbits; i.e., periodic orbits which are simultaneously
symmetric with respect to exactly two different symmetries. Moreover we see that
there are no triple and no quadruple symmetric periodic orbits; i.e., periodic orbits
which are simultaneously symmetric with respect to three or four symmetries.

In Section 4 we compute the periodic orbits of the regularized octahedral 7-
body problem for μ = 0 and we analyze its symmetric periodic orbits. In particular
we will see that all symmetric periodic orbits of the regularized octahedral 7-body
problem for μ = 0 are double symmetric periodic orbits.

Finally in Section 5 we apply the analytic continuation method of Poincaré
to continue the double symmetric periodic orbits of the regularized octahedral 7-
body problem for μ = 0 to double–symmetric periodic orbits of the regularized
octahedral 7-body problem for μ > 0 sufficiently small.

2. Equations of motion for the octahedral 7-body problem

We consider seven point particles with masses m0 = 1, m1 = m2 = μ ν1, m3 =
m4 = μ ν2, m5 = m6 = μ ν3 positions q0 = (0, 0, 0), q1 = (x, 0, 0), q2 = (−x, 0, 0),
q3 = (0, y, 0), q4 = (0,−y, 0), q5 = (0, 0, z), and q6 = (0, 0,−z), respectively,
and velocities v0 = (0, 0, 0), v1 = (vx, 0, 0), v2 = (−vx, 0, 0), v3 = (0, vy, 0), v4 =
(0,−vy, 0), v5 = (0, 0, vz), and v6 = (0, 0,−vz) respectively (see Figure 1). Here
x, y, z ∈ [0,+∞) and vx, vy, vz ∈ R. Our 7-body problem consists of describing the
motion of these particles under their mutual Newtonian gravitational attractions.
We note that due to the symmetry of the problem the mass m0 rest at the origin
at any time and the motion of the masses m1 and m2 is confined to the x-axis,
the motion of the masses m3 and m4 is confined to the y-axis, and the motion of
the masses m5 and m6 is confined to the z-axis. Since the configuration of the six
bodies in motion is always an octahedron with center at m0, we call the study of
the motion of this 7-body problem the octahedral 7-body problem.

Without loss of generality we can assume that the gravitational constant is
G = 1. Then the kinetic energy of the octahedral 7-body problem is

T = μ ν1 ẋ2 + μ ν2 ẏ2 + μ ν3 ż2 ,

where the dot denotes derivative with respect to the time t and the potential
energy is

U = −μ ν1 (4 + μ ν1)
2x

− μ ν2 (4 + μ ν2)
2y

− μ ν3 (4 + μ ν3)
2z

− 4μ2 ν1 ν2√
x2 + y2

− 4μ2 ν1 ν3√
x2 + z2

− 4μ2 ν2 ν3√
y2 + z2

.
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The Lagrangian of the problem is given by L = T −U . By the Legendre transfor-
mation (see for instance [1, 2, 7]) the Hamiltonian of the problem is

H =
p2

x

4μ ν1
+

p2
y

4μ ν2
+

p2
z

4μ ν3
+ U ,

where px, py and pz are the conjugate momenta. The equations of motion associ-
ated to the Hamiltionian H are

ẋ =
px

2μν1
, ṗx = −μ ν1 (4 + μ ν1)

2x2
− 4μ2 ν1 ν2 x

(x2 + y2)3/2
− 4μ2 ν1 ν3 x

(x2 + z2)3/2
,

ẏ =
py

2μν2
, ṗy = −μ ν2 (4 + μ ν2)

2y2
− 4μ2 ν1 ν2 y

(x2 + y2)3/2
− 4μ2 ν2 ν3 y

(y2 + z2)3/2
,

ż =
pz

2μν3
, ṗz = −μ ν3 (4 + μ ν3)

2z2
− 4μ2 ν1 ν3 z

(x2 + z2)3/2
− 4μ2 ν2 ν3 z

(y2 + z2)3/2
.

(1)

Doing the rescaling of the variables x = μ2X, y = μ2Y , z = μ2Z and t = μ3T ,
and denoting the new variables (X,Y,Z, T ) again by (x, y, z, t) system (1) becomes

ẋ =
px

2ν1
, ṗx = −ν1 (4 + μ ν1)

2x2
− 4μ ν1 ν2 x

(x2 + y2)3/2
− 4μ ν1 ν3 x

(x2 + z2)3/2
,

ẏ =
py

2ν2
, ṗy = −ν2 (4 + μ ν2)

2y2
− 4μ ν1 ν2 y

(x2 + y2)3/2
− 4μ ν2 ν3 y

(y2 + z2)3/2
,

ż =
pz

2ν3
, ṗz = −ν3 (4 + μ ν3)

2z2
− 4μ ν1 ν3 z

(x2 + z2)3/2
− 4μ ν2 ν3 z

(y2 + z2)3/2
.

(2)

This system is also Hamiltonian with Hamiltonian

H =
p2

x

4ν1
+

p2
y

4ν2
+

p2
z

4ν3
− ν1 (4 + μ ν1)

2x
− ν2 (4 + μ ν2)

2y
− ν3 (4 + μ ν3)

2z

− 4μ ν1 ν2√
x2 + y2

− 4μ ν1 ν3√
x2 + z2

− 4μ ν2 ν3√
y2 + z2

,

We note that system (2) has seven singularities: x = 0, that corresponds to
tripe collision between m0, m1 and m2, y = 0 that corresponds to triple collision
between m0, m3 and m4, z = 0 that corresponds to triple collision between m0, m5

and m6, x2 + y2 = 0 that corresponds to the quintuple collision between m0, m1,
m2, m3 and m4, x2 + z2 = 0 that corresponds to the quintuple collision between
m0, m1, m2, m5 and m6, y2 + z2 = 0 that corresponds to the quintuple collision
between m0, m3, m4, m5 and m6, and finally x2 + y2 + z2 = 0 that corresponds
to the total collision of the seven masses. We regularize the three triple collisions
applying a triple Levi–Civita transformation (see [3, 6, 9])

x=ξ2
1 , y=ξ2

2 , z=ξ2
3 , px =

η1

2ξ1
, py =

η2

2ξ2
, pz =

η3

2ξ3
, dt=4ξ2

1ξ2
2ξ2

3 ds .
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The regularized system of the octahedral 7-body problem (2) on the level
energy H = h for some constant h is the Hamiltonian system

dξ1

ds
=

η1ξ
2
2ξ2

3

2ν1
,

dξ2

ds
=

η2ξ
2
1ξ2

3

2ν2
,

dξ3

ds
=

η3ξ
2
1ξ2

2

2ν3
,

dη1

ds
= −ξ1ξ

2
3η2

2

2ν2
− ξ1ξ

2
2η2

3

2ν3
+ 4ν2(4 + μν2)ξ1ξ

2
3 + 4ν3(4 + μν3)ξ1ξ

2
2

+ 8hξ1ξ
2
2ξ2

3 +
32μν1ν2ξ1ξ

6
2ξ2

3

(ξ4
1 + ξ4

2)3/2
+

32μν1ν3ξ1ξ
2
2ξ6

3

(ξ4
1 + ξ4

3)3/2
+

32μν2ν3ξ1ξ
2
2ξ2

3

(ξ4
2 + ξ4

3)1/2
,

dη2

ds
= −ξ2ξ

2
3η2

1

2ν1
− ξ2

1ξ2η
2
3

2ν3
+ 4ν1(4 + μν1)ξ2ξ

2
3 + 4ν3(4 + μν3)ξ2

1ξ2

+ 8hξ2
1ξ2ξ

2
3 +

32μν1ν2ξ
6
1ξ2ξ

2
3

(ξ4
1 + ξ4

2)3/2
+

32μν2ν3ξ
2
1ξ2ξ

6
3

(ξ4
2 + ξ4

3)3/2
+

32μν1ν3ξ
2
1ξ2ξ

2
3

(ξ4
1 + ξ4

3)1/2
,

dη3

ds
= −ξ2

2ξ3η
2
1

2ν1
− ξ2

1ξ3η
2
2

2ν2
+ 4ν1(4 + μν1)ξ2

2ξ3 + 4ν2(4 + μν2)ξ2
1ξ3

+ 8hξ2
1ξ2

2ξ3 +
32μν1ν3ξ

6
1ξ2

2ξ3

(ξ4
1 + ξ4

3)3/2
+

32μν2ν3ξ
2
1ξ6

2ξ3

(ξ4
2 + ξ4

3)3/2
+

32μν1ν2ξ
2
1ξ2

2ξ3

(ξ4
1 + ξ4

2)1/2
.

