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ABSTRACT 

 A complete bioinformatics pipeline for Next Generation Sequencing (NGS) 

analysis has been developed and applied to study the association of called variants with 

susceptibility in Idiopathic Pulmonary Fibrosis (IPF). This bioinformatics pipeline 

integrates the Genome Analysis Toolkit (GATK) with state-of-the-art bioinformatics tools 

such as quality control reporters, aligners, alternative callers (i.e. Platypus), annotators, and 

auxiliary tools. The pipeline executes a sequence of SBash and Bash shell scripts by queuing 

the programmed jobs to a SLURM queue at a cluster server provided by La Laguna 

University (ULL). It is also executable with a local Linux machine. 

 We tested the pipeline by calling single nucleotide polymorphisms (SNPs) in 

targeted NGS data from 192 individuals with IPF, where 16,253 variant sites were 

identified. The call concordance between the two utilized callers (GATK and Platypus) was 

estimated at 77.8% when we compared matching overlapping sites. With this data, an 

association study following an unmatched case-control design was performed using 

unrelated European individuals (n=501) from The 1000 Genomes Project as controls. 

Logistic regression models were applied to the phenotype trait using genotypes from the 

10,245 SNPs with call rates >95%, adjusting with five principal components to account for 

population stratification. Despite the reduced sample size, we identified 38 variants 

reaching genome-wide significance (p<5x10-8), including one previously identified in the 

promoter region of MUC5B gene (rs35705950), and several other novel susceptibility 

variants. 
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1. INTRODUCTION 

 Idiopathic Pulmonary Fibrosis (IPF) is a low incidence (4.6-16.3/100,000 person-

year), devastating disease with unknown etiology and high mortality. IPF has a median 

survival of 3 years after diagnosis [1] and is characterized by a relentless progression in 

interstitial fibrosis and a progressive decline in gas exchange [2]. IPF, which typically affects 

adults males over the age of 65 [3], is difficult to diagnose and its clinical course 

unpredictable [4]. To date, lung transplantation remains the only successful treatment 

option for improving survival. 

 Single nucleotide polymorphisms (SNPs) in TERT, TERC, RTEL1, SFTPA2, and 

SFTPC genes have been firmly associated with IPF susceptibility, primarily in the familiar 

forms of the disease [5,6,7]. In addition, two independent genome-wide association studies 

(GWAS) have identified additional loci associated with IPF susceptibility, including 

FAM13A (4p22), DSP (6p24), OBFC1 (10q24), ATP11A (13q34), DPP9 (19p13), variants 

in chromosomal regions 7p22 and 15q14-15, MUC5B-TOLLIP (11p15), MDGA2 

(14q21.3), and SPPL2C (17q21) [5,8]. These findings suggest that the etiology of IPF might 

involve multiple genetic loci. However, although these common and rare variants have 

been shown to increase the risk of developing IPF, to date none of them has proven to be 

causal [9]. 

 The GWAS of IPF conducted by our collaborators at University of Chicago 

compared 1,410 European-American IPF cases and 1,931 controls in a three stages analysis 

of > 10 million variants across the genome [8]. Six SNPs in three loci (TOLLIP-MUC5B at 

11p15.5, MDGA2 in 14q21.3, and SPPL2C at 17q21.31) achieved genome-wide 

significance with overall p-values<5x10-8 in the second stage of the study. Common 

variants at 11p15.5 were also associated with IPF survival in two independent studies [6,8]. 

Preliminary analyses suggest that the association between TOLLIP genetic variants and IPF 

susceptibility is independent from that found at MUC5B [7,10], although with milder 

effects in disease risk compared to that observed with the latter. Interestingly, TOLLIP 

encodes the Toll interacting protein, a critical regulator of Toll-like receptor (TLR)-

mediated innate immune responses and transforming growth factor-β (TGF-β) signaling 

pathway. While the promoter polymorphism (rs37505950) is associated with IPF 

susceptibility, this variant is paradoxically associated with a slower disease progression and 
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improved survival [6,11], suggesting that it may constitute a subset of the disease [12]. 

Clustering of the differentially expressed genes in IPF individuals compared with controls 

highlighted a plausible classification of IPF subpopulations based on molecular signatures 

[13,14]. 

 The study of target enriched Next Generation Sequencing (NGS) was driven by to 

amend the recent evidence demonstrating the importance of rare variants in genomic 

regions identified by GWAS, and because these rare variants are suboptimally covered by 

genome-wide genotyping arrays. NGS of the three previously identified genomic regions 

was done in a subset of IPF patients previously identified in GWAS. This fine mapping is 

expected to provide additional novel IPF susceptible variants with larger susceptibility risk. 
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2. AIMS 

 The main goal of this master project is to setup and optimize a bioinformatics 

pipeline to analyze target enriched NGS data at loci identified in previous GWAS [8] and to 

perform a case-control association study to identify IPF susceptible variants. 

 The constructed bioinformatics pipeline will focus particularly on the following 

subaims: 

 To integrate data quality assessment and control steps following standard 

protocols for association analysis. 

 To compare and contrast the consensus of variants identified by the Genome 

Analysis ToolKit (GATK) and Platypus callers after functional annotation 

provided by snpEff and ANNOVAR. 

 To conduct an association study using individuals of European descent from 

The 1000 Genomes Project to discover novel variants with larger effects on 

IPF susceptibility by means of GATK and PLINK (a toolset for whole-genome 

association and population-based linkage analysis) software packages. 

With these goals in mind, we have developed a pipeline on a desktop machine running 

Linux Ubuntu 14.04 LTS and tested on DRAGO, a server that is suitable for shared 

memory computing at La Laguna University, Tenerife, Spain. 
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3. METHODOLOGY 

3.1. Study design 

To accomplish the described goals, we have performed the following steps: 

1. Select cases for targeted sequencing  

2. Conduct next generation sequencing of the three regions of interest (ROIs) 

3. Perform initial NGS data management 

4. Develop a pipeline for genotype data extraction 

5. Perform association studies with IPF susceptibility 

Steps 4 and 5 are the main research context of this master's work. 

  

 Data was derived from 192 subjects with an average age at diagnosis of 68 years 

(Table 3-1) with respiratory symptoms including dyspnea on exertion and/or cough for at 

least three months. A high-resolution computed tomography scan with a definite or 

probable usual interstitial pneumonia (UIP) pattern was required from each patient in 

accordance with published guidelines [15]. A surgical lung biopsy confirming UIP was 

obtained in 37.3% of affected subjects utilized. None of the subjects had a record of a 

clinically significant exposure to known fibrogenic agents or suffered from other known 

causes of interstitial lung disease. 

 The range of cases is diverse in severity and source. Patients were selected from the 

University of Chicago (n=149), “Correlating Outcomes with biochemical Markers to 

Estimate Time-progression” (COMET) study in idiopathic pulmonary fibrosis (n=22), and 

the “Anticoagulant Effectiveness in Idiopathic Pulmonary Fibrosis” (ACE) study (n=21). 

We have intentionally selected a diverse array of cases with the aim of evaluating variants 

within the three regions (chromosomes 11, 14, and 17) previously associated with disease 

susceptibility. Establishing the deep coverage sequence of these regions will allow us to 

conduct the requisite analyses for determining significant variants and their relationship to 

IPF susceptibility. 
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Table 3-1. Clinical characteristics of the 192 patients with idiopathic pulmonary fibrosis. 

Age at diagnosis, mean 

years (IQR) 
68 (63-75) 

Sex (%) 
Female 48 (25.0) 

Male 144 (75.0) 

Smoking status (%) 

Known Never smoker 46 (24.0) 

Ever smoker 133 (69.3) 

Unknown 13 (6.7) 

FVC (% predicted) 65.8  

DLCO (% predicted) 46.0 

IQR: Inter-quartile range. FVC=forced vital capacity. DLCO=diffusion capacity of lung for 

carbon monoxide. 

 

 DNA was extracted from peripheral blood using QIAamp® DNA Blood Maxi kit 

from Qiagen (Valencia, CA) following manufacturer‟s protocol. The quality of genomic 

DNA (gDNA) samples was assessed by either TapeStation (Agilent Technologies, Santa 

Clara, CA) or 1% eGel (Life Technologies, Carlsbad, CA). Sample concentrations were 

determined using the Qubit dsDNA BR Assay (Life Technologies). One microgram of 

each high quality gDNA sample was sheared to an average peak size of 200 bp using the 

Covaris S-220 acoustic shearing device (Covaris Inc., Woburn, MA) according to the 

manufacturer‟s instructions.  The proper size distribution of sheared gDNA fragments was 

confirmed by TapeStation analysis (Agilent Technologies). Sequencing (>100x depth 

coverage, 1.3 Gb/sample) was performed using the SureSelect™ Target Enrichment 

System XT2 kit (Agilent Technologies) to derive target-enriched DNA samples with a 

custom-design capture of approximately 1.7 Mb of human genome sequence. Briefly, the 

sheared gDNA samples were end-repaired, A-tailed and ligated with pre-capture indexing 

adaptors. The adaptor-ligated libraries were then amplified in five PCR cycles with the 

Herculase II Master Mix (Agilent Technologies). Library sizes were checked by TapeStation 

(Agilent Technologies). The concentration of each library was determined by Qubit 

dsDNA HS Assay (Life Technologies). Libraries were combined to form pre-hybrization 

pools with a total of 1500 ng from equal molar contribution of eight individual indexed 

libraries.  The library pools were concentrated to 7 µL in a vacuum centrifuge to prepare 
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for target enrichment. Hybridization with the designed capture library was carried out for 

24 hours at 65°C. Post-hybridization bead enrichment and stringent washes were executed 

as described in the standard protocol. The enriched library pools were amplified with 10 

PCR cycles with the Herculase II Master Mix (Agilent Technologies). Correct library size 

and concentration were again determined by TapeStation and Qubit dsDNA HS, 

respectively. Libraries were further pooled to contain equal amounts of enriched DNA 

from each of 64 samples.  The final library pools were quantified by quantitative PCR with 

the Kapa Biosystems Library Quantification Kit - Illumina (Kapa Biosystems Inc., 

Wilmington, MA). Paired-end reads of 100 bases were then generated on the HiSeq2500 

platform from Illumina (San Diego, CA). All services were provided by DNA Services 

Facility of Research Resources Center at the University of Illinois at Chicago 

(http://www.rrc.uic.edu/dnas). 

Table 3-2. Location of regions-of-interests (ROIs). 

Chromosome Size (bp) Start position End position 

11 218,123 1,212,769 1,430,892 

14 835,629 47,308,828 48,144,457 

17 655,030 43,672,710 44,327,740 

 

  

http://www.rrc.uic.edu/dnas
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3.2. NGS pipeline overview 

 The collected NGS data were first analyzed using an Illumina‟s Exome pipeline 

modified by the Bioinformatics Core within the Center for Research Informatics (CRI, 

http://cri.uchicago.edu) at the University of Chicago. This analysis consisted of performing 

raw data quality controls (QC), filtering, and mapping (including SeqPrep, FastQC, 

NovoAlign, Picard, and SAMtools) to generate the BAM/BAI files that constitute the 

starting point for this project. 

 To complement and extend the downstream analysis of this data, we have 

programmed a complementary pipeline (Figure 3-1) comprising the use of the following 

software: 

 Qualimap [16], a platform-independent application written in Java and R that 

provides both a Graphical User Interface (GUI) and a command-line interface 

to facilitate the QC of alignment sequencing data and its derivatives like feature 

counts. 

 Genome Analysis Tool Kit (GATK) [17-19], a package developed at the 

Broad Institute (MIT and Harvard University) to analyze high-throughput 

sequencing data. 

 Platypus [20], a variant caller developed by The Wellcome Trust Centre for 

Human Genetics, was used for comparative purposes. 

