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ABSTRACT

RNA-sequencing for detecting changes between expression
patterns has emerged as a frequent tool in life sciences stud-
ies. However, it is an under-development tool which still
lacks a standard procedure. This way, many software pack-
ages and approaches could be used when designing an ex-
periment. Here we develop and present an approach based
on a scoring function. It allows using multiple packages and
relies its efficiency on validated data. Thus, the function
is adjusted using qPCR verified data. Then it is tested on
experimental data obtained from a Lolium Perenne drought
stress tolerance study yielding positive results with several
potential uses in further studies.

1. INTRODUCTION

As years go by, high-throughput cDNA sequencing (RNA-
seq) has become a popular approach to transcriptome char-
acterization. It allows transcript identification and differ-
ential expression assessment [43], being both key points in
molecular biology. Moreover, RNA-seq has certain advan-
tages over microarray techniques: it can be performed with-
out prior knowledge of reference sequences [18] and allows
transcriptome de novo assembly [36], quantification [22], and
alternative splicing detection [3]. This way, RNA-seq has
been proven a powerful and successful approach [42], which,
added to its continuously cost decrease [26], makes it a fre-
quent tool in life sciences research [32]. However, it is still
an under-development tool so, currently, the procedure has
not been standardized. Moreover, its widespread usage has
led to an arise of different pipelines which specially differ
at differentially expression assessment [37, 39, 46]. Even so,
efforts have been made to stablish a survey for best prac-
tices [15]; the RNA-seq core analysis always include tran-
scriptome profiling (alignment to a reference genome or de
novo assembly) and differential expression (statistical meth-
ods applied to test the significance of differences between
groups). In figure [1| we depict the general RNA-seq work-
flow.
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Figure 1: RNA-seq workflow schematic representa-
tion. Squares represent mandatory steps while tri-
angles represent the optional ones. Circles represent
different ways to perform steps. Green arrows point
the procedure followed in this study.

Consequently, RNA-seq is used in a variety of different anal-
ysis scenarios and has multiple applications. One of them,
and the case of study in this article, is the identification
of differentially expressed genes (DEGs). It has some dif-
ficulties. Some are inherent to next-generation sequencing
procedures; bias is introduced by variation in the nucleotide
composition between genomic regions or by the larger read
coverage that receive longer transcripts [25]. This ‘inner-
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sample’ kind of bias problem is usually ignored as it is con-
sidered to affect all samples in a similar way [29]. Thus,
in early RNA-seq studies, samples fitted well to a Poisson
distribution which assumes that the variance is equal to the
mean [24]. But, due to its cost reduction [26], biological
replicates have become available. So, a new phenomenon,
called overdispersion, is introduced making the Poisson dis-
tribution to underestimates data variation which results in
a higher false positive rate [34]. Thus, methods based on
negative binomial model were introduced as they deal bet-
ter with biological variability and overdispersion [2, 19, 35].
Overall, we have a small constellation of similar statistical
methods oriented to the same purpose: to determine the
DEGs. However, even if they approach the same question,
every method uses their inner way to get an answer; and the
problem is that it is not usually convergent [37, 39, 46]. We
have, therefore, a major dilemma: the way in which we face
the problem determines the result that we will obtain [37,
39, 46].

The aim of this study is to reduce the impact of this prob-
lem, in order to maximize and strengthen the detection of
DEGs. Consequently, we will evaluate the performance of
four widely used statistical software packages (baySeq [19],
DESEq2 [2], edgeR[35], lima - voom transformation[20, 38])
and build a scoring function around them. This scoring func-
tion is tuned through a validated data set (‘gold standard’)
with the aim of determining which genes are truly DEGs.
Then is tested with an experimental data set, which, in ad-
dition, is used for a complete RNA-seq analysis. It seeks to
observe how affects drought conditions to the growing of the
grass Lolium Perenne. Therefore, it is intended to provide
one more tool for the design of an RNA-seq experiment and
evaluate its results by performing a Lolium P. drougth stress
tolerance study.

2. MATERIALS AND METHODOLOGY

Unless specified, ongoing procedures are only applied to the
experimental data set and performed with R software [30].
Since we directly download cured count matrices, prelimi-
nary procedures do not need to be performed on the vali-
dated data set.