(3)

with Hamiltonian

K =
η2
1ξ2

2ξ2
3

4ν1
+

η2
2ξ2

1ξ2
3

4ν2
+

η2
3ξ2

1ξ2
2

4ν3
− 2ν1(4 + μν1)ξ2

2ξ2
3 − 2ν2(4 + μν2)ξ2

1ξ2
3

− 2ν3(4 + μν3)ξ2
1ξ2

2 − 4hξ2
1ξ2

2ξ2
3 − 16μν1ν2ξ

2
1ξ2

2ξ2
3√

ξ4
1 + ξ4

2

− 16μν1ν3ξ
2
1ξ2

2ξ2
3√

ξ4
1 + ξ4

3

− 16μν2ν3ξ
2
1ξ2

2ξ2
3√

ξ4
2 + ξ4

3

,

and satisfies the energy relation K = 0; i.e., H = h.
We note that system (3) is analytic with respect to its variables except when

ξ4
1 + ξ4

2 = 0, ξ4
1 + ξ4

3 = 0, ξ4
2 + ξ4

3 = 0 and ξ2
1 + ξ2

2 + ξ2
3 = 0, which correspond to

the three quintuple collisions and to the total collision, respectively.
The regularization of the triple collisions allows us to look for periodic orbits

of the octahedral 7-body problem containing triple collisions. Our aim is to find
periodic orbits of the octahedral 7-body problem (3) for μ > 0 sufficiently small,
satisfying the energy relation K = 0. In fact, we look only for symmetric periodic
orbits which are easier to study than the general periodic orbits.
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3. Symmetries

It is easy to check that system (3) is invariant under the discrete symmetries

S1 : (ξ1, ξ2, ξ3, η1, η2, η3, s) −→ (ξ1, ξ2, ξ3,−η1,−η2,−η3,−s) ,

S2 : (ξ1, ξ2, ξ3, η1, η2, η3, s) −→ (−ξ1, ξ2, ξ3, η1,−η2,−η3,−s) ,

S3 : (ξ1, ξ2, ξ3, η1, η2, η3, s) −→ (ξ1,−ξ2, ξ3,−η1, η2,−η3,−s) ,

S4 : (ξ1, ξ2, ξ3, η1, η2, η3, s) −→ (ξ1, ξ2,−ξ3,−η1,−η2, η3,−s) ,

S5 : (ξ1, ξ2, ξ3, η1, η2, η3, s) −→ (ξ1,−ξ2,−ξ3,−η1, η2, η3,−s) ,

S6 : (ξ1, ξ2, ξ3, η1, η2, η3, s) −→ (−ξ1, ξ2,−ξ3, η1,−η2, η3,−s) ,

S7 : (ξ1, ξ2, ξ3, η1, η2, η3, s) −→ (−ξ1,−ξ2, ξ3, η1, η2,−η3,−s) ,

S8 : (ξ1, ξ2, ξ3, η1, η2, η3, s) −→ (−ξ1,−ξ2,−ξ3, η1, η2, η3,−s) .

The invariance under these symmetries means that if ϕ(s) = (ξ1(s), ξ2(s),
ξ3(s), η1(s), η2(s), η3(s)) is a solution of system (3), then also Si(ϕ(s)) is a solution
for i = 1, . . . , 8. An orbit ϕ(s) is called Si-symmetric if Si(ϕ(s)) = ϕ(s).

Using the uniqueness theorem of a solution of an ordinary differential system,
if ϕ(s) is such that η1(0) = η2(0) = η3(0) = 0, then ϕ(s) is a S1-symmetric
solution. If in addition there exists s > 0 such that η1(s) = η2(s) = η3(s) = 0
and η1(s), η2(s) and η3(s) are not simultaneously zero for all s ∈ (0, s), then ϕ(s)
is a S1-symmetric periodic solution of period 2s. Using similar arguments for the
other symmetries, we obtain the following proposition. Notice that system (3) is
autonomous, therefore the origin of time can be chosen arbitrarily.

Proposition 1. Let ϕ(s) = (ξ1(s), ξ2(s), ξ3(s), η1(s), η2(s), η3(s)) be a solution
of (3).

(a) If η1(s), η2(s) and η3(s) are zero at s = s0 and at s = s0 + S/2 but they
are not simultaneously zero at any value of s ∈ (s0, s0 + S/2), then ϕ(s) is a
S1-symmetric periodic solution of period S.

(b) If ξ1(s), η2(s) and η3(s) are zero at s = s0 and at s = s0 + S/2 but they
are not simultaneously zero at any value of s ∈ (s0, s0 + S/2), then ϕ(s) is a
S2-symmetric periodic solution of period S.

(c) If ξ2(s), η1(s) and η3(s) are zero at s = s0 and at s = s0 + S/2 but they
are not simultaneously zero at any value of s ∈ (s0, s0 + S/2), then ϕ(s) is a
S3-symmetric periodic solution of period S.

(d) If ξ3(s), η1(s) and η2(s) are zero at s = s0 and at s = s0 + S/2 but they
are not simultaneously zero at any value of s ∈ (s0, s0 + S/2), then ϕ(s) is a
S4-symmetric periodic solution of period S.

Since in system (3) the quintuple collisions are not regularized, in our study
we must avoid the orbits of the octahedral 7-body problem which start or end at
quintuple collision; that is, we must avoid orbits such that either ξ1(s) = ξ2(s) =
0, or ξ1(s) = ξ3(s) = 0, or ξ2(s) = ξ3(s) = 0 for some s. For this reason the
symmetries S5, S6, S7 and S8 are not considered.
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There could be periodic solutions of (3) that are symmetric exactly with
respect to two symmetries. These kinds of symmetric periodic solutions are char-
acterized in the following result.

Proposition 2. Let ϕ(s) = (ξ1(s), ξ2(s), ξ3(s), η1(s), η2(s), η3(s)) be a solution of
the octahedral 7-body problem (3).
(a) The solution ϕ(s) is a S12-symmetric periodic solution of period S if and

only if η1(s0) = η2(s0) = η3(s0) = 0 and ξ1(s0 + S/4) = η2(s0 + S/4) =
η3(s0 + S/4) = 0, and there is no s ∈ (s0, s0 + S/4) satisfying that ξ1(s) =
η2(s) = η3(s) = 0.

(b) The solution ϕ(s) is a S13-symmetric periodic solution of period S if and
only if η1(s0) = η2(s0) = η3(s0) = 0 and ξ2(s0 + S/4) = η1(s0 + S/4) =
η3(s0 + S/4) = 0, and there is no s ∈ (s0, s0 + S/4) satisfying that ξ2(s) =
η1(s) = η3(s) = 0.

(c) The solution ϕ(s) is a S14-symmetric periodic solution of period S if and
only if η1(s0) = η2(s0) = η3(s0) = 0 and ξ3(s0 + S/4) = η1(s0 + S/4) =
η2(s0 + S/4) = 0, and there is no s ∈ (s0, s0 + S/4) satisfying that ξ3(s) =
η1(s) = η2(s) = 0.

(d) The solution ϕ(s) is a S23-symmetric periodic solution of period S if and
only if ξ1(s0) = η2(s0) = η3(s0) = 0 and ξ2(s0 + S/4) = η1(s0 + S/4) =
η3(s0 + S/4) = 0, and there is no s ∈ (s0, s0 + S/4) satisfying that ξ2(s) =
η1(s) = η3(s) = 0.

(e) The solution ϕ(s) is a S24-symmetric periodic solution of period S if and
only if ξ1(s0) = η2(s0) = η3(s0) = 0 and ξ3(s0 + S/4) = η1(s0 + S/4) =
η2(s0 + S/4) = 0, and there is no s ∈ (s0, s0 + S/4) satisfying that ξ3(s) =
η1(s) = η2(s) = 0.

(f) The solution ϕ(s) is a S34-symmetric periodic solution of period S if and
only if ξ2(s0) = η1(s0) = η3(s0) = 0 and ξ3(s0 + S/4) = η1(s0 + S/4) =
η2(s0 + S/4) = 0, and there is no s ∈ (s0, s0 + S/4) satisfying that ξ3(s) =
η1(s) = η2(s) = 0.