 SnpEff [21], together with ANNOVAR [22], for functional annotation of 

genetic variants from high-throughput sequencing data. 

 LASER [23], a program to estimate individual ancestry by directly analyzing 

off-target reads using CEPH-HGDP data from >900 worldwide samples as 

reference genotyped for >630.000 SNPs. 

 SAMtools [24], a suite of programs for interacting with high-throughput 

sequencing data (including SAMtools, BCFtools, and HTSlib). 

 VCFtools [25], a software suite that implements various utilities for processing 

VCF files, including validation, merging, comparing, etc. 

 PLINK [26], a free, open-source whole genome association analysis toolset, 

designed to perform a range of basic, large-scale case-control analyses in a 

computationally efficient manner. 

http://cri.uchicago.edu/
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BEDtools [27], fcGENE [28], and other software used in the design and testing of this 

pipeline were listed in Appendix A1. Aforementioned, given the small overlap of regions 

between CEPH-HGDP reference panel utilized by LASER and the three regions of 

interests (ROIs), the principal component analysis (PCA) provided by Eigensoft [29,30] 

was used instead. 

  

3.3. NGS pipeline description: phases and steps 

 The advances in massive sequencing technologies and related software make 

genome variations easy to identify and quantify. However, genotyping of these variations 

are still challenging because each variant caller relies on its own algorithm to assign quality 

scores to individual base calls, resulting in different calls even when they are applied to the 

same sequencing data. Using the most stringent QC metrics the reproducibility of single 

nucleotide variant (SNV) call is around 80%, suggesting that erroneous variant calling can 

be as high as 20-40% in a single experiment [31]. With this in mind, a bioinformatics 

pipeline aimed at accurately discovering variants in high-throughput sequencing (HTS) data 

has been programmed. We have followed the DNAseq best practices workflows suggested 

by the GATK development team at the Broad Institute [17-19]. 

 Among the wide spectrum of SNPs and structural variants (including copy number 

variants [CNVs], insertions and deletions; inversions and translocations), we optimized the 

bioinformatics pipeline using SNVs identified in defined genome regions harboring several 

genes. 

 This pipeline was designed with three distinct phases [32] and depending on the 

features and hardware resources of the computing system hosting the bioinformatics 

pipeline (Figure 3-1), allows for sequential runs while executing phase-specific steps in 

parallel. These three phases are the followings: 

 Data preprocessing (performed by the hosting group) 

 Variant discovery, genotyping, and filtering 

 Variant evaluation and refinement of results 
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Figure 3-1. Pipeline for calling variants in DNAseq data from cohorts of IPF samples. 

Shown here is the pipeline with three distinct phases: pre-processing of raw data, variant 

discovery and variant evaluation. 

 

 The bioinformatics pipeline is a collection of shell Bash scripts to be executed in a 

sequential order on a Linux shared memory computing system equipped with a queuing 

system, though it is possible to run the complete pipeline on a desktop machine. It can be 

easily adapted to any other DNAseq experiments (e.g. exome sequencing) by modifying the 

programmed scripts. 

 To make data suitable for the variant calling analysis several data quality assessment 

and phase-specific steps must be performed. We will briefly summarize these steps in the 

following subsections. 
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3.3.1. Pre-Processing 

 As a first step, SeqPrep was used to remove sequence adaptors and merge 

overlapping reads from the same DNA fragment. In parallel, the quality of the raw reads 

was checked using FastQC, which produces a summary of the read quality, including 

%GC, per base quality, duplicate level, etc. 

 Data preprocessing is a required phase to make raw sequencing data suitable for 

downstream analysis. It comprises non-GATK and GATK steps (Figure 3-2). 

 

Figure 3-2. DNAseq pre-processing steps. In this stage of the pipeline, we move from raw 

reads (SAM/BAM files) provided by the sequencer software into recalibrated reads (recal 

BAM files). 
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3.3.1.1. Mapping and Marking Duplicates 

 As the goal of the experiment was to achieve high coverage in the targeted genome 

regions, there is a relatively high degree of duplication in the experimental data set. 

Therefore, removing of duplicates after alignment was also performed. 

 After QC, raw reads of each sample were mapped against the hg19 human 

reference genome using the NovoAlign mapper. Of note, the Burrows-Wheeler Aligner 

(BWA) [33] was used previously by the hosting group to test this data,  but resulted in 

suboptimal results, especially within repetitive regions in the ROI in chromosome 17 (not 

shown). Alignment files were generated in compressed BAM format, which contains 

information on the numbers of aligned reads from each original read file, and the number 

of duplicates (based on alignment to identical regions of the genome, not on sequence 

identity) identified. It also lists the numbers of reads that fall within the targeted regions, 

and the degree of enrichment within the targets relative to the rest of the genome. For each 

sample, reads were enriched (>200x times) within the ROIs (on-target) vs. outside regions 

(off-target). 

 After aligning the individual groups by reads for each individual sequence file, 

alignment files from the same sample were merged. Reads aligning outside the targeted 

regions were discarded, and duplicates again removed. These alignment files were then 

merged to create a single alignment file representing all reads in all samples that fall within 

the ROIs. Sorting and creation of index BAI files were also performed. 

 Mapping and marking of duplicates were performed by the University of Chicago 

Bioinformatics Core following their pipeline named 'Illumina Exome pipeline, with modifications' 

as described in the preceding paragraphs. As a result, aligned BAM files against hg19 were 

provided as the starting point for this work. 

 

3.3.1.2. Realignment around Indels 

 BAM/BAI files generated by the previous step constitute the input of the GATK 

pipeline described in this masterwork. A preliminary QC with FastQC and Qualimap 

software was initially performed to check that duplicates were in fact removed and to make 

sure that aligned sequences were sorted and indexed. 
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 The detection of genetic variants from NGS data is prone to errors due to multiple 

factors such as base-calling, alignment errors, read coverage, etc. Therefore, identification 

of genetic variants is an area of active research and many statistical methods are being 

developed to improve and quantify the large uncertainty associated with genotype calling 

[17,34,35]. 

 Algorithms used in the initial mapping step tend to produce various types of 

artifacts, such as reads aligned on the edges of insertions/deletions (indels), which 

represent the most common structural variants implicated in the pathogenesis of various 

disease states [36,37]. Indels often get mapped with mismatching resulting in a false SNP in 

that locus. Our pipeline was therefore designed to perform a new realignment around 

indels within the BAM. GATK parses the BAM files, generates a list of target intervals, and 

performs a local realignment around indels. 

 

3.3.1.3. Base Quality Score Recalibration 

 Variant calling algorithms depend on the quality scores assigned to the individual 

base calls in each sequence read. As these quality scores may be affected by different 

sources of systematic error, they must be recalibrated. GATK applies a machine-learning 

algorithm to model these errors empirically and adjust the quality scores accordingly  [17]. 

This recalibration is run twice and R script is used to generate several graphical plots to 

visualize the effects of the recalibration process (Figure 3-3). 
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a) 

 

 

 

 

b) 

 

 

 

 

c) 

 

 

   

Figure 3-3. 'Before' and 'After' recalibration plots for a recalibrated BAM file 

corresponding to one IPF individual for the event 'Base Substitution' (insertion and 

deletion events are also analyzed). a) Empirical quality score; b) Quality Score Accuracy for 

pair-end reads; c) Quality Score Accuracy residuals. 

The recalibration process is divided in two phases. The 'before-and-after' recalibration plot 

displays first pass recalibration values in pink, which are obtained from applying the GATK 

BaseRecalibration walker on the original alignment. Second pass recalibration values are 

shown in blue, and correspond to results obtained from the application of the GATK 

BaseRecalibration walker on the alignment recalibrated using the first pass tables. 
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3.3.2. Variant Discovery, genotyping and filtering 

 This phase is the bottleneck of the variant calling. The success in this phase is a 

trade-off between minimizing false negatives or Type-II errors (sensitivity gain) and 

minimizing false positives or Type-I errors (specificity gain). To do so, GATK uses 

separate steps (Figure 3-4): variant calling (performed on a per-sample basis), joint 

genotyping (performed per-cohort of the 192 sample files) and variant filtering (performed 

per-cohort). The first two steps are designed to maximize sensitivity, while the filtering step 

aims to deliver a level of specificity that can be customized for each project.  

 

Figure 3-4. Flow diagram depicting the variant discovery phase. In this stage of the 

pipeline, we move from recalibrated reads into called variants for downstream analysis.  

 In the variant discovery, genotyping, and filtering phase, we moved on from reads 

(i.e. de-duplicated, sorted and indexed BAM files) to variants (i.e. analysis-ready VCF files). 

As a rule, the variant discovery depends on the type of sample (whole genomes, exomes, 

etc.) and other parameters related to the sequencing, such as: coverage, depth, quality of 

reading, etc. (Figure 3-4). 
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3.3.2.1. Per-Sample Variant Calling 

 In this step, GATK generates a multi-sample SNP and indels calling with the 

HaplotypeCaller walker. The aim is at simultaneously calling SNPs and indels via local de-

novo re-assembly of haplotypes in active sequences of the targeted regions. As a result, 192 

genomic VCF (gVCFs) files are prepared. As a second step, the bioinformatics pipeline 

combines all the gVCFs files into a single cohort gVCF file prior to performing joint 

genotyping. 

 

3.3.2.2. Joint Genotyping 

 The GenotypeGVCFs walker creates a set of raw SNP and indel calls from the 

gVCF cohort file that will undergo a variant quality score recalibration. According to the 

GATK DNAseq best practices, this cohort-wide analysis empowers sensitive detection of 

variants at complex loci. This is a multi-sample joint aggregation step and merges the 

records together in a sophisticated manner: at each position of the input gVCF, this tool 

will combine all spanning records, produce correct genotype likelihoods, re-genotype the 

newly merged record, and then re-annotate it. 

 

3.3.2.3. Variant Quality Score Recalibration 

 Variant recalibration is based on a machine learning method that assign a calibrated 

probability to each variant call in the raw call set. In this step, GATK functions to reduce 

the chance of missing real variants and to discard false positives. GATK then uses this 

variant quality score to filter the raw call set in a second step, thus producing a subset of 

calls with a desired level of quality, fine-tuned to balance sensitivity and specificity. This 

calibration is processed in two steps separately: one for SNPs and one for indels.  GATK 

also produces graphical plots to visualize the results of the mapping quality parameters and 

the models used in the Variant Quality Score Recalibration (VQSR) (Figure 3-5). 
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Figure 3-5. 2D projection of mapping quality parameters used by GATK in the Variant 

Quality Score Recalibration for an IPF individual. 

 In Figure 3-5, the MQRankSum is plotted against DP (Depth of Coverage). This 

variant-level annotation compares the mapping qualities of the reads supporting the 

reference allele to those supporting the alternate allele. The ideal result is a value close to 

zero, which indicates there is little to no difference. A negative value indicates that the 

reads supporting the alternate allele have lower mapping quality scores than those 

supporting the reference allele. Conversely, a positive value indicates that the reads 

supporting the alternate allele have higher mapping quality scores than those supporting 

the reference allele [17]. VSQR develops a continuous, covarying estimate of the 

relationship between SNP call annotations (e.g. MQRankSum, HaplotypeScore, DP, etc.) 

and the probability that a SNP is a true genetic variant versus a sequencing or data 

processing artifact, resulting in plots similar to the one shown above. 

 In addition, the VQSR provides a continuous estimate of the probability that each 

variant is true, allowing one to partition the call sets into quality tranches defined by the 

user, typically at 90, 99, 99.9, and 100% thresholds that correspond to levels of sensitivity 

relative to the truth sets used in the training. The basic idea behind this procedure is that, 

with well-calibrated variant quality scores, the user can generate call sets in which each 

variant does not require a binary answer as to whether it falls within the set. If a very high 
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accuracy call set is required, one can use the highest tranche. Conversely, if a larger or a 

more complete call set is of higher priority, one can use progressively lower tranches. 