2.1 Data sets

2.1.1 Validated data set

For the gold standard, we use data presented in the Rajku-
mar et al. 2015 study [31]. Its experimental design is de-
picted in figure [2} In their study, they obtained RNA sam-
ples extracted from amygdalae micro-punches of a geneti-
cally modified mouse strain (Brd1+/-) and of their wild-type
(WT) littermates (8 biological replicates per group) [31].
After sequencing, they used 4 methods (Cuffdiff2 [44], DE-
Seq2, edgeR and TSPM [4]) to obtain each DEGs list [31].
Then, they randomly selected 115 genes from those who were
identified as DEGs by the four methods. Finally, they vali-
dated them using independent biological replicates and high-
throughput quantitative reverse-transcription PCR (qPCR)
[31]. Among data they present, which is contrasted and pub-
lic available, we can find the counting matrices they used for
the DEGs analysis. Thus, we obtain and use them for our
own DEGs analysis. We also download a file containing the
randomly selected 115 genes. It indicates whether they are

differentially expressed or not, according to the qPCR vali-
dation.

2.1.2  Experimental data set:

For the experimental data set, we use our own data; it comes
from growing the grass Lolium Perenne under four different
conditions, as depicted in figure 2] These are based on the
humidity of the soil, using a factor known as soil water con-
tent (SWC) and are intended to simulate drought conditions.
This way, the lower is the SWC the drier the soil, allowing
us to observe its effects on Lolium P. growth. Thus, plants
were grown in compost initially, single tillers taken, roots
cut close to base of plant, rinsed of compost and transferred
to containers of water until they showed new root growth on
a controlled environment at 20°C and 8 hours photoperiod.
After about 6 days on average they were put into 90 mm
pots of vermiculite (graded for horticultural use 2.0-5 mm)
to establish and watered with hoaglands twice a week. Once
established - between 15 and 21 days from tillering, water-
ing was stopped and SWC was monitored using a moisture
meter HH2 Delta-T meter (A Delta-T devices). Leaf and
root samples from same clones were samples and 35%, 15%,
5% and 1% SWC moisture levels were reached. Then, we
collect samples from two different tissues (root and leaf) of
each replicate. Leaf samples were cut and flash frozen in
liquid nitrogen and stored at -80°C. The roots were washed
with distilled water and blotted dry prior to storage also at
-80°C. At this point, we have 16 samples from each tissue
(4 for each SWC) ready for sequencing.

2.2 Sequencing:

Total RNA was extracted using Trizol reagent (from Thermo
Fisher) following the instructions provided by the vendor.
RNA extracts were then cleaned using a Qiagen RNeasy
MinElute column (cat no 74204). Then, samples were quan-
tified and send to IBERS genomic facilities for sequencing.
The pair end libraries were prepared in accordance to the
standard protocol provided by Illumina for the HighSeq se-
quencer, which returns us the raw data in .FASTQ [13] for-
mat. It is a compressed file which contains read data from
the sequencing process. Thus, it contains both the sequence
and an associated per base quality factor [13].

2.3 Quality control and Alignment:

Starting from the raw data, we perform a quality control
following these general criteria: (1) filter truncate reads (re-
move nucleotides at the beginning/end of each read). (2)
filter trim adapters (remove nucleotides at the beginning
and/or at the end of each read that match the adapter se-
quence). (3) filter low quality reads (GC content, PCR ar-
tifact, overrepresented k-mers...) [15]. Once the quality
control is done, we align our reads to a Lolium P. reference
genome [12]. Results are cointained in .BAM files [23].

2.4 Quantification:

The code used for obtaining the count matrices can be found
at [supplementary file 11 We want to evaluate differential ex-
pression among genes under our specific conditions so we
need to know the number of reads that map to each tran-
script sequence. This can be done at several levels (tran-
script, exon, intron.) but, since our goal are genes, we do
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Figure 2: Data sets experimental design. (a). Validated data set design. In this case, we have two groups
consisting of 8 individuals for each experimental condition (Brd1+/7 knockouts and wild type). From each
individual, a micro-punch of amygdala is extracted making a pool of 16 samples ready for sequencing.(b)
Experimental data set design. In this case, we have four groups consisting of 4 individuals for each experi-
mental condition (a 35%, 15%, 05% and 01% of Soil Water Content). From each individual, a sample of leaf
and root tissue is extracted, making a pool of 16 samples for each tissue ready for sequencing.

it at gene level. Thus, we perform the quantification by re-
lating our BAM files (which contain information about each
read and its genome coordinates [23]) to a reference genome
[12]. Our Lolium P. reference genome [12] is contained in a
.GTF file, which contains the genome coordinates of exons
and genes [15]. Then, using the R packages GenomicFea-
tures and GenomicAlignments [21] we build our counting
matrices. They contain the number of counts per annotated
gene for each sample.