We note that in Proposition 2 we only give the conditions for the Sij-
symmetric periodic solutions which satisfy the conditions of symmetry Si at time s0

and the conditions of symmetry Sj at time s0 + S/4. Obviously if a solution satis-
fies the conditions of symmetry Sj at time s0 and the conditions of symmetry Si

at time s0 + S/4 it is also a Sij-symmetric periodic solution.
The next result shows that there are no symmetric periodic orbits that are

symmetric with respect to three or four symmetries.

Proposition 3. There are no periodic solutions of the octahedral 7-body problem (3),
which are simultaneously symmetric by three or four symmetries.

Proof. Assume that ϕ(s) is a Si-symmetric periodic solution of period S for i =
1, 2, 3. Then there exist times s1, s2 and s3 with s1, s2, s3 ∈ [0, S/2) such that:

η1(s1) = η2(s1) = η3(s1) = 0 , ξ1(s2) = η2(s2) = η3(s2) = 0 ,

ξ2(s3) = η1(s2) = η3(s3) = 0 .
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We assume that s1 = 0. This is not restrictive because system (3) is autonomous,
and consequently the origin of time can be chosen arbitrarily. Since the orbit is
in particular S12-symmetric, from Proposition 2, s2 = S/4. Similarly, since it is
also S13-symmetric, again from Proposition 2, s3 = S/4. The fact that s2 = s3 is
a contradiction because ξ1(s2) = ξ2(s2) = 0 implies the existence of a quintuple
collision but, since this kind of collisions are not regularized, there are no periodic
orbits with such collisions. So we have proved that there are no S123-symmetric
periodic solutions. The other cases can be proved in a similar way. �

4. Symmetric periodic solutions for μ = 0

For μ = 0 system (3) becomes

dξ1

ds
=

η1ξ
2
2ξ2

3

2ν1
,

dξ2

ds
=

η2ξ
2
1ξ2

3

2ν2
,

dξ3

ds
=

η3ξ
2
1ξ2

2

2ν3
,

dη1

ds
= −ξ1ξ

2
3η2

2

2ν2
− ξ1ξ

2
2η2

3

2ν3
+ 16ν2ξ1ξ

2
3 + 16ν3ξ1ξ

2
2 + 8hξ1ξ

2
2ξ2

3 ,

dη2

ds
= −ξ2ξ

2
3η2

1

2ν1
− ξ2

1ξ2η
2
3

2ν3
+ 16ν1ξ2ξ

2
3 + 16ν3ξ

2
1ξ2 + 8hξ2

1ξ2ξ
2
3 ,

dη3

ds
= −ξ2

2ξ3η
2
1

2ν1
− ξ2

1ξ3η
2
2

2ν2
+ 16ν1ξ

2
2ξ3 + 16ν2ξ

2
1ξ3 + 8hξ2

1ξ2
2ξ3 ,

(4)

and the Hamiltonian K goes over to

K =
η2
1ξ2

2ξ2
3

4ν1
+

η2
2ξ2

1ξ2
3

4ν2
+

η2
3ξ2

1ξ2
2

4ν3
− 8ν1ξ

2
2ξ2

3 − 8ν2ξ
2
1ξ2

3 − 8ν3ξ
2
1ξ2

2 − 4hξ2
1ξ2

2ξ2
3 .

The Hamiltonian H for μ = 0 can be written as

H = H1(x, px) + H2(y, py) + H3(z, pz)

=
(

p2
x

4ν1
− 2ν1

x

)
+

(
p2

y

4ν2
− 2ν2

y

)

+
(

p2
z

4ν3
− 2ν3

z

)
.

We note that H1(x, px), H2(y, py) and H3(z, pz) are three fist integrals of the
nonregularized problem, so they are constant along the solutions in the intervals
between two consecutive zeros of x, y and z respectively.

The flow of the octahedral 7-body problem on the energy level H = h for
some constant h is obtained from the flow of the Hamiltonian H1(x, px) on the
energy level H1 = h1, from the flow of the Hamiltonian H2(y, py) on the energy
level H2 = h2, and from the flow of the Hamiltonian H3(z, pz) on the energy level
H3 = h3 with h = h1 + h2 + h3.
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The Hamiltonian Hi(x, px) in the Levi–Civita coordinates (ξi, ηi) is given by

Hi =
η2

i

16νiξ2
i

− 2νi

ξ2
i

= hi ,

for i = 1, 2, 3.
Let (ξ1, ξ2, ξ3, η1, η2, η3) be a solution of (4) satisfying the energy relation

K = 0 (i.e., H = h = h1 + h2 + h3 with H1 = h1, H2 = h2 and H3 = h3), we
define a new time variable σ as follows

dσ

ds
= ξ2

2ξ2
3 , or equivalently

dt

dσ
= 4ξ2

1 . (5)

The Hamiltonian K in the new time variable σ can be written as

K1 =
1

ξ2
2ξ2

3

K

=
η2
1

4ν1
− 8ν1 − 4h1ξ

2
1 + ξ2

1

(
η2
2

4ν2 ξ2
2

− 8ν2

ξ2
2

− 4h2

)
+ ξ2

1

(
η2
3

4ν3 ξ2
3

− 8ν3

ξ2
3

− 4h3

)

=
η2
1

4ν1
− 8ν1 − 4h1ξ

2
1 .

Then ξ1, η1 satisfy the system of differential equations associated to the Hamilton-
ian K1

dξ1

dσ
=

η1

2ν1
,

dη1

dσ
= 8h1 ξ1 , (6)

and the energy relation K1 = 0.
We are only interested in periodic solutions of (6). Thus we must consider

only negative values of h1. Then, fixed h1 < 0, system (6) can be integrated directly
and the solution (ξ1(σ), η1(σ)) of (6) with initial conditions

ξ1(0) = ξ∗10 , η1(0) = η∗
10 , (7)

is

ξ1(σ) = ξ∗10 cos(w1 σ) +
η∗
10

2w1ν1
sin(w1 σ) ,

η1(σ) = η∗
10 cos(w1 σ) − 2w1ν1ξ

∗
10 sin(w1 σ) ,

(8)

where w1 = 2
√

−h1/ν1.
We note that (8) is a periodic solution of (6) with period σ = 2π/w1. Since

we are interested in the periodic solution (8) satisfying the energy relation K1 = 0,
by (5), the period of (8) in the real time t is given by

T1(h1, ν1) =
∫ σ

0

4 ξ2
1(σ) dσ = 4π

(
− ν1

h1

)3/2

.

Now we introduce a new time τ with
dτ

ds
= ξ2

1ξ2
3 , or equivalently

dt

dτ
= 4ξ2

2 . (9)
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Then ξ2, η2 in the new time τ are solutions of the Hamiltonian system

dξ2

dτ
=

η2

2ν2
,

dη2

dτ
= 8h2 ξ2 , (10)

with Hamiltonian

K2 =
1

ξ2
1ξ2

3

K =
η2
2

4 ν2
− 8 ν2 − 4h2 ξ2

2 ,

that satisfies de energy relation K2 = 0. Moreover, fixed h2 < 0, the solution
(ξ2(τ), η2(τ)) of (10) with initial conditions

ξ2(0) = ξ∗20 , η2(0) = η∗
20 , (11)

is given by

ξ2(τ) = ξ∗20 cos(w2 τ) +
η∗
20

2w2ν2
sin(w2 τ) ,

η2(τ) = η∗
20 cos(w2 τ) − 2w2ν2ξ

∗
20 sin(w2 τ) ,

(12)

where w2 = 2
√

−h2/ν2.
The solution (12) is periodic of period τ = 2π/w2. Moreover, since (12)

satisfies the energy relation K2 = 0, by (9), the period of (12) in the real time t is
given by

T2(h2, ν2) =
∫ τ

0

4 ξ2
2(τ) dτ = 4π

(
− ν2

h2

)3/2

.