 

3.3.3. Annotation 

 Once variants have been annotated, detailed evaluation and refinement of results 

are required to ensure calls are not artifacts (Figure 3-6). This is a necessary step before 

accepting a putative variant as a risk, neutral, or protector element in the association with 

the disease. In this phase, genotype refinement, functional annotation and additional QC 

are performed. 

 

Figure 3-6. DNAseq variant evaluation and refinement of results. In this stage of the 

pipeline, the analysis-ready variants are annotated and further analyses are performed (i.e. 

association studies and validation of variants). 

 As a result, GATK provides a VCF file that inputs the variants evaluation phase. 

The designed bioinformatics pipeline combines two annotator alternatives, snpEff and 

ANNOVAR. 



 

26 

 

 SnpEff software analyzes the input, annotates the variants and calculates the effects 

they produce on known genes (e.g. amino acid changes). 

 ANNOVAR allows for very flexible annotations, and can include any number of a 

wide variety of annotation types including, in principle, any track from the UCSC genome 

browser. For this project, the VCF file has been annotated with the allele frequencies from 

a variety of public data sets (e.g. NHLBI Grand Opportunity Exome Sequencing Project, 

The 1000 Genomes Project, Complete Genomics, COSMIC, and dbSNP). 

 In order to gain a better understanding on the variant calling and association study 

results, the GATK and Platypus VCFs were annotated with snpEff and ANNOVAR with 

different functional categories, including gene context, evolutionary conservation, and 

various functional predictions. 
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3.4. GATK walkers commands 

 GATK may be considered an ecosystem of specialized tools, called 'walkers', which 

one can use out of the box, individually or chained into scripted workflows. To do so, we 

have programmed a chain of shell Bash scripts to run a complete variant discovery 

workflow, from “BAM-to-VCF” (Table 3-3).  

Table 3-3. GATK and non-GATK steps involved in the bioinformatics pipeline designed 

for the analysis of IPF NGS data. 

PRE-PROCESSING 

Variant calling 
steps 

Description Software GATK 'walker' 

Mapping and 
Marking 

Duplicates (de-
dupping) 

1. Identify read group 

information 

SeqPrep 

FastQC 
--- 

2. Generate a SAM file 
containing aligned reads  

NovoAlign 
aligner 

--- 

3. Convert to BAM file, sort 
and mark duplicates  

Picard --- 

Local 
Realignment 

Around Indels 

1. Create a target list of 
intervals to be realigned 

2. Perform realignment of the 

target intervals 

GATK 
RealignerTargetCreator 

IndelRealigner 

Base Quality 
Score 

Recalibration 

1. Analyze patterns of 

covariation in the sequence 
dataset 

GATK BaseRecalibrator 

2. Do a second pass to analyze 
covariation remaining after 

recalibration 

GATK BaseRecalibrator 

3. Generate before/after plots GATK AnalyzeCovariates 

4. Apply the recalibration to 
your sequence data 

GATK PrintReads 



 

28 

 

VARIANT DISCOVERY 

Variant calling 
steps 

Description Software GATK 'walker' 

Variant  

Discovery 

Calling Variants with 
HaplotypeCaller 

1. Determine the basic 

parameters of the analysis 

GATK 

gVCF mode 

(-ERC GVCF cohort 

analysis workflow) 

2. Per-sample Variant calling GATK 

HaplotypeCaller 

(-emitRefConfidence 

GVCF) 

3. Optional data aggregation 

step 
GATK 

CombineGVCFs on 
batches of ~200 
gVCFs 

4. Joint genotyping GATK GenotypeGVCF 

5. Variant Quality Score 
Recalibration 

GATK 
VariantRecalibrator 

ApplyRecalibrator 

VARIANT EVALUATION 

Variant calling 
steps 

Description Software GATK 'walker' 

Selection 

Selection of variants of interest, 
merging of VCF files (cases 
and controls), comparison of 

VCF contents, exporting toe 
PLINK format, analyze 

genotypes concordance, etc. 

GATK 

SelectVariants, 
VariantsToBinaryPed, 
VariantsToTable, 

VariantsToVCF, 
CombineVariants, 

GenotypeConcordance 

Annotation 

1. Annotate GATK VCF file 
for cases 

2. Prepare VCF file for 

controls and annotate 

SnpEff 

ANNOVAR 

--- 

--- 

Association 

analysis 
1. Study of susceptibility in IPF PLINK --- 
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3.5. Overview of GATK scripting for DRAGO cluster 

 The designed bioinformatics pipeline is suitable for the analysis of NGS data as well 

as whole-genomes and exomes data. It integrates a sequence of shell Bash scripts and can 

be executed on remote cluster servers or local machines. The scripting has been debugged 

in an i7-8 cores and 16 GB RAM machine running Ubuntu 14.04.02 LTS, and tested on a 

cluster server, DRAGO, provided by the University of La Laguna (Tenerife, Canary 

Islands, Spain). 

 DRAGO is a Red Hat-based workstation suitable for shared memory processes. It 

has four nodes with four processors per node, with 10 processor cores each, making a total 

of 160 cores available to researchers. It also has 1 TB of RAM and 4 TB in hard drives. 

This configuration currently lets DRAGO work as a single shared memory machine with 

160 cores. 

 We access to DRAGO remotely by using a SSH tunnel from the LINUX shell or 

by using applications such as Putty (jobs management) or Filezilla (file managements). It 

uses a queue system based on SLURM (an open-source resource manager designed for 

Linux clusters of all sizes). It has five queues with different maximum execution time and  

number of available cores (sequential: 168 h/1 core; test: 5 min./9 cores; fast: 30 h/30 

cores; medium: 168 h/40 cores; batch: 12 h/80 cores). 

 The basic scheme of Bash scripts to be queued at DRAGO is summarized in Box 

3.5-1. An excerpt of the whole script is provided in Appendix A2. Additional excerpts of 

GATK and related commands are shown in Appendix A3. 

 

Box 3.5-1. DRAGO SBATCH and BASH scripting scheme. 

 

#!/bin/bash 

 

###Queue name 

#SBATCH --partition=<queue-name> 

 

###Job name 

#SBATCH -J <job-name> 

http://www.saii.ull.es/recursos/computacion/drago
https://computing.llnl.gov/linux/slurm/
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###Number of nodes (i.e. 1) 

#SBATCH --nodes=1 

 

###Total number of processes (1 process = 1 core) 

#SBATCH --ntasks=<cores> 

 

###Execution Time 

#SBATCH -t <HH:MM:SS> 

 

###Email options: BEGIN, END, FAIL, ALL 

#SBATCH --mail-type=ALL 

#SBATCH --mail-user=<username@domain> 

 

###Log outputs 

#SBATCH --error=<output.log.err>  

#SBATCH --output=<output.log.out> 

  

###Load profile 

source /etc/profile 

  

### Loads specific modules in memory 

source /etc/profile 

 

### Loads Java 1.7 to run GATK 

module add java/sun1.7 

 

### Loads R 3.1.2 (make sure that ggplot2, gplots, reshape, grid, tools, and gsalib 
libraries are already installed) 

module add R/3.1.2 

  

### Full path to software, auxiliary databases and sample data: 

$INPUT(i)=/full-path-to-inputs/... 

 

### Full path for outputs 

$OUTPUT(j)=/full-path-to-outputs/... 

 

## non-GATK or GATK 'walker' commands here 

GATK <command><options> input.file output.file 
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3.6. Platypus variant caller 

 Besides GATK, we tested Platypus [20] as an alternative variant caller which also 

utilizes a haplotype-based variant calling algorithm similar to GATK.  

 An alignment-base approach is the most common and simple to call variants. This 

is done by aligning reads to a reference genome and finding locations where bases differ 

from the reference nucleotide. While this approach has a high sensitivity and does not 

require large computing resources, it has limitations. One is that alignment-based 

approaches focus on a single variant type, like SNP or indel, resulting in errors and high 

false positive rates around indels and larger variants. 

 By separating the processes of identifying and genotyping variants, even a weakly 

supported variant in one sample can be confidently called if it is strongly supported by 

another sample or samples. This approach reduces the rate of false negative calls due to 

downward fluctuations in read coverage, a feature that is important in comparisons of 

tumors and metastases, population-based studies and pedigrees including parent-offspring 

trios in de novo discovery designs [20]. The use of multi-sample variant calling helps in 

borrowing information between samples to call variants determined to be unreliable in a 

single sample. These methods are integrated into the GATK HaplotypeCaller and Platypus 

variant callers. 

 Platypus uses an alternative variant calling approach that plots reference-free 

sequence assembly builds on de Bruijn graphs to find evidence of polymorphisms. Such an 

approach works on the local haplotype level rather than on the level of individual variants 

and does well on highly divergent regions. This approach has large computational 

requirements, though Platypus is able to deal with targeted NGS data in notably reduced 

computing times as compared to GATK. 

 According to its authors, Platypus achieves high sensitivity and specificity for SNPs, 

indels and complex polymorphisms by using local de novo assembly to generate candidate 

variants, followed by local realignment and probabilistic haplotype estimation. It is an order 

of magnitude faster than existing tools and generates calls from raw aligned read data 

without preprocessing.  

  



 

32 

 

Platypus performs a three-stage algorithm pipelined fully transparent to the user as follows: 

1. Read alignment and local assembly to produce 2n candidate haplotypes. 

2. Align reads to candidate haplotypes by fitting population frequencies and 

individual haplotypes. 

3. Marginalize over individuals, variant-level filtering, and individual-level filtering 

to produce final called variants 

 Contrary to GATK, which generates many temporary files, Platypus runs the whole 

pipeline without using intermediate files or separate processes. With mapped and sorted 

BAM files are used as input, merging, sample de-multiplexing and read de-duplication are 

performed by Platypus under the same command execution. 

 

3.7. Association study 

3.7.1. Design 

 The association study design can be considered as an unmatched case-control one 

where a binary categorical disease outcome (be a case/be a control) is logistically regressed 

over the genotypes and other covariates on single SNP basis after careful QC. 

 The cases are composed of 192 individuals with IPF. A total of 501 unrelated 

controls were selected based on a reported European descent in The 1000 Genomes 

Project (1KGP) [38], available at http://www.1000genomes.org/data. Controls included 

individuals from the following regions: Utah Residents (CEPH) with Northern and 

Western European Ancestry (CEU); Finnish in Finland (FIN); British in England and 

Scotland (GBR); Iberian Population in Spain (IBS); and Toscani in Italy (TSI). 

 VCF files corresponding to chromosomes 11, 14, and 17 of the selected controls 

from the 1KGP Phase III (release date 20130502) were downloaded from its online server 

at the European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-

EBI) at: ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/. 

 After using the aforementioned bioinformatics pipeline to produce VCF files for 

the targeted genome regions in cases and controls, the GATK CombineVariants walker 

http://www.1000genomes.org/data
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/
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was used to combine variants. Next, VCFtools was used to remove indels and to filter out 

non-biallelic variants. Finally, VCFtools provided PED/MAP files for downstream QCs 

and association analysis with PLINK (Figure 3-7). 

 

Figure 3-7. Worklow diagram showing the steps to be followed after GATK variant 

calling. Cases and controls are merged and indels are removed. 

 The association analysis was performed with PLINK 1.07 using the workflow 

depicted in Figure 3-8. 

 The preliminary part of the association study requires the addition of the phenotype 

information (step 1) and a basic study of the allelic frequencies and missing data (step 2) to 

account for missingness information. Increased false positives are particularly likely for 

cases-control studies, where case and control samples are likely to be collected and 

genotyped separately [39]. Due to the special design of this association study, where 

controls are gathered from an external database, QC for missingness issues on an 

individual and SNP-basis are required steps [40]. 