2.5 Pre-Processing
The code used for the preprocessing for both root and leaf
samples can be found at [supplementary file 2|

2.5.1 Independent filtering:

Our first step, is to filter our counting matrices and eliminate
all those genes who have less than 1 count within all samples
[10, 40]. The main reason for this filtering concerns to our
statistical power. Later, we will be performing many statis-
tical tests with its consequently test correction. By omitting
those genes that have little or no chance of being detected
as differentially expressed, we avoid some statistical power
loss [10]. This way, we filter out unexpressed genes keeping
only genes that are expressed in at least one sample.

2.5.2 Multivariate visualization and ordination:

It is also crucial to look for batch effects and to assess the
global quality of our RNA-seq data. Hence, we are seek-
ing for samples whose experimental treatment suffered from

abnormalities that could make data points obtained from
them to undermine our global quality [15]. Before start-
ing with the procedures, and because count data is het-
eroskedastic, we apply the regularized logarithm transfor-
mation (rlog) that comes with the DESeq2 software package
[2]. If the data is used on the original count scale, the result
will be dominated by highly expressed, highly variable genes.
Thus, we use the shrinkage approach of DESeq2 to imple-
ment rlog transformation making data more homoscedas-
tic. It behaves similarly to a log2 transformation for genes
with high counts, while shrinking together the values for
genes with low counts[2]. This way, we manage to avoid the
spreading of data by creating a similar dynamic range [2].
Therefore, multivariate visualization and ordinations tend
to work better [2]. Once data is transformed, we perform
the following plots and analysis which help us to look for
between-samples biases: (1) Box and density plots. By ob-
serving the distribution of rlog counts we can contrast the
distribution of gene-level expression values on different sam-
ples. (2) Principal component analysis (PCA). PCA is used
to reduce multidimensional datasets to lower dimensions for
analysis; it is a technique that can determine the key fea-
tures of high-dimensional datasets. In other words, it gives a
view of the correlation of expression between samples: data
is projected on several axes (or components), ordered by de-
creasing significance [6]. This way we can express the max-
imum variation with the minimal variables. When plotted,
it is useful for visualizing the overall effect of experimen-
tal covariates and batch effects. In the context of RNA-Seq



Table 1: Features regarding the chosen software packges.

| Software Package Normalization Procedure

Distribution Assumption

Statistical Test

baySeq Quantile scaling factors
DESeq2 RLE
edgeR TMM

limma - voom transformation TMM

voom data transformation

Negative Binomial
Negative Binomial
Negative Binomial

Posterior Likelihood Comparison
Wald Test
quasi-likelihood F-test
Empirical bayes testing

analysis, PCA essentially clusters samples by groups of the
most significantly dysregulated genes. Clustering first by
the most significant group, then by progressively less signif-
icant groups. Given the experimental design of the dataset
that we are attempting to analyse here (e.g., samples belong
to four distinct groups), there should be a clear separation
of the groups of samples by the first components. So, bio-
logical replicates of the same condition will cluster together
[6]. (3) Heat map of sample distances. In a similar way,
and to explore the similarities and dissimilarities between
samples, it is often instructive to look a heatmap of sample-
to-sample distance matrix. There are several methodologies
to compute distances; in this study, we stick to Euclidian
distances

Once the multivariate visualization and ordination is per-
formed, we can evaluate if there are samples that cause batch
effects being this way considered as outliers. Normally it is
clear (e.g. a sample which does not cluster with any condi-
tion in PCA); although, sometimes, there are samples which
are not clear whether to be considered as outliers or not.
In these cases, it is useful to calculate the cook’s distance
among least-squares regression analysis of the two first PCA
variables. Those who are above four times the mean can be
considered as outliers [16].

2.5.3 Normalization procedures:

The code for normalization procedures can be found at
[plementary files 3| @, and @ Our final step for reducing
bias introduced by batch effects is normalization. The over-
all strategy is to choose an appropriate baseline, and express
sample counts relative to that baseline. This way, normal-
ization procedures take into account which is the sequencing
depth and the inner heterogeneity of count distributions. If
not, highly and differentially expressed features could skew
the distribution [11]. Each software package chosen for this
study has its own approach to achieve the normalization
goal: (1) Quantile scaling factors [11], used in baySeq. (2)
RLE [2], used in DESeq2. (3)TMM [33], used in edgeR and
limma - voom transformation. They are also resumed in ta-
ble[ll Despite these sample-specific normalization methods,
batch effects may still be present.

