FINE FREQUENCY OFFSET ESTIMATION FOR OFDM
SIGNALS IN FREQUENCY SELECTIVE CHANNELS

P. Marti-Puig , J. Sala-Alvarez (*)

Dept. Signal Processing, University of Vic, Sagrada Familia 7,08500 Vic (Spain)
(*) Dept. Signal Theory and Communications, Polytechnic University of Catalonia,
Jordi Girona 1-2, 08034, Barcelona (Spain)
e-mail:pere.marti@uvic.es, alvarezQgps.tsc.upc.es

ABSTRACT

In this paper we derive a fine frequency estimator for
OFDM (Orthogonal Frequency Division Multiplexing)
systems in frequency selective channels using an ap-
proximation to the ML (Maximum Likelihood) princi-
ple. Advantage is taken from the redundancy introduced
by cyclic extensions -the common strategy used to avoid
IST (Inter Symbol Interference)-. In [1], Sandell, Van de
Beek and Borjesson derived one such joint time and fre-
quency ML estimator using cyclic extensions. In their
work they assumed an ideal channel for the OFDM sig-
nal, so that performance is degraded in frequency selec-
tive channels. A reasonable approximation to the ML
criterion is used to derive a fine frequency estimation
algorithm based on the second order statistics of the
received signal.

1 INTRODUCTION

In OFDM transmission, a single data stream is trans-
mitted over several lower rate orthogonal subcarriers.
OFDM is an efficient technique to deal with multipath
propagation because for a given channel delay spread,
its implementation complexity is lower than for a single
carrier system with an equalizer [8]. OFDM is robust
against narrow band interference and avoids ISI when a
cyclic prefix longer than the channel impulse response
length is included. OFDM is used in single-frequency
networks for broadcasting applications. It has been
adopted for some standards such as DVB (Digital Video
Broadcasting), DAB (Digital Audio Broadcasting) and
appears as an important technology in wideband data
communications, such as ADSL, VDSL and HiperLAN.
One potential disadvantage of OFDM-based systems is
its sensitivity to frequency offset which originates ICI
(Inter-Carrier Interference) at the receiver. OFDM sys-
tems only tolerate a carrier frequency offset correspond-
ing to a small fraction of the subcarrier spacing with-
out incurring in large system performance degradation
[2]. In continuous data stream transmissions, frequency
synchronization is achieved in two steps. First, the fre-
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quency offset is reduced to 5 of the subcarrier spacing

and second, in the tracking process, fine frequency offset

estimation and correction are accomplished. There are
many methods that allow to extract the fine frequency
offset from the OFDM signal [3]. In [1], it was observed
that no extra information need be inserted for fine fre-
quency estimation because it is possible to extract it
from the cyclic prefixes. Nevertheless, the ML esti-
mators were obtained under the consideration of ideal
channel. Complexity is increased in frequency selective
channles. In this work, we propose a fine frequency es-
timator for frequency selective channels based on cyclic
extensions.

2 SIGNAL MODEL: SECOND ORDER STA-
TISTICAL CHARACTERIZATION

Let us consider the samples of the base-band OFDM
symbol ordered in vector s(k), formed by applying the
normalized IDFT (Inverse Discrete Fourier Transform)
matrix, F~1, to the vector of data symbols c(k) as fol-
lows:

s(k) = F'c(k) (1)

The data elements in c(k) have zero mean and are sta-
tistically independent. The cyclic extension is formed
by appending the last P samples of s(k), called sp(k),

s(k)" = [sn—p(k)"sp(k)"] (2)
at the beginning of s(k).
[sp (k) sn—p (k) sp(k)"] (3)

where the superindex 7 indicates transpose. Next, each
symbol (k, k — 1,...) is ordered sequentially in vector x
to form the data stream,

. T
(4)

Then, we can write the vector of samples y at the re-
ceiver as follows,

x=|[ sphk—1) sT(k—1) sp(k) s™(k)

y=EHx+n (5)

where vector n represents the zero mean AWGN (Ad-
ditive White Gaussian Noise). Matrix H models the



convolution between x and the elements of the sampled
channel impulse response h,,. The impulse response has
a finite length of L samples.We have,

hp—1 - ho
H(A,A+L—1) = thl B hO (6)

where null elements are not represented. When nec-
essary, the dimensions of a rectangular matrix will be
shown in parentheses. Diagonal matrix E models the
frequency doppler. We have,

E = e/ diag {e’”"} per n=0,1, -, dim(E) — 1 (7)

The parameter ¢ (to be estimated) is the relative fre-
quency offset due to the intercarrier spacing. The term
¢p is irrelevant to the estimation of Doppler. So, with-
out loss of generality, we set ¢y = 0.