 The removal of a sub optimal SNP is pivotal for the success of the association 

study, but care must be taken because the removal of a poorly genotyped marker might 

miss a potential disease-related variant [19]. Frequently, SNPs with a call rate < 95% are 

removed from the calling set [41,42]. For studies with small sample sizes, a call rate 

threshold of >97-99% and a marker of minor allele frequency (MAF) > 5% are used to 

keep only high quality genotyped individuals [43]. This is because the expected small size of 

the heterozygote and rare homozygote (homozygote for the alternative allele) clusters 

makes these variants difficult to call using current genotype calling algorithms and often 

results in false positives. As the power to detect rare variants is quite low [44], their 

removal will not affect the overall study. Given that we do not want to lose information at 

this stage, variants from the full spectrum of frequency will be considered for association, 
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albeit further inspections of those associated will be performed to discern whether 

associated variants are true variants or simply artifacts. 

Figure 3-8. Association study workflow. LD=Linkage disequilibrium. 

 

 To do so, we discarded those genotypes with a call rate < 95% (step 3). SNPs 

showing a small-scale linkage disequilibrium (LD) are filtered out using a pruning with 

r2<0.15 (step 4) in order to remove the linkage correlation structure with PLINK. These 

filtered data sets underwent a PCA (step 5) to determine the set of eigenvectors that 

optimally reflect the population structure (step 6). 

 Spurious association results may be the consequence of unaccounted genotyping 

issues. Therefore, it is necessary to perform additional post-association QCs. In genetic 

association studies, the deviation from the Hardy-Weinberg Equilibrium (HWE) of each 

SNP is frequently assessed as an initially QC to identify variants with questionable 

genotypes. HWE testing assumes that genotypes are sampled from the general population 

and are therefore trested only in controls [45]. Deviations of HWE can be due to 

inbreeding or random mating, population stratification (absence of mutation or migration) 

or lack of selection according to genotype [46,47], but it can be also represent a disease 
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association [48]. Given that in the current design, our controls were derived from the 

highly curated 1KGP database, this QC step was not considered. However, HWE p-values 

were assessed during the evaluation of the top IPF associated variants along with other QC 

metrics. 

 

3.7.2. Population Stratification and Confounding 

According to Astle and Balding [49] the main causes of confounding in GWAS are: 

 Population structure or the existence of major subgroups in the population, where 

differences in allele frequencies are confounded with subpopulation.  

 Cryptic relatedness, i.e. the existence of small groups (often pairs) of highly related 

individuals. 

 Environmental differences between subpopulations or geographic locations. 

 Differences in allele call rates between subpopulations. 

 The presence of population stratification and its effect upon the association test 

cannot be discarded in principle. Population stratification or population substructure 

represents systematic differences in allele frequencies between subpopulations within a 

sample, possibly due to different ancestry. As allele frequencies and disease stratification or 

admixture can confound the association between the disease trait and the genetic marker, it 

increases type I error (false positives) of association studies. This is particularly true when 

both the genotypic and phenotypic data differ between populations [50]. 

 The number of principal components or main eigenvectors (step 7) selected to 

assess population stratification is frequently based on formal metric, such as the Tracy-

Widom statistic (statistical significance of each principal component) [29,30,51]. Once the 

local LD features are removed, the top principal components should account for 

population structure, which on average affect all SNPs in the same manner. We keep for 

downstream analysis the original PED/MAP files with genotype calling rate > 95% (step 

8). We then projected the whole variants into the principal components space and kept 

them as covariates (step 9) for the logistic regression (step 10) between the phenotype trait 

and the sample genotypes.  
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 In a case-control study, the parameter of interest is the odds of disease. Because 

sampling is not at random, the odds of disease is not directly measurable. However, the 

odds of disease is mathematically equivalent to the odds of exposure, which can be directly 

calculated from exposure frequencies [52]. The quotient of exposure odds between cases 

and controls produces an odds ratio (OR), which quantifies the probability of disease based 

on exposure. 

 To demostrate this, let us consider a variant consisting of a single biallelic locus 

with alleles A and a. Unordered possible genotypes are A/A (homozygous for the reference 

allele), A/a (heterozygous) and a/a (homozygous for the alternative allele). The allelic OR 

describes the association between disease and allele by comparing the odds of disease in an 

individual carrying allele A to the odds of disease in an individual carrying allele a [51]. The 

genotype OR describes the association between the disease and genotype by comparing the 

odds of disease in an individual carrying a defined genotype (i.e. A/a or a/a) to the odds of 

disease in an individual carrying the reference genotype (i.e. A/A).  

 A logistic regression between the disease trait and sample genotypes is carried out 

adjusting for the PCA-derived scores from non-correlated SNPs to account for population 

structure in the analysis [53-56]. 

 The logistic regression model establishes a relationship between a binary outcome 

variable (the phenotype trait: case versus control) and a group of predictor variables 

(genotypes and other covariates). It models the logit-transformed probability as a linear 

relationship with the predictor variables. More formally, let y be the binary outcome 

variable indicating cases/controls with 0/1 and p be the probability of y to be 1, p = 

prob(y=1). Let x1, ... , xk be a set of k predictor variables. The logistic regression of y on x1, 

... , xk estimates parameter values for β0, β1, ... , βk of the following equation: 

𝑙𝑜𝑔𝑖𝑡 𝑝 = 𝑙𝑜𝑔  
𝑝

1−𝑝
 = 𝛽0 + 𝛽1 ∙ 𝑥1 + 𝛽2 ∙ 𝑥2 + ⋯+ 𝛽𝑘 ∙ 𝑥𝑘  (1) 

 The left-hand side of Eq. (1) is the log of the ratio of the probability of disease 

compared to the probability of being a control (not having the disease), or the log of the 

odds of disease. Thus, the logistic regression model is a linear model for the log odds: 

 
𝑝

1−𝑝
 =  𝑂𝑑𝑑𝑠  (2) 
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 The model parameters might be interpreted as the difference in log odds of the 

outcome associated with a one-unit change in the predictor variable while the other 

variables are kept constant [56]. 

 The regression coefficients, βk, let us compute how much the odds increase 

multiplicatively with a one-unit change in each independent variable. 

 In addition, the so-called genomic control technique can be applied to detect and 

compensate for the presence of a fine-scale or within-population stratification during 

association testing. If genomic control operates, population stratification is treated as a 

random effect that causes the distribution of 2 association test statistics to have an inflated 

variance and a higher median value than would otherwise be observed [54]. The test 

statistics are assumed to be affected uniformly by an inflation factor (). This factor is 

estimated from a set of selected SNPs by comparing the median of the observed test 

statistics with the median of their expected values under the assumption of no population 

stratification. The residual inflation is visualized by means of quantile-quantile or QQplots 

from Eigensoft outputs and/or using PLINK function "--adjust" to compute the level of 

residual inflation variation that persists after this preliminary adjustment (step 11). Under 

genomic control, if population stratification exists, >1 and the correction is simply 

applied by dividing the actual association 2 statistic values by  to get a deflated-by- 

distribution.  

 The last step of this workflow performs the association study (step 12) by means of 

a logistic regression using the main eigenvectors to account for the population structure. 

 As already stated, the selection of case individuals was focused on European-

American IPF patients following precise guidelines. Thus, we prepared two complementary 

workflows to detect the existence of such a population structure and estimate qualitatively 

the ancestry of IPF cases to avoid spurious results in the association.   

 Our initial approach was based on the use of LASER [23,58], a program to estimate 

individual ancestry by directly analyzing shotgun sequence reads without calling genotypes.  

 LASER relies on the availability of a set of reference individuals whose genome-

wide SNP genotypes and ancestral information are known. Then it constructs a reference 

coordinate system by applying principal components analysis to the genotype data of the 
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reference individuals. Next, for each sequencing sample, it uses the genome-wide 

sequencing reads to place the sample into the reference PCA space. With an appropriate 

reference panel, the estimated coordinates of the sequencing samples identify their 

ancestral background and can be directly used to correct for population structure in 

association studies or to ensure adequate matching of cases and controls. These 

coordinates are computed by means of a Procrustes analysis to project the new ancestry 

map into the reference PCA space [58]. Very few targeted NGS sequence bases overlapped 

the 632,958 reference markers of CEPH-HGDP panel [59] so this approach using LASER 

did not provide results as expected (data not shown).  

 The alternative approach utilized (Figure 3-9) was based on PCA applied to selected 

genotypes within the same ROIs of 2,504 controls from 1KGP corresponding to five 

worldwide biogeographical populations. As a first step, VCF files from cases and controls 

are merged (1) by means of GATK CombineVariants walker. Then genotypes with a call 

rate < 95% are discarded (2). The small-scale LD structure is removed imposing a pruning 

filter of r2<0.15 (3). PCA is performed using Eigensoft (4) and principal components are 

selected (5) after considering how population stratification is modified by increasing the 

number of eigenvectors. Ancestry of IPF samples is then estimated by plotting all samples, 

cases and controls, in the eigenvectors space.  
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Figure 3-9. Workflow to estimate ancestry of IPF cases by means of PCA. LD=Linkage 

disequilibrium. 
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4. RESULTS AND DISCUSSION 

4.1. Quality Controls 

 Three different ROIs were studied in IPF cases within chromosomes 11, 14, and 17 

(Table 3-2). A total of 1.71 Mbp were fine mapped by NGS. A visual inspection of the 

processed BAM files (Figure 4-1) in bigWig format showed that the mean coverage 

depth at each of the ROI was >100x (Table 4-1).  

a) 

 

b) 

 

 

Figure 4-1. ROI in chromosome 11 visualized as an added track to UCSC Genome 

Browser for an IPF individual in bigWig format: a) MUC5B region; b) TOLLIP region. 

 

Table 4-1. Quality control results as observed with Qualimap for all IPF samples. 

Chromosome Length Mapped bases Mean coverage 

11 217,440 24,175,349 111.2 

14 835,421 95,654,226 114.5 

17 655,685 74,276,346 113.3 

   
113.6 ± 9.13 
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 In addition, more than 98% of genomic locations within ROIs were covered at 

>89x (Figure 4-2). 

 

Figure 4-2. Coverage histogram within the sequenced ROIs for all IPF samples. 

  

 As an example of the exhaustive QC required by a NGS experiment, some quality 

parameters corresponding to technical replicates of paired-end analysis for an IPF patient 

are shown in Table 4-2. 

Table 4-2. Quality control results as observed with SeqPrep in replicates of paired-end 

analysis for an IPF patient. 

Input sequence files L02_R1_01 L02_R2_01 L04_R1_01 L04_R2_01 

Number of reads 2,931,172 2,931,172 3,597,809 3,597,809 

Percent GC 43 43 43 44 

Percent duplicates (sequence 
identity in the first 50 bp of the 

reads) 

13.65 12.66 16.54 16.24 
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Input sequence files L02_R1_01 L02_R2_01 L04_R1_01 L04_R2_01 

Sequence quality at the 36th 

position 
38.0 36.8 38.9 37.7 

Number of reads left unmerged by 

SeqPrep 
1,136,788 1,136,788 2,024,372 2,024,372 

Number of reads merged 1,790,721 1,790,721 1,558,492 1,558,492 

Fraction merged 0.611 0.611 0.433 0.433 

 

 The quality of the genotyping process is of crucial relevance in NGS experiments. 

Quality scores, expressed in Phred scale (a logarithm function of base-calling error 

probabilities) versus position in read are shown in Figure 4-3. As indicated, Phred scores 

were larger than 30 (less than 1 error in 1,000 bases) for all ROIs. 

 

Figure 4-3. Quality scores across all bases as observed with FastQC in a replicate paired-

end analysis for an IPF patient. 