2.6 Differential Expression Testing

The code for defferential expression testing procedures can
be found at [supplementary files 3| |§| and m After
the pre-processing, data is ready for the statistical analysis.
We perform the differential expression testing for both the
validated and the experimental data set. This way, for de
validated data set we will be testing if there is an expression
pattern change between brd1t/~ strain and their wild type
littermates (figure [2). On the other side, for the validated
data set we will be testing if there is an expression pattern

change among 4 SWC levels which leaves room for several
comparisons. Hence, we decide to apply two approaches: (1)
testing against reference. We fix the 35% of SWC as our base
level (it is the further level from drought conditions) and
compare it against the other three levels. (2) testing against
time course. In this case, each SWC level is compared to
the one directly below it. Both approaches are depicted in
figure[3] So, the validated data set and both approaches used
for the experimental data set are tested with four software
packages which we proceed to present. Its principal features
are depicted in table [T}

Lolium P. Samples

J | ]
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Figure 3: Differential expression testing approaches
for Lolium P. leaf and root samples.

2.6.1 baySeq:

baySeq is presented in the 2010 Hardcastle et al. study [19].
It is based on estimating posterior likelihoods of differential
expression via empirical Bayesian methods [19]. It assumes a
negative binomial distribution [19]. Instead of regular signif-
icance values, it returns posterior probabilities and reports
a Bayesian false discovery rate (FDR) estimate [19]. Thus,
probabilities for differential and non-differential expression
are computed and compared [19].

2.6.2 DESeq2:
DESeq2 is presented in the 2010 Anders and Huber study [2].
It assumes a negative binomial distribution [2]. Its modeling



is based in the observed relationship between mean and vari-
ance [2]. Once data is modelled, a Wald test is performed
for significance testing: the shrunken estimate of log fold
change (LFC) is divided by its standard error, resulting in
a z-statistic, which is compared to a standard normal dis-
tribution [2]. It returns a significance value whom FDR is
controlled using the Benjamini-Hochberg procedure [8].

2.6.3 edgeR:

edgeR is presented in the 2009 Robinson et al. study [35].
It also assumes a negative binomial distribution [35]. In this
case, differential expression is assessed using an empirical
Bayes estimation and quasi-likelihood F-tests [35]. It re-
turns a significance value whom FDR is controlled using the
Benjamini-Hochberg procedure [8].

2.6.4 limma - voom transformation:

limma - voom transformation is presented in the 2014 Law
et al. study [20]. It also borrows tools from limma [38] (its
microarray-based sibling) and edgeR [35] whose normaliza-
tion procedures are required. Unlike the other packages,
it is not based on negative binomial distribution. It trans-
forms count data to logarithmic (base 2) scale and estimates
their mean-variance relationship seeking for linear model-
ing. Finally, Empirical Bayes testing is performed [20]. It
returns a significance value whom FDR is controlled using
the Benjamini-Hochberg procedure [8].

2.6.5 Scoring function:

From each software package, we obtain a list of genes with
an associated significance value. We could use that value to
set a threshold and decide whether a gene is differentially ex-
pressed or not. However, we choose a different approach and
decide which genes are differentially expressed by building a
scoring function around the significance values as depicted
in figure [ The aim of the scoring function is to use the
validated data set to find a threshold from whom we can
decide which genes from the experimental data set can be
considered as DEGs. The first step is to convert signifi-
cance values to a unit that allows us to compare them. We
choose to transform all significance values to z-scores [7]. It
is the difference between a significance value and the mean
for that significance value divided by the standard deviation
for significance value as seen in equation

(1

Where Y represents a significance value, p represents its
mean and o its standard deviation.

With this transformation, we do not only make the different
values of significance obtained comparable to each other but
make them independent of their population size [7]. Once
we have our z-scores, we are ready to find and set our sig-
nificance threshold. We try four definitions for our scoring
function: (1) The sum of z-scores, as depicted in equation
(2) The mean of z-scores, as depicted in equation |3] (3)
The median of z-scores, as depicted in equation [4} (4) The
variance of z-scores, as depicted in equation

Validated data set
significance values

Validated data set
Z-scores

Lolium P. Lolium P.
significance values Z-scores

Gene is not Gene is

considered
DEG

considered
DEG

Figure 4: Diagram depicting how the scoring func-
tion works. In brown, we can find the validated
data and its role in fixing the optimized threshold.
In blue, we can find the experimental data and how
the previous threshold is used for determining the
DEGs.

After applying the equations to the validated data set, we
obtain a list with genes and their associated four scores.
Using their gPCR validation study [31], we know from 115
genes who are whether true positives (detected as DEG and
validated with qPCR) or false positives (detected as DEG
and not validated with gPCR)). We mark them and rearrange
the list until we find which function and score allows us to
have the higher precision and recall [5].

Zsum = Z Zscores (2)

Where Z represents each gene z-score obtained from each
software package.
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Zmean =

Where Z represents the z-score of each gene and n is the
total number of z-scores.