Finally we introduce a new time υ with

dυ

ds
= ξ2

1ξ2
2 , or equivalently

dt

dυ
= 4ξ2

3 . (13)

Then ξ3, η3 in the new time υ are solutions of the Hamiltonian system

dξ3

dυ
=

η3

2ν3
,

dη3

dυ
= 8h3 ξ3 , (14)

with Hamiltonian

K3 =
1

ξ2
1ξ2

2

K =
η2
3

4 ν3
− 8 ν3 − 4h3 ξ2

3 ,

that satisfies de energy relation K3 = 0. Moreover, fixed h3 < 0, the solution
(ξ3(υ), η3(υ)) of (14) with initial conditions

ξ3(0) = ξ∗30 , η3(0) = η∗
30 , (15)

is given by

ξ3(υ) = ξ∗30 cos(w3 υ) +
η∗
30

2w3ν3
sin(w3 υ) ,

η3(υ) = η∗
30 cos(w3 υ) − 2w3ν3ξ

∗
30 sin(w3 υ) ,

(16)

where w3 = 2
√

−h3/ν3.
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Table 1. Period of ϕ(s).

Time t Time σ Time τ Time υ Time s

T = p T1(h1, ν1)
= q T2(h2, ν2) σ∗ = p σ τ∗ = q τ υ∗ = 
 υ S∗ = s(T )
= 
 T3(h3, ν3)

T/4 σ∗/4 τ∗/4 υ∗/4 S∗/4

The solution (16) is periodic of period υ = 2π/w3. Moreover, since (16)
satisfies the energy relation K3 = 0, by (13), the period of (16) in the real time t
is given by

T3(h3, ν3) =
∫ υ

0

4 ξ2
3(υ) dυ = 4π

(
− ν3

h3

)3/2

.

Proposition 4. Let (ξ1(σ), η1(σ)) be a periodic solution of (6), for a fixed h1 <
0, with initial conditions (7) and period σ = 2π/w1 that satisfies K1 = 0. Let
(ξ2(τ), η2(τ)) be the periodic solution of (10), for a fixed h2 < 0, with initial
conditions (11) and period τ = 2π/w2 that satisfies K2 = 0. Let (ξ3(υ), η3(υ))
be the periodic solution of (14), for a fixed h3 < 0, with initial conditions (15)
and period υ = 2π/w3 that satisfies K3 = 0. Assume that h = h1 + h2 + h3 and
that σ(s), τ(s), υ(s) are given by (5), (9) and (13) respectively, where we choose
σ(0) = τ(0) = υ(0) = 0. Suppose that there is no s ∈ R such that ξ1(σ(s)) =
ξ2(τ(s)) = 0, ξ1(σ(s)) = ξ3(υ(s)) = 0 and ξ2(τ(s)) = ξ3(υ(s)) = 0. Then the
following statements hold.
(a) ϕ(s) = (ξ1(σ(s)), ξ2(τ(s)), ξ3(υ(s)), η1(σ(s)), η2(τ(s)), η3(υ(s))) is a solution

of (4) with initial conditions ξ1(0) = ξ∗10, ξ2(0) = ξ∗20, ξ3(0) = ξ∗30, η1(0) =
η∗
10, η2(0) = η∗

20 and η3(0) = η∗
30 that satisfies K = 0.

(b) For some p, q, 
 ∈ N with greatest common divisor (g.c.d.) 1, let α = p2/3ν1 +
q2/3ν2 + 
2/3ν3, h1 = hp2/3ν1/α, h2 = hq2/3ν2/α and h3 = h
2/3ν3/α. Then
ϕ(s) is a periodic solution of (4).

(c) Assume that s(t) is given by the inverse function of the function t =∫ s

0
4ξ2

1(ρ)ξ2
2(ρ)ξ2

3(ρ) dρ. Under the hypotheses of statement (b), the period and
the quarter of the period of the periodic solution ϕ(s) using the different times
t, σ, τ , υ and s is given in Table 1.

Proof. Statement (a) follows easily from the definitions of (ξ1(σ), η1(σ)), (ξ2(τ),
η2(τ)) and (ξ3(υ), η3(υ)) together with the definitions of σ(s), τ(s) and υ(s).

We have seen that, in the time t, (ξ1(σ), η1(σ)), (ξ2(τ), η2(τ)) and (ξ3(υ),
η3(υ)) are periodic solutions of periods T1(h1, ν1), T2(h2, ν2) and T3(h3, ν3) re-
spectively. Thus, in order to have a periodic solution of (4) we need that

p T1(h1, ν1) = q T2(h2, ν2) = 
 T3(h3, ν3) ,
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for some p, q, 
 ∈ N with g.c.d. 1. Solving equation p T1(h1, ν1) = 
 T3(h3, ν3)
with respect to h1, equation q T2(h2, ν2) = 
 T3(h3, ν3) with respect to h2, and
finally equation h = h1 + h2 + h3 with respect to h3 for the values of h1 and h2

calculated previously, we get that h1 = hp2/3ν1/(p2/3ν1 + q2/3ν2 + 
2/3ν3), h2 =
hq2/3ν1/(p2/3ν1 +q2/3ν2 + 
2/3ν3) and h3 = h
2/3ν3/(p2/3ν1 +q2/3ν2 + 
2/3ν3). So,
statement (b) is proved.

Now we see that the time t = T/4 corresponds to the time σ = σ∗/4. In a
similar way we can see that the time t = T/4 corresponds to the time τ = τ∗/4,
υ = υ∗/4 and s = S∗/4.

We note that system (6) is invariant under symmetry (ξ1, η1, σ) −→ (−ξ1, η1,
−σ). This means that ξ1(σ) = −ξ1(−σ). So ξ2

1(σ) is an even function. On the
other hand, it is easy to see that ξ2

1(σ) is a periodic function of period σ/2. Then,
from (5), we have that

T1 =
∫ σ

0

4ξ2
1(σ) dσ = 2

∫ σ/2

0

4ξ2
1(σ) dσ = 4

∫ σ/4

0

4ξ2
1(σ) dσ .

Moreover, it is clear that
∫ σ/4

0

4ξ2
1(σ) dσ =

∫ σ/2

σ/4

4ξ2
1(σ) dσ =

T1

4
.

Consequently

t(σ∗/4) =
∫ pσ/4

0

4ξ2
1(σ) dσ = p

∫ σ/4

0

4ξ2
1(σ) dσ = p

T1

4
=

T

4
.

Therefore the time t = T/4 corresponds to σ = σ∗/4. The rest of statement (c)
follows in a similar way. �

We remark that the number p in Proposition 4 represents the number of triple
collisions between m0, m1 and m2 during a period, the number q represents the
number of triple collisions between m0, m3 and m4, and the number 
 represents
the number of triple collisions between m0, m5 and m6 .

We are interested in symmetric periodic solutions of (4) satisfying the energy
relation K = 0 with h = h1 + h2 + h3. In the next proposition we give initial
conditions for those symmetric periodic solutions.

Proposition 5. The following statements hold.
(a) If p is odd, and q and 
 are even, then the solution ϕ(s) given by Proposition 4

with initial conditions ξ∗10 =
√

−2ν1/h1, ξ∗20 =
√

−2ν2/h2, ξ∗30 =
√

−2ν3/h3,
η∗
10 = 0, η∗

20 = 0 and η∗
30 = 0; is a S12-symmetric periodic solution.

(b) If q is odd, and p and 
 are even, then the solution ϕ(s) given by Proposition 4
with initial conditions ξ∗10 =

√
−2ν1/h1, ξ∗20 =

√
−2ν2/h2, ξ∗30 =

√
−2ν3/h3,

η∗
10 = 0, η∗

20 = 0 and η∗
30 = 0; is a S13-symmetric periodic solution.

(c) If 
 is odd, and p and q are even, then the solution ϕ(s) given by Proposition 4
with initial conditions ξ∗10 =

√
−2ν1/h1, ξ∗20 =

√
−2ν2/h2, ξ∗30 =

√
−2ν3/h3,

η∗
10 = 0, η∗

20 = 0 and η∗
30 = 0; is a S14-symmetric periodic solution.
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(d) If 
 is even, and p and q are odd, then the solution ϕ(s) given by Proposition 4
with initial conditions ξ∗10 = 0, ξ∗20 =

√
−2ν2/h2, ξ∗30 =

√
−2ν3/h3, η∗

10 =
4
√

2ν1, η∗
20 = 0 and η∗

30 = 0; is a S23-symmetric periodic solution.
(e) If q is even, and p and 
 are odd, then the solution ϕ(s) given by Proposition 4

with initial conditions ξ∗10 = 0, ξ∗20 =
√
−2ν2/h2, ξ∗30 =

√
−2ν3/h3, η∗

10 =
4
√

2ν1, η∗
20 = 0 and η∗

30 = 0; is a S24-symmetric periodic solution.
(f) If p is even, and q and 
 are odd, then the solution ϕ(s) given by Proposition 4

with initial conditions ξ∗10 =
√
−2ν1/h1, ξ∗20 = 0, ξ∗30 =

√
−2ν3/h3, η∗

10 = 0,
η∗
20 = 4

√
2ν2 and η∗

30 = 0; is a S34-symmetric periodic solution.
(g) All symmetric periodic solutions of (4) are double symmetric periodic solu-

tions.