 Similarly, the average Phred score was roughly 38 (Figure 4-4), indicating that the 

probability of an incorrect base call was less than 1 in 10,000 on average (>99.99% base call 

accuracy). 
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Figure 4-4. Quality scores distribution over all sequences as observed with FastQC in a 

replicate paired-end analysis of an IPF patient. 

 In relation to the quality of mapping, despite the left tail of the distribution of the 

number of genomic locations, most of reads presented mapping scores around 70 (i.e. less 

than one wrong alignment expected in 10 million alignments) (Figure 4-5). 

 

Figure 4-5. Mapping quality histogram for all IPF samples. 
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4.1.1. MAF and genotype consensus between sequencing platforms: NGS versus 

genome-wide genotyping 

 Recent scientific literature highlights that experimental errors in NGS are more 

frequent than expected. The reported base call accuracy for leading NGS technologies 

varies largely, from one error in one thousand nucleotides (99.9%) [60] to one error in ten 

million nucleotides (99.9999%) [61]. Therefore, artifacts (false variants) may be erroneously 

considered as de novo, rare or somatic putative variants [62].  

 Genome-wide (GW) SNP data (421,814 SNPs after QC procedures) for a total of 

115 IPF individuals out of the 192 that were sequenced for this work were available. To 

measure the concordance of variants measured by using these two distinct technologies 

the Affymetrix 6.0(Affymetrix, Santa Clara, CA) chip and the Illumina HiSeq2500 

(Illumina) Sequencer we computed the intersection of SNPs measured with both 

methodologies. We found a total of 231 SNPs common to both data sets. Minor allele 

frequencies in the two technologies showed a very high linear correlation (Pearson 

correlation, R2=0.998) (Figure 4-6). 

 

Figure 4-6. Minor allele frequency in NGS and GW SNP data for the overlapping set of 

231 SNPs in 115 IPF samples with data from the two technologies. 

 In addition, a very high concordance was also observed for genotypes measured by 

both technologies in the same individuals. PLINK 1.07 provides a fast merge mode to 
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check the level of concordance between these sets. From a total of 26,565 overlapping 

data, 26,244 had a present call in both datasets, and 25,229 were concordant. Thus, the 

observed concordance rate was estimated in 96.1% (95% CI: 95.9% - 96.4%). 

 

4.1.2. Consensus between two haplotype-based variant callers: GATK versus 

Platypus 

 We used PLINK and VCFtools to obtain concordance metrics for called variants 

from GATK and Platypus. GATK was able to identify a total of 16,253 variant sites, 

whereas Platypus identified 15,937. By overlapping sites (13,652 common sites), that is 

considering variants identified within the same genomic position or locus by the two callers 

or common sites, we found a concordance of 84.0% (95% CI: 83.4%-84.6%) and 85.7% 

(95% CI: 85.1%-86.2%) for GATK and Platypus, respectively (Figure 4-7). If we only 

consider the matching overlapping sites (12,522), this concordance was estimated in 77.0% 

(95% CI: 76.4%-77.7%) and 78.6% for GATK and Platypus, respectively (Figure 4-8). 

 

Figure 4-7. Concordance between GATK and Platypus callers per individual overlapping 

sites. The sum of overlapping sites and sites found only by GATK or Platypus yields the 

total number of identified variants with each caller (16,253 and 15,937, respectively). 
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Figure 4-8. Concordance between GATK and Platypus callers per individual overlapping-

matching sites. Taking into account the number of overlapping (14,684) and matching sites 

(13,652), and sites found only by GATK (1,570) or Platypus (1,254), we can derive the total 

number of identified variants with each caller (16,253 and 15,937, respectively). 

  

 Among exonic variants, up to 70% were missense (70.74% and 69.52% for GATK 

and Platypus, respectively). In addition, silent variants were estimated in 27% (26.26% and 

28.25% for GATK and Platypus, respectively), while a very low number of nonsense 

variants was called (3.00% and 2.23% for GATK and Platypus, respectively). The 

consensus median according to the number of effects by function was high (101.8%) 

between both callers. However, we must take into account that between 7.8% and 9.7% of 

called variants are exclusive to GATK or Platypus (Figure 4-8). 

 The number of called variants per type is shown in Table 4-3. The number of SNPs 

identified by GATK is larger than those identified by Platypus. On the contrary, Platypus 

showed a higher number of insertions and deletions compared to GATK. Upon 

simplification of the multiple nucleotide polymorphisms (MNPs) provided by Platypus into 

more basic/primitive alleles by means of the GATK VariantsToAllelicPrimitives walker, a 

higher consensus is reached (omitted here because it is beyond the scope of this master 

work). The median consensus between GATK and Platypus per type of called variants was 

estimated in 90.6%. 
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Table 4-3. Number of called variants per type. 

Type Platypus GATK 
Consensus % 

(GATK as reference) 

SNP 12,617 13,932 90.6 

MNP 658 0 --- 

INS 1,847 2,200 84.0 

DEL 2,310 2,102 109.9 

Total 17,432 18,234 90.6 

SNP=Single Nucleotide Polymorphism; MNP=Multiple Nucleotide Polymorphism; 
INS=Insertion; DEL=Deletion. 

 

 SnpEff provides different types of functional annotation. The number of called 

variants affecting certain genome elements is presented in Table 4-4. The most frequent 

variants identified by both callers were INTRONIC, UPSTREAM/DOWSTREAM, 

INTERGENIC, UTR and EXONIC types (in that order). 

Table 4-4. Percentage of called variants affecting a certain genome element. 

Affected genome element Platypus GATK 

Consensus % 

(GATK as 
reference) 

CODON related variations 0.135 0.2 67.5 

SPLICE related variations 0.032 0.019 168.4 

EXONIC 1.707 1.67 102.2 

INTRONIC 44.88 43.97 102.1 

INTERGENIC 10.58 10.52 100.6 

NON_SYNONYMOUS_CODING 0.87 0.816 106.6 

SYNONYMOUS_CODING 0.615 0.637 96.5 

START/STOP related variations 0.065 0.078 83.3 

FRAME_SHIFT related variations 0.566 0.523 108.2 

UTR related variations 1.95 1.951 99.9 

UPSTREAM/DOWSTREAM 38.61 39.62 97.4 

  median 102.3 

  



 

48 

 

 Again, the concordance between the variants called by GATK and Platypus are 

within ±10% if we analyze the number of effects by region or affecting a certain genome 

element, with the exception of variants annotated as CODON, SPLICE and 

START/STOP. Given the functional relevance of variants in these gene elements, these 

results are concerning for the clinical application of NGS technologies. In fact, O'Rawe et 

al. [63] carried out a very wide comparative of concordances between genotyping 

platforms, different aligners and variant-calling pipelines (SOAP, BWA-GATK, BWA-

SNVer, GNUMAP, and BWA-SAMtools) using exomes and single whole genomes. Due to 

the large variations in the studied concordances, they suggested that more caution should 

be exercised in genomic medicine settings when analyzing individual genomes, including 

interpreting positive and negative findings with scrutiny, especially for indels. 

 The ratio of transitions (pyrimidine-pyrimidine or purine-purine changes) to 

transversions (pyrimidine-purine or purine-pyrimidine changes), the so-called Ti/Tv ratio, 

can be used as another quality metric of human NGS data. The Ti/Tv for human whole-

genome sequence data was estimated in the range of 2.0 to 2.2 [18,64], while a higher ratio 

(~3.0) is expected in exomes due to the presence of methylated cytosine in CpG 

dinucleotides in exonic regions [65]. The bias in favor of mutations between bases of 

similar chemical properties (transitions) over those with dissimilar properties 

(transversions) is independent on both CpG and the GC content of the genome. 

Therefore, the Ti/Tv may be used as a useful diagnostic tool to measure the quality of the 

NGS data generated [19,66]. GATK and Platypus provided Ti/Tv ratios in the range of 

those expected (2.192 and 2.234, respectively) for whole genomes. This result is not 

unexpected as a large fraction of the ROIs are non-exonic sequences. 
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4.2. Association study results 

 Liu et al. [67] performed a comparative analysis with distinct callers (SAMtools, 

GATK, glftools, and Atlas2) using single-sample and multiple-sample variant-calling 

strategies on whole exomes. They concluded that GATK had the highest rediscovery rate 

(0.9969) and specificity (0.99996), and its Ti/Tv ratio was closest to the expected value of 

3.02. In addition, variant genotypes called by exome sequencing versus exome arrays were 

more accurate, although the average variant sensitivity and overall genotype consistency 

rate were as high as 95.87% and 99.82%. Such an extensive comparative analysis has yet to 

be conducted for Platypus. Based on this evidence, downstream association studies were 

performed considering only the variant calls generated by GATK. 

Once programmed and tested the bioinformatics pipeline using GATK provided a 

VCF file with 16,253 variant loci for the whole set of cases. After combining the data from 

cases (192) and unrelated controls (501), a total of 61,374 variants were observed. After 

filtering out of indels, a total of 57,696 biallelic sites were observed. These variant loci were 

further processed following the workflow depicted in Figure 3-8. A summary of remaining 

SNVs available for downstream analysis is presented in Table 4-5. 

Table 4-5. Summary of SNVs observed in cases and controls. 

SNV set Sites 
Pruning LD 

r 2<0.15 

After merging of data from cases and controls 61,374 --- 

Biallelic SNVs 57,696 --- 

Biallelic SNVs with call rate >95% 10,245 2,342 
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4.2.1. Allelic frequencies and missing data 

 We used PLINK 1.07 to obtain allelic frequencies and missing data summaries 

jointly for cases and controls. The average number of individuals missing a certain 

genotype was 0.175%, with a maximum of 34 individuals. After identifying SNVs with an 

excessive missing rate (>5%), we kept 10,245 out of 57,696 variants and all individuals 

(cases and controls) for downstream analysis. 

 

4.2.2. Ancestry estimation in the IPF patients 

 As explained in section 3.7.2, we prepared a double strategy to study the ancestry of 

samples. Due to the small size of the ROIs, there was insufficient sequence overlapping 

between the CEPH-HGDP reference panel (which contains 938 individuals and 632,958 

markers) and the IPF NGS data. Therefore, LASER could not be applied successfully in 

this study. An alternative approach was prepared by gathering 2,504 individuals as a set of 

population references from 1KGP corresponding to 26 different populations from many 

different locations around the globe. These populations have been genetically divided into 

5 biogeographical population groups: AFR, African; AMR, admixed American; EAS, East 

Asian; EUR, European; and SAS, South Asian. 

 We extracted the selected ROIs from those individuals and merged them with 

cases. As a result, a set of 2,696 individuals (2,504 reference individuals / 192 cases) and a 

total of 62,528 variants were obtained. We discarded variants with a calling rate lower than 

95%, and from these filtered SNVs, we kept only those with a LD r2<0.15 in order to 

remove the LD structure. Finally, a total of 1,876 SNPs were used for PCA (2,696 

individuals x 1,876 SNPs) using R and the snpRelate package. 

 A plot of the first two eigenvectors or main principal components derived from the 

filtered set of 1,876 SNPs (Figure 4-9, left panel) showed clusters of individuals matching 

biogeographical population groups (AFR, AMR, EAS, EUR, and SAS). The IPF individuals 

(depicted as orange circles) are clustered with European (EUR) and American (AMR) 

individuals, supporting that the IPF cases are, in fact, of European-American ancestry 

(Figure 4-9, right panel). This result is in agreement with the careful selection of IPF 

individuals followed by Noth et al. [8]. 
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Figure 4-9. Plot of the first two principal components for IPF cases and 1KGP individuals 

from the five biogeographical population groups. IPF individuals are indicated with orange 

circles and cluster with European and admixed American population groups. 

AFR=African; AMR=Ad Mixed American; EAS=East Asian; EUR=European; 

SAS=South Asian. 