Zmedian = O(n+1)/27 (4&)
Zmedian = (Ony2 + Ony(241))/2, (4b)

Where O represents the sorted z-score of each gene and n is
the total number of z-scores. In case that n is odd, equation
4a is used. Otherwise, we use equation 4b.

Z(Zsco'res - Zmean)2
n—1

()

Zyariance =

Where Z represents the z-scores of each gene, z-mean repre-
sents its mean and n is the total number of z-scores.

At this point, we know which scoring function and score per-
forms better; we set it as our optimized significant threshold.
Then, we transform the significant values from our experi-
mental data set to z-scores. We know which function to
apply, thanks to our previous work with the validated set.
We apply it, and, using the optimized significance threshold,
assess which genes are to be considered DEGs. The whole
process is depicted in figure [

2.7 DEGs annotation and functional analysis
Finally, we want to annotate our results and perform a func-
tional analysis. We use the Blast2GO tool [14] for both pur-
poses. Our first step is to retrieve the sequence and genome
coordinates from our DEGs. Then, the program annotates
the sequences using the BLAST[1] and interPro [17] algo-
rithms. Once we have the annotated DEGs, the program
continues with the functional analysis for which relies on
Gene Ontology (GO) database [9]. Thus, each gene gets
its biological context from the three ontologies (biological
process, molecular function, cellular component) included
in the database making its functional annotation complete.
Our last step is to run a fisher’s exact test [45] to find which
GO terms are overrepresented in our data set compared to
the reference genome [12]. Then, they are depicted using
Revigo plots [41]; its goal is to summarize long, unintelligi-
ble lists of GO terms by finding a representative subset of
GO terms using a clustering algorithm that relies on seman-
tic similarity measures[41]. Among other values, it returns
a uniqueness and a dispensability value. The first one mea-
sures how unique is a term when semantically compared to
the whole list. On the other hand, dispensability sets the
threshold at which a term is removed from the list or as-
signed to a cluster [41]. Thus, a reduced list of GO terms
can be depicted and visualized in function of their seman-
tic relatives. Revigo plots are based on multi-dimensional
scaling, as seen before with PCA. This way, GO terms di-
mensionality is reduced and those which are semantically

similar cluster together. In this case, axes have no intrin-
sic meaning. The plots also allow to show the GO term
significance, in terms of overrepresentation.

Once the whole process concludes, we end up identifying
which genes are differentially expressed and with a knowl-
edge of their biological context. Hence, we are in strong po-
sition for evaluating the effects of drought stress in Lolium
P. expression pattern.

3. RESULTS AND DISCUSSION

3.1 Pre-Processing

We start the pre-processing analysis with the count matrices
obtained from the quantification process. Once, the inde-
pendent filtering is done we proceed to check for abnormal-
ities on the sample-sample relation, both for leaf and root
samples.

3.1.1 Experimental data set - Leaf samples:

All 16 samples from the leaf tissue behave as expected. Ob-
serving the box and density plots we can state that there is
no sample with an unusual counting behaviour. Both plots
can be found at [supplementary file 2| Also, PCA analysis
and heat map of sample distances show great results. In the
PCA plot, depicted in figure |5| (a), we can see how samples
cluster by condition. Thus, each sample fall within its SWC
ellipsis and there is none who appears separately. The moti-
vation behind the PCA is to find to find new variables that
explain as much of the variability as possible. Each new
component results from the sum of the initial variables [6].
Thus, PCA components correspond to the direction of great-
est variability [6]. Moreover, within the first two components
of the PCA the 69% of data variance is contained.This way
we can state that: (1) leaf samples variability is driven by
SWC and (2) most of the data set variability is explained
by the SWC.

Heat map results, depicted in [5| (b), show results in the same
direction. The closer is the Euclidian distance between two
samples, the bluer is their relation. This way, samples from
the same condition show the deeper blue and fall in the same
branch of the hierarchical cluster dendrogram.

Finally, we observe that 01% samples are further from the
others both in the PCA and the heat map. Variability re-
flects expression patterns, so we have the first indicator that
in drought conditions Lolium P. leaf tissue change its ex-
pression pattern.

3.1.2  Experimental data set - Root samples:
Contrary to what we see with leaf samples, root data analy-
sis does not have a straightforward lecture. Counting plots,
which can be found at [supplementary file 2| show the ex-
pected results. But it is in the PCA analysis and heat map
when samples start to behave oddly. If we observe the PCA
components, depicted in figure 5| (c), results go in the same
direction that leaf samples. Most of the variability is ex-
plained by the SWC condition (in this case it goes up to the
86%). However, we can see that not all samples fall with
its condition. Even we can suspect of samples being outliers
because they fall far apart from they own kind.
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Figure 5: Pre-processing results of leaf and root samples.(a) Leaf samples PCA plot. (b) Heat map of leaf
sample distances.(c) Root samples PCA plot. (d) Heat map of leaf sample distances. Color code: purple for
35%, blue for 15%, green for 05% and red for 01% level of Soil Water Content.