Proof. Assume that ϕ(s) is a S1-symmetric periodic solution of (4) satisfying
the energy relation K = 0. By Proposition 1(a), ϕ(s) has initial conditions
η1(0) = 0, η2(0) = 0 and η3(0) = 0. Moreover, the initial conditions must ver-
ify the energy relation K = 0; that is they must verify equations Ki = 0 for
i = 1, 2, 3. Then ξi(0) =

√
−2νi/hi for i = 1, 2, 3. Notice that we have only

considered the positive determination in the squareroot due to the fact that
the Levi–Civita transformation duplicates the orbits. We evaluate the solution
ϕ(s) = (ξ1(σ(s)), ξ2(τ(s)), ξ3(υ(s)), η1(σ(s)), η2(τ(s)), η3(υ(s))) at time s = S∗/4.
We note that by Table 1, we have that ϕ(S∗/4) = (ξ1(p σ/4), ξ2(q τ/4), ξ3(
 υ/4),
η1(p σ/4), η2(q τ/4), η3(
 υ/4)). After some computations using the explicit solu-
tions (8), (12) and (16) we see that if p is odd and q and 
 are even, then
ξ1(S∗/4) = η2(S∗/4) = η3(S∗/4) = 0, so ϕ(s) is a S12-symmetric periodic so-
lution. If q is odd and p and 
 are even, then ξ2(S∗/4) = η1(S∗/4) = η3(S∗/4) = 0,
so ϕ(s) is a S13-symmetric periodic solution. If 
 is odd and p and q are even,
then ξ3(S∗/4) = η1(S∗/4) = η2(S∗/4) = 0, so ϕ(s) is a S14-symmetric periodic
solution. If p is even and q and 
 are odd, then ξ2(S∗/4) = ξ3(S∗/4) = 0. If q is
even and p and 
 are odd, then ξ1(S∗/4) = ξ3(S∗/4) = 0. If 
 is even and p and
q are odd, then ξ1(S∗/4) = ξ2(S∗/4) = 0. The last three cases are not considered
because they correspond to quintuple collision orbits. Finally if p, q and 
 are odd,
then ξ1(S∗/4) = ξ2(S∗/4) = ξ3(S∗/4) = 0. This case is not considered because it
corresponds to a total collision orbit. This completes the proof of statements (a),
(b) and (c).

Doing similar arguments for Si-symmetric periodic solutions for i = 2, 3, 4
we can prove the remaining statements (d), (e) and (f). Finally from the proofs of
all statements (a)–(f) if follows statement (g). �

5. Continuation of symmetric periodic solutions

In this section using the continuation method of Poincaré (see for instance [8]) we
shall continue the symmetric periodic orbits of the octahedral 7-body problem (3)
from μ = 0 to symmetric periodic orbits of (3) for μ > 0 sufficiently small.
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5.1. The S12-symmetric periodic solutions

We denote by ϕ(s; ξ10, ξ20, ξ30, 0, 0, 0, μ) = (ξ1(s; ξ10, ξ20, ξ30, μ), ξ2(s; ξ10, ξ20, ξ30,
μ), ξ3(s; ξ10, ξ20, ξ30, μ), η1(s; ξ10, ξ20, ξ30, μ), η2(s; ξ10, ξ20, ξ30, μ), η3(s; ξ10, ξ20,
ξ30, μ)) the solution of (3), for fixed values of ν1 > 0, ν2 > 0, ν3 > 0 and h < 0, with
initial conditions ξ1(0) = ξ10, ξ2(0) = ξ20, ξ3(0) = ξ30, η1(0) = 0, η2(0) = 0 and
η3(0) = 0. From Proposition 2(a), ϕ(s; ξ10, ξ20, ξ30, 0, 0, 0, μ) is a S12-symmetric
periodic solution of the octahedral 7-body problem with period S satisfying the
energy relation K = 0 if and only if

ξ1(S/4; ξ10, ξ20, ξ30, μ) = 0 , η2(S/4; ξ10, ξ20, ξ30, μ) = 0 ,

η3(S/4; ξ10, ξ20, ξ30, μ) = 0 , K(ξ10, ξ20, ξ30, μ) = 0 .

We solve equation K(ξ10, ξ20, ξ30, μ) = 0 with respect to the variable ξ30

obtaining in this way ξ30 = ξ̃30 = ξ30(ξ10, ξ20, μ). In particular,

ξ30(ξ10, ξ20, 0) =
√

2ν3ξ10ξ20/
√
−2ν2ξ2

10 − 2ν1ξ2
20 − hξ2

10ξ
2
20 .

So ϕ(s; ξ10, ξ20, ξ̃30, 0, 0, 0, μ) is a S12-symmetric periodic solution of the octahedral
7-body problem with period S satisfying the energy relation K = 0 if and only if

ξ1(S/4; ξ10, ξ20, μ) = 0 , η2(S/4; ξ10, ξ20, μ) = 0 , η3(S/4; ξ10, ξ20, μ) = 0 . (17)

Notice that we have omitted the dependence with respect to ξ30, which is given
by the function ξ30(ξ10, ξ20, μ).

Assume that p = 2p1 − 1, q = 2q1 and 
 = 2
1 for some p1, q1, 
1 ∈ N.
Assume that h∗

1 = hp2/3ν1/α, h∗
2 = hq2/3ν1/α and h∗

3 = h
2/3ν3/α, where α =
p2/3ν1 + q2/3ν2 + 
2/3ν3. By Propositions 4 and 5(a), we see that S = S∗ =
s(p T1(h∗

1)) = s(q T2(h∗
2)) = s(
 T3(h∗

3)), ξ10 = ξ∗10 =
√

−2ν1/h∗
1 and ξ20 = ξ∗20 =√

−2ν2/h∗
2 is a solution of (17) for μ = 0. This solution correspond to the known

S12-symmetric periodic solution ϕ(s; ξ∗10, ξ
∗
20, ξ

∗
30, 0, 0, 0, μ) of (3), for μ = 0 where

ξ∗30 =
√

−2ν3/h∗
3. Our aim is to continue this solution of (17) from μ = 0 to μ > 0

sufficiently small.
Applying the Implicit Function Theorem to system (17) in a neighborhood

of the known solution we have that if
∣∣∣∣
∣∣∣∣∣∣
∣∣

∂ξ1

∂s

∂ξ1

∂ξ10

∂ξ1

∂ξ20

∂η2

∂s

∂η2

∂ξ10

∂η2

∂ξ20

∂η3

∂s

∂η3

∂ξ10

∂η3

∂ξ20

∣∣∣∣
∣∣∣∣∣∣
∣∣
∣
∣
∣
∣∣
∣
∣

s = S∗/4
ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

�= 0 , (18)

then we can find unique analytic functions ξ10 = ξ10(μ), ξ20 = ξ20(μ) and S = S(μ)
defined for μ ≥ 0 sufficiently small such that

(i) ξ10(0) = ξ∗10, ξ20(0) = ξ∗20, S(0) = S∗ ,
(ii) ϕ(s; ξ10(μ), ξ20(μ), ξ̃30, 0, 0, 0, μ) is a S12-symmetric periodic solution of (3)

with period S = S(μ) that satisfies the energy relation K = 0.
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The derivatives ∂ξ1/∂s, ∂η2/∂s and ∂η3/∂s evaluated at s = S∗/4, ξ10 = ξ∗10,
ξ20 = ξ∗20 and μ = 0 can be obtained evaluating the right hand side of system (3)
with μ = 0 (i.e., system (4)) on the solution ϕ(s; ξ∗10, ξ

∗
20, ξ

∗
30, 0, 0, 0, 0) with s =

S∗/4. Then after some computations we get

∂ξ1

∂s

∣
∣∣∣ s = S∗/4

ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

=
η1ξ

2
2ξ2

3

2ν1

∣
∣∣∣ s = S∗/4

ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

=
8
√

2(−1)p1α2

h2
2/3q2/3
�= 0 ,

and
∂η2

∂s

∣∣∣
∣ s = S∗/4

ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

=
∂η3

∂s

∣∣∣
∣ s = S∗/4

ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

= 0 .