 

4.2.3. Population stratification 

 Using the filtered subset of 10,245 SNVs, we deduced a principal component space 

formed by a pruned set of variants (with r2<0.15) by means of Eigensoft. Eigensoft was 

also used to analyze the dependence of inflation of the statistic test with the number of 

principal components. A QQ-plot was prepared to compare the observed distribution of 

the association test (2) versus the expected quantiles after adjusting by the selected 

number of principal components (Figure 4-10). We observed that five principal 

components were enough to account for the population stratification present in the 

association study, as they provided a negligible residual inflation of association results 

(=1.00). 
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Figure 4-10. QQ-plot representing the IPF association results for the 10,245 SNPs. Grey 

circles represent the inflated distribution of the statistic due to population stratification. 

Green circles represent the deflated distribution of the statistic after adjusting for five 

principal components. 

 Once association results were obtained, we first compared the findings with those 

reached in the GWAS by Noth et al. [8]. In stage two of that study, six SNPs located in 

three loci were significantly associated at genome-wide significance: three TOLLIP SNPs 

(rs111521887, rs5743894, rs5743890) and one MUC5B SNP (rs35705950) at 11p15.5; one 

MDGA2 SNP (rs7144383) at 14q21.3; and one SPPL2C SNP (rs17690703) at 17q21.31. 

For that, regional plots of association results, generated by the on-line tool LocusZoom [68], 

were centered on rs35705950 in chromosome 11, rs7144383 in chromosome 14, and 

rs17690703 in chromosome 17 (Figure 4-11). LocusZoom plots the minus log-10 of the p-

http://locuszoom.sph.umich.edu/locuszoom/
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values resulting from the association tests (y-axis) versus the chromosome position, 

together with the recombination rate (in cM/Mb), pairwise LD values (r2) between SNPs in 

European populations from 1KGP, and proximal genes (x-axis). 

 In addition, we annotated each of the 10,245 tested SNVs according to their MAF 

in controls for plotting. We classified the variant as „rare‟ (represented by squares) when the 

control MAF was < 5% and „frequent‟ when MAF ≥ 5% (depicted in circles). 

 This study replicated previous findings at 11p15.5, where a variant in the promoter 

region of the gel-forming MUC5B gene (rs35705950) constitutes the most significant hit. 

However, while several other SNPs reached genome-wide significance in the region (details 

below), none of the three TOLLIP SNPs reported as risks by Noth et al. [8] (rs111521887, 

rs5743894, rs5743890) were significant in this study. 

 As for the 14q21.3 and 17q21.31 loci, none of the two top hits reported by Noth et 

al. [8] were nominally significant in this study (rs7144383, p=0.181; rs17690703, p=0.639). 

SNP rs4898572, another intronic variant in strong LD with rs7144383 in MDGA2 gene as 

reported by Noth et al. [8], was also not significant in this study (p=0.191). These 

discrepancies may be explained by the small sample size and the weak reported effects for 

these SNPs, as many other nearby variants in the two loci were detected at genome-wide 

significance (details below). 

Further validation studies are being conducted to be able to discern if newly 

discovered risk variants are real polymorphisms or artifacts. In particular, the region in 

chromosome 17 shows a complex structure [69], where we found frequent and rare 

variants that we may consider as putative risk variants at this stage. This region spans 440 

kb partially or entirely involving five genes (CRHR1, IMP5/SPPL2C, MAPT, STH, and 

KANSL1) and harbors a high number of copy number variants (CNVs). To make it more 

complex, the evidence supports the existence of a large inversion that has been positively 

selected in Europeans [38]. This structural complexity may have affected the genotype 

calling by the utilized algorithms. Therefore, further work will be necessary to empirically 

validate the robustness of key variants associated in this region. 
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Figure 4-11. Regional association plots in chromosomes 11 (top), 14 (middle) and 17 

(bottom), centered in previously reported top significant SNPs by Noth et al. [8] (depicted 

as purple circles). 
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4.2.4. Top associated SNPs 

 The logistic regression of the binary trait (phenotype case/control) with five 

principal components as covariates identified 38 top significant SNPs: nine in chromosome 

11, seventeen in chromosome 14, and twelve in chromosome 17 (Table 4-6). Significance is 

defined here as the probability of a test statistic being equal to or greater than the observed 

test statistic if the null hypothesis of no association is true. Thus lower p-values show that 

in case of no association, the chance of seeing this result is extremely low. A common 

approach to define a threshold to declare statistical significance is based on the concept of 

genome-wide significance. For European-descent populations, this threshold has been 

estimated at 7.2x10-8 [70]. A more recent accepted standard is 5x10-8 [71], which is the 

threshold utilized in this association study. A summary of associated variants reaching 

genome-wide significance broken by whether they are described for the first time or not is 

shown in Table 4-6. As previously indicated, the variant with the highest significance is the 

SNP in the promoter region of MUC5B (rs35705950; p=3.97x10-23), related with a slightly 

larger effect compared to that reported (OR= 6.12, 95% CI: 4.28-8.76). Although we did 

not test whether this effect is statistically distinct from that reported by previous GWAS,  

studies with small sample sizes such as that of this master's, are expected to translate into 

biased OR estimates. 

Table 4-6. Summary results for the 38 genome-wide significant SNPs associated with IPF. 

chr Annotated No annotation Total 

11 9 0 9 

14 16 1 17 

17 8 4 12 
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 Setting a threshold of 5% in controls to declare a variant as frequent/common 

(MAF>5%) or infrequent/rare (MAF<5%), we found that three of the top SNPs on 

chromosome 11 are rare (but are quite frequent in IPF cases). Similarly, for chromosomes 

14 and 17, only one SNP on each region was classified as rare among the significant results. 
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4.2.5. Further evaluations of top associated SNPs 

 As explained in the Methodology Section, the GATK VQSR walker provides a 

continuous estimate of the probability that each variant is true, allowing one to partition 

the call sets into quality tranches when GATK operates in SNP-mode. We have used four 

thresholds of sensitivity relative to the truth sets: 90, 99, 99.9, and 100%. These tranches 

are applied to the GATK output VCF file using the FILTER field. In this way, we can 

choose to keep all or only some filtered records (Figure 4-12). 

 

 

Figure 4-12. Variant Quality Score Recalibration for NGS IPF called variants using 

GATK: tranches plot (top) and specificity versus tranche truth sensitivity (bottom). 

 In the tranches plot, the x-axis represents the number of novel variants called while 

the y-axis shows two quality metrics: novel transition to transversion ratio (Ti/Tv) and the 

overall truth sensitivity. 

 The GATK VariantRecalibrator walker was used setting to 4 the maximum number 

of different Gaussian-clusters of variants in the identification process (--maxGaussians 4). 
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 From the lowest tranche (90) to the highest (100), we move from low sensitivity 

/high specificity to high sensitivity/low specificity. In other words, each subsequent 

tranche in turn introduces additional true positive calls along with a growing number of 

false positive calls. 

 We have computed the significance of HWE deviations in cases by means of 

'HardyWeinberg' R library for each of the top identified SNPs (Figure 4-13). While deviations 

from HWE expectations may be found among patients because of the disease status, large 

deviations in the context of complex diseases may also suggest issues related to the quality 

of genotyping data. Out of the 38 top significant SNPs, 11 showed a large deviation from 

HWE expectations in cases after a Bonferroni adjustment (computed as 0.05 / 10,245 

SNPs = 4.88x10-6). 

 

Figure 4-13. Histogram of HWE tests in cases for the 38 top significant SNPs. The 

vertical red line depicts the Bonferroni threshold (4.88x10-6) to declare a HWE p-value as a 

sign of departure from the HWE. 

 In addition, we have revised the FILTER field in the VCF file provided by GATK 

to study the correspondence between the statistical significance of the association and the 

tranche of each finding (results not shown since they are under current evaluation). 
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 A total of 12 out of 38 SNPs passed the GATK VQSR procedure with high 

confidence of being true variants in the NGS data set. A total of 19 out of 38 SNPs were 

found in the tranche between 99.90 and 100.00 thresholds, where a relatively high number 

of true negatives SNPs are expected. The rest of SNPs (n=7) were found in the tranche 

between 99.00 and 99.99 thresholds. The SNP in the promoter region of MUC5B 

(rs35705950) was identified by both the GATK and Platypus callers (Figure 4-14). 

 In this exploration, we focused on one particular SNP, rs371630624, to illustrate 

the inherent difficulties of current genotype calling algorithms for NGS data, particularly 

for rare variants. This SNP is a rare variant that was found strongly associated with the 

disease in this study (p=7.37x10-13; OR=1,822, 95% CI: 234.2-14,170). However, the lack 

of genotype counts corresponding to the expected rare homozygous (homozygous for the 

alternative allele or "1/1" genotype; Figure 4-14) while the population of heterozygous is 

large, has a consequent violation of the HWE expectations (HWE p=9.88x10-15), 

highlighting plausible issues that artifact the results for this SNP [63,72]. Moreover, while 

all the reference allele homozygous patients were supported by >80% of reads for that 

allele, none of the heterozygous patients were supported by >20% of reads for both alleles 

(average proportion of alternative allele reads was 12.4%). In comparison, genotypes for 

variant rs35705950 passed the GATK Variant Quality Score Recalibrator with a 'PASS' 

value in its filter, while rs371630624 showed a 'VQSRTrancheSNP99.90to100.00' warning in 

its corresponding filter. This means that the variant was in the range of VQSLODs (the 

probability that each call is real) corresponding to the remaining 0.1% of the training set, 

which is considered as a false positive. Thus, a further inspection of this putatively 

associated variant was required. Furthermore, rs371630624 was not identified by Platypus. 
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Figure 4-14. Genotypes distribution of variant rs35705950 (left) and rs371630624 (right) in 

IPF individuals. 

  

 When focusing of the most significant SNP from each of the three regions, each 

showed a relatively high number of reads and a high Phred score base quality within ±50 

bp flanking the variant position, but a variable mean base quality mapping (Table 4-7). 

 

Table 4-7. Quality features of top associated SNPs per chromosome. 

Top SNP at 

chr. 

Mean number of 

reads 

Mean Mapping 

Quality (MAPQ) 

Mean Phred score 

(QUAL) 

11 (rs35705950) 104 70.0 38.8 

14 41.7 49.9 40.6 

17 226 70.0 39.7 

 

 Interestingly, both GATK and Platypus called these three SNPs, although with 

variable concordances for the genotypes called (Table 4-8). 
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Table 4-8. Genotype concordance of top SNPs at each region between GATK and 

Platypus calls. 

Top SNP 

in chr. 11 (rs35705950) 

Genotypes  

(number of individuals) 

Caller 0/0 0/1 1/1 ./. 

GATK 67 111 14 0 

Platypus 67 111 14 0 

     

Top SNP 
in chr. 14 

Genotypes 
 (number of individuals) 

Caller 0/0 0/1 1/1 ./. 

GATK 141 27 10 14 

Platypus 121 49 4 18 

     

Top SNP 

in chr. 17 

Genotypes  

(number of individuals) 

Caller 0/0 0/1 1/1 ./. 

GATK 137 51 4 0 

Platypus 137 51 4 0 

 

  

 There was a perfect match in the called genotypes for variants rs35705950 and the 

top SNP of chromosome 17 (100% concordance in both cases), whereas the concordance 

between GATK and Platypus was as low as 75% for the top variant in chromosome 14. 

GATK and Platypus called this variant but warned about the calling confidence setting 

their filters to "VQSRTrancheSNP99.90to100.00" and "alleleBias", respectively. 

 

4.2.6. Functional analysis of top associated SNPs 

 Linking associations between phenotypes and genotypes and their impact on health 

is challenging, both in terms of improved or new therapies and reliable prognosis. A key 

step is to search for the mechanisms linking the presence of a variant to an altered in vivo 

gene product function [73]. 