Heat map results, depicted in figure [5[ (d), show results in
the same direction. Samples do not cluster well in the den-
drogram. We can also see that there are more clusters than
conditions, and samples which fall within wrong condition
clusters. Even so, by only observing the plots we cannot
state that bad clustering answers to an outlier situation.
This way, we decide to compute the cook’s distance among
least-squares regression analysis of the two first PCA vari-
ables. Results are depicted in a plot, which can be found in
lsupplementary file 2| and in table We can observe that
replica 1 for 35% is close to reach the four times the mean
threshold, but it does not. So, none of the samples have a
bigger than four times the mean cook’s distance. Thus, we
decide that none of the samples should be considered an out-
lier and that oddities are not due to batch but experimental
effects. Consequently, none of the samples is removed from
the analysis and it proceeds even with the multivariate and
ordination oddities.

Table 2: Cook’s distance among least-squares re-
gression analysis of the two first PCA variables for
each experimental condition.

| 3% 15% 05% 01% |
Replica 1 84.50 1.98 0.15 0.35
Replica2 0.19 0.26 0.04 0.01
Replica3 0.62 1.11 0.43 0.26
Replica4 0.06 0.12 1.26 0.01

[ Mean (4x) 85.37 3.47 187 0.63 |

3.2 Differential Expression Testing:

From each analysis, we obtain a list of genes with an asso-
ciated corrected significance value. Those lists are at
[plementary files 8 [0] [[0} [II] and [[2] This way, we could
infer from this value whether a gene is considered as differ-
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ently expressed or not by setting a significance threshold.
However, we use a different approach which is assessing the
significance with the scoring function. Thus, we apply the
z-transformation to each gene’s significant values. On aver-
age, each gen has four associated significant values, one per
each software package. Although there are few genes that
have less than four related significant values. That is caused
by the internal gene outlier detectors from each procedure,
which cannot be skipped. Those detectors are not coincident
making some genes to have less than four related significant
values. Consequently, they also have less z-scores. Once we
have the z-scores we proceed to apply the scoring functions,
to both the validated and experimental data set.

3.2.1 Validated data set:

Data resulting from applying the z-score transformation and
the scoring function to the validated data set can be found at
[supplementary file 8 The goal on using a validated data set
is to set an optimized significant threshold (figure . After

highlighting the true and false positives and rearranging the
list using the four scoring functions, we notice that the mean
one (equation [3) performs better than the others. We have
a population of 115 genes, 60 from which are true positives
and 55 which are false positives. Using the mean of z-scores
as scoring function and fixing a threshold of -0.75, we detect
50 out of 60 true positive genes (83.3%) and 8 out of 55 false
positive genes (14.54%). Thus, we have a great precision and
recall which leads us to set a z-score mean of -0.75 as our
optimized significance threshold. This way, the purpose of
the validated data set is accomplished, and no further details
(e.g. which genes are detected, biological implications.) are
commented.

3.2.2  Experimental data set - Leaf samples:

Data resulting from applying the z-score transformation and
the scoring function to the leaf samples can be found at
[supplementary files 9 and [I0] It is also resumed in table [3]
which depicts the total number of DEGs detected.




Table 3: Number of Leaf DEGs detected on each sta-
tistical approach (against reference or time course)

Leaf
35%-15% 35%-05% 35%-01%  35%-15% 15%-05% 05%-01%

Overall, despite punctual differences, we also observe that
the number of DEGs increases as the SWC drops. So, there
is differential expression pattern in Lolium P. root tissue.

3.3 DEGs annotation and functional analysis
Data resulting from the functional analysis can be found at

Against Reference
[ 6242 7082 8412 6247 6937 7703 |

[supplementary files 13} [T4] and [I5] In this section, we only

We observe that using the time course approach we detect
less DEGs than the ones detected with the against reference
approach. Talking from the point of view of physiological
context, comparisons in the time course approach are closer.
This way, it is expected that the expression pattern suffers
less changes, which is what we are observing. Following the
same argument, it makes sense that the 35%-01% compar-
ison (highest change in SWC) is the one with the highest
number of DEGs.

We also draw Venn diagrams (figure |§| a and b) to evalu-
ate how DEGs are distributed among comparisons. Thus,
we can observe how many genes are shared among different
comparisons and how many are not. There is no comparison
whose DEGs are completely included in the others. More-
over, each comparison has its own pool of DEGs which are
independent from other contrasts.