At this point it is important to note that we as-
sume the hypothesis of considering the parameters ¢
and hr_q - - - hg deterministic but not known. Now, let
us look at vector c(k) in (1). As its elements are unncor-
related and F~! is an orthogonal operator, the elements
of s(k), s;(k), are also uncorrelated. If N, the number of
subcarriers, is high, the values of s;(k) can be modeled
as a zero mean Gaussian probability density function.
For N = 16, this is an accurate approximation if data-
symbols s;(k) are binary [5]. This leads to modeling the
samples of y as a multivariate normal distribution with
first- and second-order moments:

Ely]=EHE[x] + E[n] =0 8)

R,, = E [y y"] = EHR,,H"E” + R,, (9)

Here, it is interesting to observe how cyclic extensions
appended to each symbol introduce correlation in the
process x and therefore in y. This can be appreciated
if Ry, is written as:

R,, = o’EHHY”EY 1,21

J

+02EH J H”E"(10)

where submatrix J is defined by means of a P x P iden-
tity matrix I py and a N —PX N — P null matrix O(x_p)
as
Lip)
J= Ov-p) (11)
Lip)

This expression shows in which way the discontinuous
lateral diagonals appear. The contribution of matrix H
in Ry, can be seen as a spreading effect over the main
and the two discontinuous lateral diagonals. Note than

R,, is periodic, and the process y is cyclostationary.
Another interesting matrix expression of the non zero
elements in both discontiuous lateral diagonals can be
obtained after a subblock partition analysis of R, that
gives for the upper and lower diagonals,

—joN H H
Rpoa) = ¢ VEHap @3 b ElL)  (12)

Ropa) = ¢ VEwHap®mH G BN, (13)

respectively, where matrix ®.) is defined by using the
null matrix O(. and the identity matrix I.) as follows,

O-1
1) (14)
Ow-n

Q5 =

All matrix dimensions in (12)(13) and (14) are expressed
in terms of the impulse response length L and the cyclic
prefix length P in the following way: A = P4+ L —1 and
B=P+2(L-1).

3 MAXIMUM LIKELTHOOD FUNCTION

Let us consider a set of 2N + P + L received samples in
vector y modeled as a zero mean complex multivariate
normal distribution.

1

_JHR-1
f(y|¢7H’O'.12:70"3,) = m2N+P+L-1 |R e Royy (15)

l/y‘

In our model we assume that the parameters ¢ and H
are deterministic but unknown.

A complex Gaussian process is completely defined by
its first and second-order moments. After considering
the second order expression in (10) and observing that
this moment destroys phase information, we change the
space of variables as follows,

H = o,EH (16)

This is motivated by the fact that in the maximization
process we will take derivatives in the new space of para-
meters, so replacing 8%5, % for a%s’ %. This new space
of parameters brings some new considerations into play.
The first, that the main continuous diagonals in R, do
not depend on ¢. The second, that only the discontin-
uous lateral diagonals convey information on ¢. As can

be seen,
Rysa) = E [ypyl'] = e 7"NH{ 4 5@ pH{E 4y (17)

Ry, = E [y,yl] = €j¢NH'(A,B)‘I’(B)H/(g,A) (18)

Here, vectors y, and ys have dimension P+ L — 1 x 1.
The first samples of y, and y, are spaced a number of
N samples of distance into vector y.

When the vector y in expression (15) is the obser-
vation vector, expression (15) becomes the maximum
likelihood function. After some tedious calculations in-
volving a representation of y in terms of its subvectors



yp and y; and a R, subblock decomposition in which
R, and R, explicitly appear, it is possible to prove
that we can approximate the ML function as,

(y|¢7 Hl ’I" 7)) ~ f(YP7y9|¢? HI? 0-3‘70-7%) (19)

We can show some details on this approximation in [5].
In the following, we use expression (19) to derive the
frequency estimator. We refer to it as the approximate
ML function. This expression, in terms of the Ry, is
represented in figure 1. We have:

f(yPa yslo, H', o ’I'? n)
Ll e ]

Where,
y H R Rs
R=E P y ys |: PP P :| 21
[ys][p I=|rl .| @V

Ryp =R = H/(A,B)Hzg,A) +onl (22)
R, =Rl = 67j¢NH/(A,B)(I>(B)H2g,A) (23)

In order to maximize this function with respect to the es-
timation parameter ¢, we can write the approximate log-
ML function A(y,,ys/H', ¢, 02) taking the logarithm of
(20). Next, we show some partlal results to achieve this
goal. It is necessary to put the determinant and the in-
verse of Ry, in terms of its subblock matrices Ry, R,

R,; and R,, . Using some determinant properties [7]
we have,
de t' RPP gz; = det |Ryp| det | R, — RpsR,RIL