 A SNV may disturb the function of a gene product through a wide spectrum of 

mechanisms, including transcription factor binding, miRNA interactions, messenger RNA 

splicing, structure and half-life, translation efficiency, and non-synonymous substitution 
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effects [73]. The challenge of the interpretation is even greater if we consider non-coding 

variants, given the diversity of non-coding functions, the incomplete annotation of 

regulatory elements and the potential existence of still unknown mechanisms of gene 

regulation [74]. 

 A number of strategies are currently used to perform a functional impact analysis of 

gene variants. Among them include reference functional genomics, chromatin state maps, 

nucleotide-resolution regulatory annotations, predictive models of variants effects, 

comparative genomics between related species, and evolutionary conserved biochemical 

activity [74]. 

 To help in the interpretation and prioritization of variants, several online resources 

are available to researchers, including HaploReg [75], RegulomeDB [76], ENSEMBL's SNP 

Effect Predictor [77]. Variant annotators such as snpEff [21] and ANNOVAR [22] allowed 

us to use this knowledge from different curated and non-curated databases to automatically 

provide the annotation of variants. This information was further supplemented with 

empirical data generated by the ENCODE project [78] as reported by HaploReg v3 and 

RegulomeDB. In addition, conserved regions that exhibit evidence of selective constraint 

were identified by GERP [79] and SiPhy [80] scores. 

 Among top significant SNPs, seven were identified as coding non-synonymous 

(five of them as part of MUC5B gene, and two as part of MUC2), three variants were 

identified as promoter variants (one in chromosome 11 and two in chromosome 17) and 

12 were annotated as enhancer variants (nine in chromosome 14 and three in chromosome 

17) according to current ENCODE data. Most of these regulatory variants (at promoters 

or enhancers) were also associated with DNAse I hypersensitivity sites and/or with the 

alteration of motifs. One of the promoter variants identified was, in fact, rs35705950 in 

MUC5B, which associates with histone marks in 9 organs, DNAse I hypersensitivity sites in 

5 organs, binding of 11 proteins at this locus, and 4 altered motifs because of the allelic 

changes. This variant was one of two that showed consistent evidence of phylogenetic 

conservation both in GERP and SiPhy (a second one was an intronic variant in 

chromosome 17). It is present in Europeans and Americans with a MAF of 8% and 10%, 

respectively. We have observed that this variant is present in 36.2% of IPF cases, whereas 

controls showed a MAF of 10.7%, similar to the MAF declared for European Americans. 

None of the top significant SNPs was related with eQTLs or protein changes. Interestingly, 

https://genome.ucsc.edu/ENCODE/
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no functional information was found for the rare variant rs371630624, again supporting 

that this putative novel variant is, in fact, an artifact of the variant calling. 

 

4.3. The bioinformatics pipeline computing times 

 We have implemented a bioinformatics pipeline available in a cluster server based 

on the GATK and auxiliary tools (see Appendix A1 for a comprehensive list of used 

software). Since the use of different queues with a different number of processors and 

cores is possible at the cluster server, it is not easy to provide an exact computing time for 

each of the tasks comprising the GATK pipeline. However, we provide an estimation of 

the computing time in each of the basic steps, with an approximate time of 220 hours 

(Appendix A4). During the execution time, about 2,170 temporal and definitive files are 

produced, occupying 130 GB of extra data. Taking into account the original sample file 

sizes of about 200 GB, a total of 330 GB hard drive storage was required. 
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5. CONCLUSIONS 

1) We have developed a GATK-based bioinformatics pipeline to process and manage 

targeted Next Generation Sequencing data to extract germline-variants. This 

pipeline has been extended to study the association of called variants with 

susceptibility to Idiopathic Pulmonary Fibrosis. 

2) We have used this bioinformatics pipeline to perform an association study of 

genetic variants with susceptibility to Idiopathic Pulmonary Fibrosis, by comparing 

the data obtained from regions of interest in chromosomes 11, 14 and 17 between 

192 patients and 501 unrelated European subjects from The 1000 Genomes 

Project. 

3) A total of 38 SNPs reached genome-wide significance, five of them described for 

the first time in this study. The previously described risk SNP at the promoter of 

MUC5B showed the top significance in the region of chromosome 11. On the 

contrary, in regions from chromosomes 14 and 17, the study revealed novel 

variants with stronger significance than those SNPs identified by the previous 

GWAS. 
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6. APPENDICES 

6.1. Appendix A1. List of software used to design and test the 

bioinformatics pipeline 

Name Version Core Description 

ANNOVAR  Perl 
Annotate called variants, a variant annotator. 

URL: http://annovar.openbioinformatics.org/ 

BEDtools 2.17.0 C++ 

A Swiss-army knife of tools for a wide-range of 

genomics analysis tasks: intersect, merge, count, 
complement, and shuffle genomic intervals from 

multiple files in widely-used genomic file formats such as 
BAM, BED, GFF/GTF, VCF. 

URL: http://bedtools.readthedocs.org/ 

Eigensoft 6.0.1 C/Perl 

The EIGENSOFT package combines functionality from 

our population genetics methods (Patterson et al. 2006) 
and our EIGENSTRAT stratification correction method 

(Price et al. 2006).  

URL: http://data.broadinstitute.org/alkesgroup/EIGENSOFT/ 

FastQC 0.11.2 Java 

FastQC is a QC application for high throughput 

sequence data. It reads in sequence data in a variety of 
formats and can either provide an interactive application 

to review the results of several different QC checks, or 
create an HTML based report, which can be integrated 

into a pipeline.  

URL: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 

fcGENE 1.0.7 C++ 

It converts genotype SNP data into formats of different 

imputation tools like PLINK MACH, IMPUTE, 
BEAGLE and BIMBBAM, second to transform 

imputed data into different file formats like PLINK, 
HAPLOVIEW, EIGENSOFT and SNPTEST. 

URL: http://sourceforge.net/projects/fcgene/ 

Filezilla 3.13 C 
A FTP/SFTP client for remote file management. 

URL: https://filezilla-project.org/ 

GATK 3.3 Java 
Genome Analysis Tool Kit, a variant caller. 

URL: https://www.broadinstitute.org/gatk/ 

HaploReg 3 Online 

HaploReg is a tool for exploring annotations of the 

noncoding genome at variants on haplotype blocks, such 

as candidate regulatory SNPs at disease-associated loci. 

URL: http://www.broadinstitute.org/mammals/haploreg/  

http://annovar.openbioinformatics.org/
http://bedtools.readthedocs.org/
http://data.broadinstitute.org/alkesgroup/EIGENSOFT/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://sourceforge.net/projects/fcgene/
https://filezilla-project.org/
https://www.broadinstitute.org/gatk/
http://www.broadinstitute.org/mammals/haploreg/haploreg_v3.php
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Name Version Core Description 

IGV 2.3.34 Java 

It is a high-performance visualization tool for interactive 

exploration of large, integrated genomic datasets. It 
supports a wide variety of data types, including array-

based and next-generation sequence data, and genomic 
annotations. 

URL: https://www.broadinstitute.org/igv/ 

NovoAlign 3.02.00 C/Perl/R 

A mapper for NGS reads to a reference database. It is an 
aligner for single-ended and paired-end reads from the 

Illumina Genome Analyser. 

URL: http://www.novocraft.com/products/novoalign/ 

LocusZoom  Online 

LocusZoom is a tool to plot regional association results 

from genome-wide association scans or candidate gene 
studies. 

URL: http://locuszoom.sph.umich.edu/locuszoom/ 

Platypus 0.8.1 Python/C 

A variant caller designed for efficient and accurate 

variant-detection in high-throughput sequencing data. By 
using local realignment of reads and local assembly, it 

achieves both high sensitivity and high specificity. 

URL: http://www.well.ox.ac.uk/platypus/ 

Picard 1.119 Java 

A set of Java command line tools for manipulating high-

throughput sequencing data (HTS) data and formats. 

URL: http://broadinstitute.github.io/picard/ 

PLINK 1.07 C/C++  

It is a free, open-source whole genome association 

analysis toolset, designed to perform a range of basic, 
large-scale analyses in a computationally efficient 

manner. 

URL: http://pngu.mgh.harvard.edu/~purcell/plink/ 

PLINK2 1.9 C/C++  

It is a complete rewrite of the original code and 

represents a very significant improvement in overall 
speed and functionality. 

URL: https://www.cog-genomics.org/plink2 

Putty 0.65 C 

A client program for the SSH, Telnet and Rlogin 

network protocols. 

URL: http://www.chiark.greenend.org.uk/~sgtatham/putty/ 

Qualimap 2.1. Java/R 

Qualimap 2 is a platform-independent application that 

provides both a Graphical User Interface (GUI) and a 

command-line interface to facilitate the QC of alignment 
sequencing data and its derivatives like feature counts. 

URL: http://qualimap.bioinfo.cipf.es/ 

https://www.broadinstitute.org/igv/
http://www.novocraft.com/products/novoalign/
http://locuszoom.sph.umich.edu/locuszoom/
http://www.well.ox.ac.uk/platypus/
http://broadinstitute.github.io/picard/
http://pngu.mgh.harvard.edu/~purcell/plink/
https://www.cog-genomics.org/plink2
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://qualimap.bioinfo.cipf.es/
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Name Version Core Description 

R 3.2.1. 

C 

IDE 

(RStudio) 

R is a free software environment for statistical 

computing and graphics. 

URL: https://www.r-project.org/ 

Many libraries and dependent-packages are required by 

GATK, Qualimap, etc. Some of them are: 

 Available from CRAN: ggplot2, gsalib, optparse, 
HardyWeinberg. 

 Available from Bioconductor: NOISeq, 

Repitools, Rsamtools, GenomicFeatures, 
rtracklayer, snpRelate. 

 

RegulomeDB  Online 

RegulomeDB is a database that annotates SNPs with 
known and predicted regulatory elements in the 

intergenic regions of the H. sapiens genome. 

URL: http://www.regulomedb.org/ 

SAMtools 1.2 C 

SAMtools provide various utilities for manipulating 

alignments in the SAM format, including sorting, 
merging, indexing and generating alignments in a per-

position format. 

URL: http://samtools.sourceforge.net/ 

SepPrep 0.4 C 

A program to merge paired end Illumina reads that are 

overlapping into a single longer read. 

URL: https://github.com/jstjohn/SeqPrep 

snpEff 4_1h 
Java/Perl/
Python 

A genetic variant annotation and effect prediction 

toolbox. It annotates and predicts the effects of variants 
on genes (such as amino acid changes).  

Features: 

URL: http://snpeff.sourceforge.net/ 

VCFtools 0.1.12b Perl/C 

VCFtools is a program package designed for working 
with VCF files, such as those generated by The 1000 

Genomes Project. The aim of VCFtools is to provide 
easily accessible methods for working with complex 

genetic variation data in the form of VCF files. 

URL: https://vcftools.github.io/ 

WinSCP 5.7.5 C 

WinSCP is an open source free SFTP client, FTP client, 

WebDAV client and SCP client for Windows. 

URL: https://winscp.net 

 

 

  

https://www.r-project.org/
http://www.regulomedb.org/
http://samtools.sourceforge.net/
https://github.com/jstjohn/SeqPrep
http://snpeff.sourceforge.net/
https://vcftools.github.io/
https://winscp.net/
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6.2. Appendix A2. Overview of SBATCH/BASH scripts running on 

DRAGO cluster server 

Note: use "#" for running SBATCH commands on DRAGO (code shown in blue color) 

and "###" for comments (code shown in green color). If DRAGO is not used, BASH 

commands works as expected (no "#" is required; code shown in black color). 