Overall, we observe how, in both approaches, the total num-
ber of DEGs increases as the SWC drops. This states that
there is differential expression pattern in Lolium P. leaf tis-
sue. We have to make sure that this change of expression
pattern is related to the drought stress conditions which is
revealed in the functional analysis part.

3.2.3 Experimental data set - Root samples:

Data resulting from applying the z-score transformation and
the scoring function to the leaf samples can be found at
[Fupplementary files 11 and [I2] It is also resumed in table[d]
which depicts the total number of DEGs detected with each
statistical approach.

Table 4: Number of Root DEGs detected on
each statistical approach (against reference or time
course). Abnormal results are coloured in light red.

Root
Against Reference
35%-15% 35%-05% 35%-01% | 35%-15% 15%-05% 05%-01%

[ 2137 3297 5219 2109 350 4792 |

The pattern observed in leaf samples, where against refer-
ence has more DEGs than time course is not that clear in
root samples. Thus, not all time course contrasts have less
DEGs than against reference contrasts. There is one com-
parison which clearly breaks the pattern by showing an ab-
normally low number of DEGs. It is the time course com-
parison 15-05%, and we obtain 350 DEGs. Back to the pre-
processing results (ﬁgure, we already saw that root sam-
ples do not cluster well; so, it is not surprising that expres-
sion pattern between close samples, such as 15% and 05%
show less DEGs. We also draw Venn diagrams (figure |§|, c
and d) and drive similar conclusions than with leaf samples.

present and discuss data resulting from leaf samples, time
course analysis. The other three approaches are currently
under processing, so their results cannot be presented.

3.3.1 DEGs Annotation:

Using our DEGs sequences and the Blast2go tool, we seek
for homology using the BLAST and interPro algorithms.
Unfortunately, not all our sequences present homology; for
all three comparisons, we manage to annotate around the
82% of their DEGs. Thus, each sequence has now an asso-
ciated description and one or more GO ids. The other 18%
of sequences remain unannotated and, consequently, cannot
proceed with the functional analysis.

3.3.2  Functional Analysis:

We seek for overrepresented GO terms in our DEGs anno-
tated pool by using the Fisher’s exact test. Those GO terms
which have an adjusted p-value lower than 0.05 are consid-
ered as overrepresented. Hence, we run the test for our three
comparisons gene pool and using an annotated genome as
reference. Results are depicted in figure [7}

Number of overrepresentated GO terms

variable

. Biological Process
[ cell component
. Molecular Function

Number of GO terms

0-

359%-15% 159-05% 05%-01%
Comparison

Figure 7: Number of overrepresentated GO terms
obtained in each comparison.

So, we observe that 05%-01% is the comparison which has
more overrepresented GO terms, which is linked to the fact
that it also has the biggest DEGs pool. We also observe
that biological process is the ontology with more hits for all
comparisons. It is a more general ontology than other two
so it makes sense that it capitalizes more hits. Moreover,
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Figure 8: Biological process GO terms.(a) 35% - 15% comparison reviGO plot. (b) 15% - 05% comparison
reviGO plot. (c) 05% - 01% comparison reivGO plot. (d) Leaf samples GO terms venn diagram.

we are seeking if differences in the expression pattern are
linked to drought stress. Consequently, we decide to focus
on biological process ontology rather than cell component or
molecular function.

Next step in our enrichment analysis, is to run the Revigo
clustering algorithm for the three comparisons. We are in-
terested in the way the algorithm clusters and depicts GO
terms rather than reducing our list. This way, we allow a
large dispensability value and only exclude those GO terms
from our list whose number is above 90%. Then we draw a
Revigo plot for each comparison. We also draw a Venn di-
agram showing which biological process GO terms are com-
mon among comparisons. They are all together in figure
Not all GO terms are shown in the plot in order to allow a
correct plot visualization. We observe that in all three com-
parisons, the most significant GO term (blue dot) is cellular
process. It is followed by some green and mostly unrelated
dots. Then, we find a cluster of yellow dots which are related
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to metabolic processes. Finally, we find the red dot clusters;
although they are the ones with the lower loglO p-value,
they are still significant and yield the highest relevance for
our study.

There is a common cluster in all three comparisons which is
formed by “response” related GO terms. Among others, we
find the GO terms “response to stress”, “response to external
stimulus” and “response to abiotic stimulus” which can be
all directly linked to drought stress. This way, among other
causes, our expression pattern change is related to SWC con-
ditions. Also, the GO term “homeostatic process”, found in
15%-05% and 05%-01% comparisons, becomes highly rele-
vant when talking of drought stress. As the SWC drops, the
soil salinity increases involving both osmotic and ion toxicity
effects on cells affecting its homeostasis [47].