It only remains to compute the value of the determinant
∣∣∣
∣∣∣∣∣

∂η2

∂ξ10

∂η2

∂ξ20

∂η3

∂ξ10

∂η3

∂ξ20

∣∣∣
∣∣∣∣∣
∣
∣
∣
∣
∣
∣
∣

s = S∗/4
ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

. (19)

The value of ∂η2/∂ξ10 evaluated at s = S∗/4, ξ10 = ξ∗10, ξ20 = ξ∗20, μ = 0 is
given by the derivative of the component η2(τ(s); ξ10, ξ20, ξ30(ξ10, ξ20, 0), 0, 0, 0, 0)
of the solution of (4) with respect to ξ10. Recall that we only consider solutions
of (4) satisfying the energy relation K = 0. Since τ(s) depends on the initial
condition ξ10 we have that

∂η2

∂ξ10

∣
∣∣∣ s = S∗/4

ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

=
(

∂η2

∂τ

∂τ

∂ξ10
+

∂η2

∂ξ10

+
∂η2

∂ξ30

∂ξ30

∂ξ10

)∣
∣∣∣ s = S∗/4

ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

, (20)

where ∂η2/∂ξ10 denotes the partial of η2 with respect to the second component.
From (5), (9) and (13) we have that the times σ, τ and υ are related by the

following equations

ξ2
1(σ) dσ = ξ2

2(τ) dτ , ξ2
1(σ) dσ = ξ2

3(υ) dυ , ξ2
2(τ) dτ = ξ2

3(υ) dυ .

Integrating these three equations over the solutions (8), (12), and (16) with initial
conditions ξ1(0) = ξ10, ξ2(0) = ξ20, ξ30 = ξ30, η1(0) = η2(0) = η3(0) = 0 and
assuming that σ(0) = τ(0) = υ(0) = 0, we have that σ(s), τ(s) and υ(s) are
related by the system of equations

ξ2
10

(
σ(s)

2
+

sin(2σ(s)w1)
4w1

)
− ξ2

20

(
τ(s)
2

+
sin(2τ(s)w2)

4w2

)
= 0 ,

ξ2
10

(
σ(s)

2
+

sin(2σ(s)w1)
4w1

)
− ξ2

30

(
υ(s)
2

+
sin(2υ(s)w3)

4w3

)
= 0 ,

ξ2
20

(
τ(s)
2

+
sin(2τ(s)w2)

4w2

)
− ξ2

30

(
υ(s)
2

+
sin(2υ(s)w3)

4w3

)
= 0 ,

(21)
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where ξ30 =
√

2ν3ξ10ξ20/
√
−2ν2ξ2

10 − 2ν1ξ2
20 − hξ2

10ξ
2
20 and

w1 = 2
√

−h1/ν1 , with h1 = −2ν1/ξ2
10 ,

w2 = 2
√

−h2/ν2 , with h2 = −2ν2/ξ2
20 ,

w3 = 2
√

−h3/ν3 , with h3 = h − h1 − h2 .

(22)

The last conditions come from the fact that we only consider solutions of (4)
satisfying the energy relation K = 0.

Derivating the three equations of (21) with respect to ξ10 we obtain a linear
system of equations with ∂σ/∂ξ10, ∂τ/∂ξ10 and ∂υ/∂ξ10 as unknowns. With the
help of Mathematica we solve this system with respect to the variables ∂τ/∂ξ10

and ∂υ/∂ξ10 and we evaluate the solution at s = S∗/4, ξ10 = ξ∗10 and ξ20 = ξ∗20.
After hard simplifications we obtain

∂τ

∂ξ10

∣
∣∣∣ s = S∗/4

ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

=
3πp1/3q2/3

8
√

2
,

∂υ

∂ξ10

∣
∣∣∣ s = S∗/4

ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

=
π(pν1 + 3
2/3p1/3ν3)

8
√

2ν3

.

The derivative ∂η2/∂τ evaluated at s = S∗/4, ξ10 = ξ∗10, ξ20 = ξ∗20, μ = 0 can
be obtained evaluating the right hand side of the second equation of (10) at the
solution (12) with h2 = h∗

2, τ = q 2π/(4w2), w2 = 2
√
−h∗

2/ν2, ξ20 = ξ∗20 and
η20 = 0. After some simplifications we get

∂η2

∂τ

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

= 8(−1)q1+1
√

2 ν2 q1/3

√
−h

α
,

Finally, since the second equation of (12) does not depend on ξ10 and ξ30, we have
that

∂η2

∂ξ10

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

=
∂η2

∂ξ30

∣∣∣∣ s = S∗/4
ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

= 0 .

So (20) becomes

∂η2

∂ξ10

∣∣∣
∣ s = S∗/4

ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

= (−1)q1 ν2 3πp1/3q

√
−h

α
.

We compute the values of ∂η2/∂ξ20, ∂η3/∂ξ10 and ∂η3/∂ξ20 in a similar
way and after several simplifications we see that the value of determinant (19) is
9(−1)l1+q1π2ν2hp1/3q4/3
1/3. Therefore (18) is different form zero. In particular,
(18) becomes −72(−1)p1+q1+�1

√
2π2p1/3q2/3ν2α

2/(h
1/3). In short, we have proved
the following result.

Theorem 6. Given ν1 > 0, ν2 > 0, ν3 > 0, h < 0, p an odd positive integer
and q and 
 even positive integers, the S12-symmetric periodic solution of the
octahedral 7-body problem (3) for μ = 0 with initial conditions ξ1(0) =

√
−2ν1/h∗

1,
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ξ2(0) =
√

−2ν2/h∗
2, ξ3(0) =

√
−2ν3/h∗

3, η1(0) = 0, η2(0) = 0 and η3(0) = 0,
can be continued to a μ-parameter family of S12-symmetric periodic orbits of the
octahedral 7-body problem (3) for μ > 0 sufficiently small. Here h∗

1 = hp2/3ν1/α,
h∗

2 = hq2/3ν1/α and h∗
3 = h
2/3ν3/α where α = p2/3ν1 + q2/3ν2 + 
2/3ν3.

5.2. The S13-symmetric periodic solutions

We consider the S13-symmetric periodic solution ϕ(s; ξ∗10, ξ
∗
20, ξ

∗
30, 0, 0, 0, μ) of (3)

for μ = 0 with period S = S∗ = s(p T1(h∗
1)) = s(q T2(h∗

2)) = s(
 T3(h∗
3)). Here

ξ∗10 =
√
−2ν1/h∗

1, ξ∗20 =
√
−2ν2/h∗

2, ξ∗30 =
√

−2ν3/h∗
3, p = 2p1, q = 2q1 − 1,


 = 2
1 for some p1, q1, 
1 ∈ N, and finally h∗
1 = hp2/3ν1/α, h∗

2 = hq2/3ν1/α
and h∗

3 = h
2/3ν3/α where α = p2/3ν1 + q2/3ν2 + 
2/3ν3, see Propositions 4
and 5(b). Now we proceed as in Subsection 5.1 and we obtain that the solution
ϕ(s; ξ∗10, ξ

∗
20, ξ

∗
30, 0, 0, 0, μ) can be continued to a family of S13-symmetric periodic

solutions ϕ(s; ξ10(μ), ξ20(μ), ξ̃30, 0, 0, 0, μ) of (3) for μ > 0 with period S = S(μ)
that satisfies the energy relation K = 0 because

∣∣∣∣∣
∣∣∣∣∣
∣∣

∂ξ2

∂s

∂ξ2

∂ξ10

∂ξ2

∂ξ20

∂η1

∂s

∂η1

∂ξ10

∂η1

∂ξ20

∂η3

∂s

∂η3

∂ξ10

∂η3

∂ξ20

∣∣∣∣∣
∣∣∣∣∣
∣∣
∣
∣∣
∣
∣
∣
∣

s = S∗/4
ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

=
72(−1)p1+q1+�1

√
2π2p2/3q1/3ν1α

2

h
1/3
�= 0 .

Hence the following result is proved.