(24)
Where it can be proved [5] that R, is non singular.
Using the matrix inversion lemma [7] we can formulate
the inverse of Ry, in the following way:

-1
R, R,]|] _[A B (25)
R., R, C D

A = (R, -R,RRL)™ (26)

_ _ -1

B = -R, 'R, (R,,—RIIRR,.)  (27)

C = - (R, -RIR, R, )‘1R;£R;p1 (28)

D = (R, —R,R; 1RH) (29)

Here, it is possible to find different equivalences for
A, B,C and D. At this point it is very important to
prove that there are no singularity problems. Using
some properties of Hermitian matrices this can be done
[7] ( the matrix products H'()sz)[ i H24)<I>(_)H’(’_T§ are
hermitian and R, = Rf) Now we define A, as:

A =R,, - R,R, R/ (30)

Matrix A and its inverse, which can be proved to be
non-singular, are Hermitian, independent on ¢ in the
new parameter space and only dependent on subblock
matrices R,,, and R,,. After some algebra the ap-
proxnnate log ML function A(y,,ys/H', ¢,02) in terms
of (30) is

A(YpyYS|H/a¢7U727,)
= —In72(P+HL=D _Indet |Rp,,| det |A|
—yHA’lyp yiAa-ly,
+ ¥R, lRpsA 'yo+yPAT'RLR, Y

(31)

Note that this function depends on ¢ and H'.

4 DERIVATION PROCESS

With the intention of maximizing the approximate log-
ML function, we determine the corresponding score
function s(y,,ys/H',¢,7,02) by differentiating (31)
with respect to the known parameters,

S¢(Yp>Ys|Hla¢>Ta UEL) (32)

_ 9 : 2
- 8¢ In f(ypays|H a¢a T, Un)

0
= 8_¢A(YP7YS|H/7¢7 T, U'I2L)
Taking into account the implicit dependency of (32) on
¢ and H' this expression can be written in terms of R,,
(22), and Ry, (23) and A (30) as:

8¢(yp,y H', ¢, 7,07) =
—JNyIR, Ry (9) Ay, +iNyH AR, (¢) R,,'¥p
—2N1m[ R 1R1,<,(¢)A ! ]
(33)
Where the dependency of R, on ¢ is indicated, Rps =
R,s(¢). Next, from our model, the estimator can be
obtained by solving the following equations.

SH/ (YP7 YS|H17 (by 0-727,) =0 (34)

s¢(yP7yS‘Hl7$7 0721) =0 (35)

Channel estimation involving equation (34) is avoided
for reasons of mathematical complexity. We focus our
attention in (35), getting,

3= —angle[ IR, HEH A Yy, (30)

Where matrix ® is defined in (14). Before expres-
sion (36) becomes an estimator, some questions need
be solved. First, as we assume perfect time information
we are able to compute a ML estimation of R,, and
consequently we can obtain a ML estimation for R,
and for R,,. This allows us, using the invariance princi-
ple [7][4], to replace R,, and R, for its ML estimation,
R,,_ v and Rys_pp, in expression (36). The second
and most important question is that if equation (34) is
not solved, we do not have any estimation of H'. To
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Figure 1: Comparation between Sandell and our esti-
mator.

overcome this, we need to make an approximation. The
following step is to consider:

H®H" ~ ¥ (37)

Oy
v = Lp_r41) (38)
O-1

This approximation can be justified [5] after observing
that the elements of the main diagonal matrix H'®H'"
in the same positions that those in ¥ are real and have
a larger modulus than those in H’®H'". This allows as
to formulate the following estimator:

~ 1 - B
¢ = Nangle [ypr;_ML\IIAMlLyS} (39)

Where:
Az = Ryparr = Rps vt R,y Ry v, (40)

5 SIMULATION RESULTS

In this section we have compared our algorithm with the
performance of Sandell’s algorithm for OFDM symbols
with N=64 information samples and a cyclic extension
of 16 samples. In both cases the same sampled channel
has been used. It has an impulse response length of 10
samples statistically modeled with a Rayleigh distribu-
tion.

6 SUMMARY

A Non Data-Aided fine frequency OFDM estimator for
frequency selective channels has been derived by using
the cyclic extension. When the channel is slowly time
warying our method outperforms Sandell’s estimator,
based in cyclic extensions but derived assuming an ideal

Melatrix thert sffocts ¥, e y, veotors in frequency cotmalon

Figure 2: Matrix R;pl_ML\I'AX/A,lL when P=16 and L=10.
The channel has a Rayleigh distribution.

channel. The proposed algorithm requires the estima-
tion of the autocorrelation matrix. When we particular-
ize our expressions for the ideal channel, that is L=1,
Sandell’s estimator is reproduced.
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