There is also a cluster formed by “cell differentiation” related
GO-terms, which is shared by the 15%-05% and 05%-01%



comparisons. Plants, as sessile organisms, have evolved to
adapt and respond to several environmental stresses includ-
ing drought conditions. Thus, growth and development is
adjusted as a response to drought stress [28] involving the
change in expression pattern that we detect.

Finally, and focusing on the Venn diagram, we observe that
most of the GO terms are shared among the comparisons.
In fact, only the last comparison (05%-01%) has 4 GO terms
which are not found in the other comparisons. Among those
4 there is the GO term “photosynthesis”; drought stress has
been related to a decrease in leaf water potential and stom-
atal opening, leading to a dysregulation of those genes re-
lated to photosynthesis [27]. Thus, we obtain another GO
term related to drought pressure when it is at its highest
rate. This reinforces the argument that the expression pat-
tern change is led by the drought pressure.

Overall, the functional analysis allows us to stablish a direct
link between the SWC conditions fixed in our experimen-
tal design and the detected DEGs. It is a consequence of
the connection between the above-mentioned overepresen-
tated GO terms and plant drought stress response literature.
Those GO terms are linked to DEGs, which automatically
become candidates for further analysis of Lolium P. drought
stress tolerance. But we must remember that those DEGs
are yet to be verified. Even when the scoring function is
build around a validated data set and statistical evidence
points out that a gene is a DEG a validation procedure
needs to be performed, e.g. qPCR validation. Otherwise,
we cannot assure that the expression pattern is truly be-
ing modified by our experimental conditons. Thus, this ap-
proach, along with other several RNA-seq pipelines, allows
us to narrow and focus our point of view. But, given the
magnitude of an average transcriptome, to end up with list
of possible DEGs to focus on is a great result; and, actually,
the aim of most RNA-seq studies.

4. CONCLUSIONS

Our goal is to build a scoring function to maximize and
strengthen the detection of DEGs. Then, to test it with
an experimental case which is the evaluation of Lolium P.
expression pattern under drought stress conditions. When
assessing for differentially expression using the four above-
mentioned packages we obtain different results, both for the
validated and the experimental data sets. This highlight
that RNA-seq analysis requires improvement. The scoring
function, using a z-score mean approach, allows us to detect
not only almost all the qPCR verified DEGs from the val-
idated data set but include few false positive genes. Then,
when applied to the experimental data set, it allows us to
detect DEGs and link them the drought conditions. Conse-
quently, our approach has been proven successful for detect-
ing DEGs related to experimental conditions.

Even when the method works, there is room for its improve-
ment. First, the qPCR validation gene pool was too lit-
tle in respect from those considered as DEGs. For most
of those genes considered as DEGs after the scoring func-
tion is applied, we do not know whether they are true or
false positives. Thus, using a larger validated data set could
strengthen our procedure allowing a better development of
the scoring function. The function could also be improved
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by calibrating the weight of each package to the score; we
compute the score using data from all the testing packages
when we could use combinations of testing packages. Thus,
it would allow us to determine which packages contribute the
most to the score used for detecting DEGs or, on the con-
trary, which undermine the score. The procedure could also
be improved with the addition of more software packages for
DEGs testing.

Finally, we have a pool of DEGs related to drought response
in Lolium P. leaf tissue. Thus, after the functional analy-
sis of the remaining samples and once they are validated
(e.g. via qPCR) we will have some target genes. Thus, fur-
ther analysis based on those genes can be developed allowing
us to characterize the molecular pathway behind Lolium P.
drought stress response.

S. SUPPLEMENTARY MATERIAL

In this section, one can find the relation of supplementary
material linked to the study

Generating count matrices
Pre-processing analysis
baySeq analysis

DESeq2 analysis

edgeR analysis

limma - voom analysis

Supplementary File 1:

Supplementary File 2:

Supplementary File 3:

Supplementary File 4:

Supplementary File 5:

Supplementary File 6:

Supplementary File 7: Scoring function analysis

Supplementary File 8: Validated data set differen-

tial expression testing results

e Supplementary File 9: Leaf Samples (against ref-
erence) differential expression testing results

e Supplementary File 10: Leaf Samples (time course)
differential expression testing results

e Supplementary File 11: Root Samples (against ref-
erence) differential expression testing results

e Supplementary File 12: Root Samples (time course)
differential expression testing results

e Supplementary File 13: Leaf Samples (time course)
annotation results

e Supplementary File 14: Leaf Samples (time course)
Fisher’s test results

e Supplementary File 15: Leaf Samples (time course)

reviGO results
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