Theorem 7. Given ν1 > 0, ν2 > 0, ν3 > 0, h < 0, q an odd positive integer
and p and 
 even positive integers, the S13-symmetric periodic solution of the
octahedral 7-body problem (3) for μ = 0 with initial conditions ξ1(0) =

√
−2ν1/h∗

1,
ξ2(0) =

√
−2ν2/h∗

2, ξ3(0) =
√

−2ν3/h∗
3, η1(0) = 0, η2(0) = 0 and η3(0) = 0,

can be continued to a μ-parameter family of S13-symmetric periodic orbits of the
octahedral 7-body problem (3) for μ > 0 sufficiently small. Here h∗

1 = hp2/3ν1/α,
h∗

2 = hq2/3ν1/α and h∗
3 = h
2/3ν3/α where α = p2/3ν1 + q2/3ν2 + 
2/3ν3.

5.3. The S14-symmetric periodic solutions

We consider the S14-symmetric periodic solution ϕ(s; ξ∗10, ξ
∗
20, ξ

∗
30, 0, 0, 0, μ) of (3)

for μ = 0 with period S = S∗ = s(p T1(h∗
1)) = s(q T2(h∗

2)) = s(
 T3(h∗
3)). Here

ξ∗10 =
√

−2ν1/h∗
1, ξ∗20 =

√
−2ν2/h∗

2, ξ∗30 =
√

−2ν3/h∗
3, p = 2p1, q = 2q1,


 = 2
1 − 1 for some p1, q1, 
1 ∈ N, and finally h∗
1 = hp2/3ν1/α, h∗

2 = hq2/3ν1/α
and h∗

3 = h
2/3ν3/α where α = p2/3ν1 + q2/3ν2 + 
2/3ν3, see Propositions 4
and 5(c). Now we proceed as in Subsection 5.1 and we obtain that the solution
ϕ(s; ξ∗10, ξ

∗
20, ξ

∗
30, 0, 0, 0, μ) can be continued to a family of S14-symmetric periodic

solutions ϕ(s; ξ10(μ), ξ20(μ), ξ̃30, 0, 0, 0, μ) of (3) for μ > 0 with period S = S(μ)
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that satisfies the energy relation K = 0 because
∣∣∣∣∣
∣∣∣∣∣
∣∣

∂ξ3

∂s

∂ξ3

∂ξ10

∂ξ3

∂ξ20

∂η1

∂s

∂η1

∂ξ10

∂η1

∂ξ20

∂η2

∂s

∂η2

∂ξ10

∂η2

∂ξ20

∣∣∣∣∣
∣∣∣∣∣
∣∣
∣
∣∣
∣
∣
∣
∣

s = S∗/4
ξ10 = ξ∗10
ξ20 = ξ∗20
μ = 0

= −72(−1)p1+q1+�1
√

2π2p2/3q2/3ν1ν2α
2


2/3hν3
�= 0 .

Hence the following result is proved.

Theorem 8. Given ν1 > 0, ν2 > 0, ν3 > 0, h < 0, 
 an odd positive integer
and p and q even positive integers, the S14-symmetric periodic solution of the
octahedral 7-body problem (3) for μ = 0 with initial conditions ξ1(0) =

√
−2ν1/h∗

1,
ξ2(0) =

√
−2ν2/h∗

2, ξ3(0) =
√

−2ν3/h∗
3, η1(0) = 0, η2(0) = 0 and η3(0) = 0,

can be continued to a μ-parameter family of S14-symmetric periodic orbits of the
octahedral 7-body problem (3) for μ > 0 sufficiently small. Here h∗

1 = hp2/3ν1/α,
h∗

2 = hq2/3ν1/α and h∗
3 = h
2/3ν3/α where α = p2/3ν1 + q2/3ν2 + 
2/3ν3.

5.4. The S23-symmetric periodic solutions

We denote by ϕ(s; 0, ξ20, ξ30, η10, 0, 0, μ) = (ξ1(s; ξ20, ξ30, η10, μ), ξ2(s; ξ20, ξ30, η10,
μ), ξ3(s; ξ20, ξ30, η10, μ), η1(s; ξ20, ξ30, η10, μ), η2(s; ξ20, ξ30, η10, μ), η3(s; ξ20, ξ30,
η10, μ)) the solution of (3), for fixed values of ν1 > 0, ν2 > 0, ν3 > 0 and
h < 0, with initial conditions ξ1(0) = 0, ξ2(0) = ξ20, ξ3(0) = ξ30, η1(0) = η10,
η2(0) = 0 and η3(0) = 0. From Proposition 2(d), ϕ(s; 0, ξ20, ξ30, η10, 0, 0, μ) is a
S23-symmetric periodic solution of the octahedral 7-body problem with period S
satisfying the energy relation K = 0 if and only if

ξ2(S/4; ξ20, ξ30, η10, μ) = 0 , η1(S/4; ξ20, ξ30, η10, μ) = 0 ,

η3(S/4; ξ20, ξ30, η10, μ) = 0 , K(ξ20, ξ30, η10, μ) = 0 .

We solve equation K(ξ20, ξ30, η10, μ) = 0 with respect the variable η10 ob-
taining in this way

η10 = η̃10 = 2
√

2ν1

√
4 + μν1 . (23)

So ϕ(s; 0, ξ20, ξ30, η̃10, 0, 0, μ) is a S23-symmetric periodic solution of the octahedral
7-body problem with period S satisfying the energy relation K = 0 if and only if

ξ2(S/4; ξ20, ξ30, μ) = 0 , η1(S/4; ξ20, ξ30, μ) = 0 , η3(S/4; ξ20, ξ30, μ) = 0 . (24)

Notice that we have omitted the dependence with respect to η10, which is given
by (23).

Assume that p = 2p1−1, q = 2q1−1 and 
 = 2
1 for some p1, q1, 
1∈N. Assume
that h∗

1 = hp2/3ν1/α, h∗
2 = hq2/3ν1/α and h∗

3 = h
2/3ν3/α where α = p2/3ν1 +
q2/3ν2 + 
2/3ν3. By Propositions 4 and 5(d), we see that S = S∗ = s(p T1(h∗

1)) =
s(q T2(h∗

2)) = s(
 T3(h∗
3)), ξ20 = ξ∗20 =

√
−2ν2/h∗

2 and ξ30 = ξ∗30 =
√
−2ν3/h∗

3 is a
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solution of (24) for μ = 0. This solution correspond to the known S23-symmetric
periodic solution ϕ(s; 0, ξ∗20, ξ

∗
30, η

∗
10, 0, 0, μ) of (3), for μ = 0 where η∗

10 = 4
√

2ν1.
Our aim is to continue this solution of (24) from μ = 0 to μ > 0 sufficiently small.

We proceed as in Subsection 5.1. Then applying the Implicit Function The-
orem to system (24) in a neighborhood of the known solution and after doing the
corresponding computations we see that

∣
∣∣∣∣∣∣
∣∣∣∣∣

∂ξ2

∂s

∂ξ2

∂ξ20

∂ξ2

∂ξ30

∂η1

∂s

∂η1

∂ξ20

∂η1

∂ξ30

∂η3

∂s

∂η3

∂ξ20

∂η3

∂ξ30

∣
∣∣∣∣∣∣
∣∣∣∣∣
∣
∣
∣
∣
∣
∣
∣

s = S∗/4
ξ20 = ξ∗20
ξ30 = ξ∗30
μ = 0

= −72(−1)p1+q1+�1
√

2π2q1/3
2/3ν3α
2

p1/3h
,

which is different from zero. Then we can find unique analytic functions ξ20 =
ξ20(μ), ξ30 = ξ30(μ), and S = S(μ) defined for μ ≥ 0 sufficiently small, such that

(i) ξ20(0) = ξ∗20, ξ30(0) = ξ∗30, S(0) = S∗ ,
(ii) ϕ(s; 0, ξ20(μ), ξ30(μ), η̃10, 0, 0, μ), where η̃10 is given by (23), is a S23-sym-

metric periodic solution of (3) with period S = S(μ) that satisfies the energy
relation K = 0.

This proves the following result.

Theorem 9. Given ν1 > 0, ν2 > 0, ν3 > 0, h < 0, 
 an even positive integer and p
and q odd positive integers, the S23-symmetric periodic solution of the octahedral
7-body problem (3) for μ = 0 with initial conditions ξ1(0) = 0, ξ2(0) =

√
−2ν2/h∗

2,
ξ3(0) =

√
−2ν3/h∗

3, η1(0) = 4
√

2ν1, η2(0) = 0 and η3(0) = 0, can be continued
to a μ-parameter family of S23-symmetric periodic orbits of the octahedral 7-body
problem (3) for μ > 0 sufficiently small. Here h∗

1 = hp2/3ν1/α, h∗
2 = hq2/3ν1/α

and h∗
3 = h
2/3ν3/α where α = p2/3ν1 + q2/3ν2 + 
2/3ν3.

5.5. The S24-symmetric periodic solutions

We consider the S24-symmetric periodic solution ϕ(s; 0, ξ∗20, ξ
∗
30, η

∗
10, 0, 0, μ) of (3)

for μ = 0 with period S = S∗ = s(p T1(h∗
1)) = s(q T2(h∗

2)) = s(
 T3(h∗
3)). Here

ξ∗20 =
√

−2ν2/h∗
2, ξ∗30 =

√
−2ν3/h∗

3, η∗
10 = 4

√
2ν1, p = 2p1 − 1, q = 2q1,


 = 2
1 − 1 for some p1, q1, 
1 ∈ N, and finally h∗
1 = hp2/3ν1/α, h∗

2 = hq2/3ν1/α
and h∗

3 = h
2/3ν3/α where α = p2/3ν1 + q2/3ν2 + 
2/3ν3, see Propositions 4
and 5(e). Now we proceed as in Subsection 5.4 and we obtain that the solution
ϕ(s; 0, ξ∗20, ξ

∗
30, η

∗
10, 0, 0, μ) can be continued to a family of S24-symmetric periodic

solutions ϕ(s; 0, ξ20(μ), ξ30(μ), η̃10, 0, 0, μ) of (3) for μ > 0 with period S = S(μ)
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that satisfies the energy relation K = 0 because
∣∣∣∣
∣∣∣∣∣∣
∣∣

∂ξ3

∂s

∂ξ3

∂ξ20

∂ξ3

∂ξ30

∂η1

∂s

∂η1

∂ξ20

∂η1

∂ξ30

∂η2

∂s

∂η2

∂ξ20

∂η2

∂ξ30

∣∣∣∣
∣∣∣∣∣∣
∣∣
∣
∣
∣∣
∣
∣
∣

s = S∗/4
ξ20 = ξ∗20
ξ30 = ξ∗30
μ = 0

=
72(−1)p1+q1+�1

√
2π2q2/3
1/3ν2α

2

p1/3h
�= 0 .

Hence the following result is proved.

Theorem 10. Given ν1 > 0, ν2 > 0, ν3 > 0, h < 0, q an even positive integer and p
and 
 odd positive integers, the S24-symmetric periodic solution of the octahedral
7-body problem (3) for μ = 0 with initial conditions ξ1(0) = 0, ξ2(0) =

√
−2ν2/h∗

2,
ξ3(0) =

√
−2ν3/h∗

3, η1(0) = 4
√

2ν1, η2(0) = 0 and η3(0) = 0, can be continued
to a μ-parameter family of S24-symmetric periodic orbits of the octahedral 7-body
problem (3) for μ > 0 sufficiently small. Here h∗

1 = hp2/3ν1/α, h∗
2 = hq2/3ν1/α

and h∗
3 = h
2/3ν3/α where α = p2/3ν1 + q2/3ν2 + 
2/3ν3.

5.6. The S34-symmetric periodic solutions

We denote by ϕ(s; ξ10, 0, ξ30, 0, η20, 0, μ) = (ξ1(s; ξ10, ξ30, η20, μ), ξ2(s; ξ10, ξ30, η20,
μ), ξ3(s; ξ10, ξ30, η20, μ), η1(s; ξ10, ξ30, η20, μ), η2(s; ξ10, ξ30, η20, μ), η3(s; ξ10, ξ30,
η20, μ)) the solution of (3), for fixed values of ν1 > 0, ν2 > 0, ν3 > 0 and h < 0, with
initial conditions ξ1(0) = ξ10, ξ2(0) = 0, ξ3(0) = ξ30, η1(0) = 0, η2(0) = η20 and
η3(0) = 0. From Proposition 2(f), ϕ(s; ξ10, 0, ξ30, 0, η20, 0, μ) is a S34-symmetric
periodic solution of the octahedral 7-body problem with period S satisfying the
energy relation K = 0 if and only if

ξ3(S/4; ξ10, ξ30, η20, μ) = 0 , η1(S/4; ξ10, ξ30, η20, μ) = 0 ,

η2(S/4; ξ10, ξ30, η20, μ) = 0 , K(ξ10, ξ30, η20, μ) = 0 .

We solve equation K(ξ10, ξ30, η20, μ) = 0 with respect the variable η20 ob-
taining in this way

η20 = η̃20 = 2
√

2ν2

√
4 + μν2 . (25)

So ϕ(s; ξ10, 0, ξ30, 0, η̃20, 0, μ) is a S34-symmetric periodic solution of the octahedral
7-body problem with period S satisfying the energy relation K = 0 if and only if

ξ3(S/4; ξ10, ξ30, μ) = 0 , η1(S/4; ξ10, ξ30, μ) = 0 , η2(S/4; ξ10, ξ30, μ) = 0 . (26)

Notice that we have omitted the dependence with respect to η20, which is given
by (25).

Assume that p = 2p1, q = 2q1−1 and 
 = 2
1−1 for some p1, q1, 
1∈N. Assume
that h∗

1 = hp2/3ν1/α, h∗
2 = hq2/3ν1/α and h∗

3 = h
2/3ν3/α where α = p2/3ν1 +
q2/3ν2 + 
2/3ν3. By Propositions 4 and 5(f), we see that S = S∗ = s(p T1(h∗

1)) =
s(q T2(h∗

2)) = s(
 T3(h∗
3)), ξ10 = ξ∗10 =

√
−2ν1/h∗

1 and ξ30 = ξ∗30 =
√
−2ν3/h∗

3 is a
solution of (26) for μ = 0. This solution correspond to the known S34-symmetric
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periodic solution ϕ(s; ξ∗10, 0, ξ∗30, 0, η∗
20, 0, μ) of (3), for μ = 0 where η∗

20 = 4
√

2ν2.
Our aim is to continue this solution of (26) from μ = 0 to μ > 0 sufficiently small.

We proceed as in Subsection 5.1. Then applying the Implicit Function The-
orem to system (26) in a neighborhood of the known solution and after doing the
corresponding computations we see that

∣∣∣∣
∣∣∣∣∣∣
∣∣

∂ξ3

∂s

∂ξ3

∂ξ10

∂ξ3

∂ξ30

∂η1

∂s

∂η1

∂ξ10

∂η1

∂ξ30

∂η2

∂s

∂η2

∂ξ10

∂η2

∂ξ30

∣∣∣∣
∣∣∣∣∣∣
∣∣
∣
∣
∣∣
∣
∣
∣

s = S∗/4
ξ10 = ξ∗10
ξ30 = ξ∗30
μ = 0

= −72(−1)p1+q1+�1
√

2π2p2/3
1/3ν1α
2

q1/3h
,

Then we can find unique analytic functions ξ10 = ξ10(μ), ξ30 = ξ30(μ), and S =
S(μ) defined for μ ≥ 0 sufficiently small, such that

(i) ξ10(0) = ξ∗10, ξ30(0) = ξ∗30, S(0) = S∗ ,
(ii) ϕ(s; ξ10(μ), 0, ξ30(μ), 0, η̃20, 0, μ), where η̃20 is given by (25), is a S34-sym-

metric periodic solution of (3) with period S = S(μ) that satisfies the energy
relation K = 0.

This proves the following result.

Theorem 11. Given ν1 > 0, ν2 > 0, ν3 > 0, h < 0, p an even positive integer and q
and 
 odd positive integers, the S34-symmetric periodic solution of the octahedral
7-body problem (3) for μ = 0 with initial conditions ξ1(0) =

√
−2ν1/h∗

1, ξ2(0) = 0,
ξ3(0) =

√
−2ν3/h∗

3, η1(0) = 0, η2(0) = 4
√

2ν2 and η3(0) = 0, can be continued
to a μ-parameter family of S34-symmetric periodic orbits of the octahedral 7-body
problem (3) for μ > 0 sufficiently small. Here h∗

1 = hp2/3ν1/α, h∗
2 = hq2/3ν1/α

and h∗
3 = h
2/3ν3/α where α = p2/3ν1 + q2/3ν2 + 
2/3ν3.
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