 

#!/bin/sh 
 

### Script name: script-name.sh 
 

### Target: pipeline for IPF NGS DNA-seq using DRAGO cluster at drago.saii.ull.es 
 

### SBATCH and SLURM management 
### Send job to a queue: > sbatch task1.sh 

### Query the status of a queue: > squeue  
### Cancel the job: scancel <job_id> 

### Query the status of a job: scontrol show job <job_id> 
### See available queues: sinfo 

 
### Capture a log file with console results 

### bash ---.sh &> ---.log 
 

 
### Asigns name to a job (default name: PBS) 

#SBATCH -J ... 
 

### Select cluster nodes and cores 
#SBATCH-N 1 # 1 node for DRAGO 

#SBATCH-n 20 # 1 cores for DRAGO  
 

###Available SLURM queues are: "sequential, test, fast, medium y batch" 
### Select SLURM queue 

### sequential: sequential applications (168 h/1 core); test: small tests (5 min./9 cores); 
fast: rapid executions (30 h/30 cores); medium: long-term runs (168 h/40 cores); batch: 

high demanding jobs (12 h/80 cores; default queue).  
 

### Use 'test' queue 
#SBATCH -p test 

 
### Or use 'fast' queue 

#SBATCH -p fast 
 

### Or use 'batch' queue 
#BATCH -p batch 
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### Or use 'medium' queue 

##SBATCH -p medium 
 

### Stores the standard log output 
#SBATCH -o script-name.out 

 
### Stores the standard err output 

#SBATCH -e script-name.err 
 

### Do not repeat job in case of failure 
#script-name.sh -r n 

 
### Exports environment variables 

#script-name.sh -V 
 

### Options to send email: BEGIN, END, FAIL, ALL 
#SBATCH --mail-type=BEGIN 

#SBATCH --mail-user=username@domain 
 

#SBATCH --mail-type=END 
#SBATCH --mail-user= username@domain 

 
#SBATCH --mail-type=FAIL 

#SBATCH --mail-user= username@domain 
 

### Loads profile 
source /etc/profile 

 
### Load specific modules in DRAGO memory 

### Loads Java 1.7 to run GATK 
module add java/sun1.7 

### Loads R 3.1.2 (make sure that ggplot2, gplots, reshape, grid, tools, and gsalib 
libraries are already installed) 

module add R/3.1.2 
 

### Paths to files. The script check a dummy config file where a variable 'machine' 
identifies the type of machine to be used for running this pipeline (1=cluster server; 

2=desktop machine; 3=laptop machine) 
machine=$(awk 'NR==1 {print $1}' machine/machine) 

 
### Check in which machine the pipeline will be run 

if [ "$machine" = "1" ]; then 
echo "We work on DRAGO cluster..." 

ROOT=/username/a-folder 
ROOT2=/username/another-folder 

GATK=$ROOT/apps/GATK-3.3-0/GenomeAnalysisTK.jar 
fi 

 
if [ "$machine" = "2" ]; then 
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echo "We work on a Desktop machine..." 

ROOT=/home/username/a-folder  
ROOT2=/username/another-folder 

GATK=$ROOT/apps/GATK-3.3-0/GenomeAnalysisTK.jar 
fi 

 
if [ "$machine" = "3" ]; then 

echo "We work on a laptop machine..." 
ROOT=/home/username/a-folder  

ROOT2=/username/another-folder 
GATK=$ROOT/apps/GATK-3.3-0/GenomeAnalysisTK.jar 

fi 
 

### Set full paths to reference genome and auxiliary databases 
REFERENCE=$ROOT2/hg19/ucsc.hg19.fasta 

GATK_BUNDLE=$ROOT2/gatk_bundle 
 

 
### Auxiliary files for GATK routines: 

INDELS=$GATK_BUNDLE/Mills_and_1000G_gold_standard.indels.hg19.vcf 
DBSNP=$GATK_BUNDLE/dbsnp_138.hg19.vcf 

HAPMAP=$GATK_BUNDLE/hapmap_3.3.hg19.vcf 
OMNI=$GATK_BUNDLE/1000G_omni2.5.hg19.vcf 

 
### Input path for sample files and text file with a list of sample filenames 

SAMPLES=$ROOT/scripts/samples/samples_task--- 
INPUT=$ROOT2/samples 

 
### Output path for results 

OUTPUT=$ROOT2/outputs/task--- 
CONTROL=$OUTPUT/task---.log 

 
echo "============================================" 

echo "= PIPELINE TO CALL VARIANTS FROM DNA-seq data using GATK =" 
echo "=cflores-lab / HUNSC 2015=" 

echo "============================================" 
 

### DO NOT DELETE THIS LINE: FOR-LOOP is built based on the sample folder 
### when iteration over the files contained in a defined folder is required 

cd $SAMPLESFOLDER 
 

### Example of a GATK task 
### TASK01: Compute Indel realignment for each file ($file stores current file name) ---

> prepares the list of targets 
 

### For each IPF DNA-seq sample 
while read file 

do 
echo "-----------------------------" 
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echo "TASK01: Compute Indel realignment for each file ($file stores current file name) ---

> prepares the list of targets" 
echo "-----------------------------" 

echo ">>> Starting a new iteration..." 
echo ">>>>>> Processing file: " $file 

 
### NOTE: check whether actual version of the GATK does support "-nt xx" for 

multiple parallelism in this command 
 

java -jar $GATK -T RealignerTargetCreator -R $REFERENCE -I $INPUT/$file -known 
$INDELS -o $OUTPUT/$file.target_intervals.list 

 
### ADD more GATK commands here 

### java -jar $GATK walker 2 <options><infile><outfile> 
### java -jar $GATK walker 3 <options><infile><outfile> 

### java -jar $GATK walker ... 
 

### Appends filename of processed sample to output file if iteration declared in the 
FOR-LOOP is required (if not, comment this line) 

echo $file >> $CONTROL 
 

### End of LOOP for TASK, if required (if not, comment this line) 
done< $SAMPLES 
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6.3. Appendix A3. Excerpts of GATK and related commands 

 
#!/bin/sh 

 
#Task1: GATK RealignerTargetCreator 

java -jar $GATK -T RealignerTargetCreator -R $REFERENCE -I $INPUT/$file -known 
$INDELS -o $OUTPUT/$file.target_intervals.list 

----------------------------------------------------------------------------------------------------------------  
 

#Task2: GATK IndelRealigner 
java -jar $GATK -T IndelRealigner -R $REFERENCE -I $INPUT/$file -targetIntervals 

$ROOT$WD/outputs_task1/$file.target_intervals.list -known $INDELS -o 
$OUTPUT/$file.realigned_reads.bam 

----------------------------------------------------------------------------------------------------------------  
 

#Task3: GATK BaseRecalibrator 
java -jar $GATK -T BaseRecalibrator -R $REFERENCE -I 

$INPUT/$file.realigned_reads.bam -knownSites $DBSNP -knownSites $INDELS -o 
$OUTPUT/$file.recal_data.table 

---------------------------------------------------------------------------------------------------------------- 
 

#Task4: GATK BaseRecalibrator 
java -jar $GATK -T BaseRecalibrator -R $REFERENCE -I 

$ROOT$WD/outputs_task2/$file.realigned_reads.bam -knownSites $DBSNP -
knownSites $INDELS -BQSR $ROOT$WD/outputs_task3/$file.recal_data.table -o 

$OUTPUT/$file.recal_data_post.table 
----------------------------------------------------------------------------------------------------------------  

 
#Task5: AnalyzeCovariates 

java -jar $GATK -T AnalyzeCovariates -R $REFERENCE -before 
$INPUT1/$file.recal_data.table -after $INPUT2/$file.recal_data_post.table -plots 

$OUTPUT/$file.recalibration_plots.pdf -csv my-report.csv 
----------------------------------------------------------------------------------------------------------------  

 
#Task6: PrintReads 

java -jar $GATK -T PrintReads -R $REFERENCE -I $INPUT/$file.realigned_reads.bam -

BQSR $INPUT2/$file.recal_data.table -o $OUTPUT/$file.recal_reads.bam 
----------------------------------------------------------------------------------------------------------------  

 
#Task7: GATK HapotypeCaller 

java -jar $GATK -T HaplotypeCaller -R $REFERENCE -I $INPUT/$file.recal_reads.bam 

--emitRefConfidence GVCF --variant_index_type LINEAR --variant_index_parameter 
128000 --dbsnp $DBSNP -L chr11 -L chr14 -L chr17 -o 

$OUTPUT/$file.raw.snps.indels.g.vcf 
----------------------------------------------------------------------------------------------------------------  
 

#Task8: GATK CombineGCVFs 

#BATCH 1 
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java -jar $GATK/GenomeAnalysisTK.jar -T CombineGVCFs -R $REFERENCE --

variant 
$INPUT/NGS_1_DNA_Targeted.merged.onTarget.bam.rmdup.bam.raw.snps.indels.g.vcf 

--variant 
$INPUT/NGS_2_DNA_Targeted.merged.onTarget.bam.rmdup.bam.raw.snps.indels.g.vcf 

--variant 
$INPUT/NGS_3_DNA_Targeted.merged.onTarget.bam.rmdup.bam.raw.snps.indels.g.vcf 

--variant $INPUT/NGS_4 
... etc ... and repeat for each batch of 50 files 

 
# Then combine all small cohorts into onle single gVCF file 

java -jar $GATK/GenomeAnalysisTK.jar -T CombineGVCFs -R $REFERENCE --
variant $INPUT/ipf_cohort1.g.vcf --variant $INPUT/ipf_cohort2.g.vcf --variant 

$INPUT/ipf_cohort3.g.vcf --variant $INPUT/ipf_cohort4.g.vcf --variant 
$INPUT/ipf_cohort5.g.vcf -o $OUTPUT/ipf_cohort_12345.g.vcf 

-------------------------------------------------------------------------------------------------------- -------- 
 

#Task9: GATK GenotypeGVCFs 

java -jar $GATK/GenomeAnalysisTK.jar -T GenotypeGVCFs -R $REFERENCE --
variant $INPUT/ipf_cohort.g.vcf --max_alternate_alleles 64 -o 

$OUTPUT/ipf_cohort_genotyped.vcf 
----------------------------------------------------------------------------------------------------------------  

 
#Task10: GATK VariantRecalibrator 

java -jar $GATK -T VariantRecalibrator -R $REFERENCE -input 

$INPUT/ipf_cohort_genotyped.vcf -
resource:hapmap,known=false,training=true,truth=true,prior=15.0 $HAPMAP -

resource:omni,known=false,training=true,truth=false,prior=12.0 $OMNI -
resource:dbsnp,known=true,training=false,truth=false,prior=6.0 $DBSNP -an DP -an QD 

-an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum -an InbreedingCoeff -
mode SNP -L chr11 -L chr14 -L chr17 --maxGaussians 4 -recalFile 

$OUTPUT/ipf_cohort_genotyped.vcf.recalibrate_SNP.recal -tranchesFile 
$OUTPUT/ipf_cohort_genotyped.vcf.recalibrate_SNP.tranches -rscriptFile 

$OUTPUT/ipf_cohort_genotyped.vcf.recalibrate_SNP_plots.R  
----------------------------------------------------------------------------------------------------------------  

 
#Task11: GATK ApplyRecalibration 

java -jar $GATK -T ApplyRecalibration -R $REFERENCE -input 
$INPUT1/ipf_cohort_genotyped.vcf -mode SNP --ts_filter_level 99.0 -recalFile 

$INPUT2/ipf_cohort_genotyped.vcf.SNP.recal -tranchesFile 
$INPUT2/ipf_cohort_genotyped.vcf.SNP.tranches -o 

$OUTPUT/recalibrated_snps_raw_indels.vcf 
---------------------------------------------------------------------------------------------------------------- 

 
#Task12: GATK VariantRecalibrator 

java -jar $GATK -T VariantRecalibrator -R $REFERENCE -input 

$INPUT/recalibrated_snps_raw_indels.vcf -
resource:mills,known=true,training=true,truth=true,prior=12.0 $MILLS -an QD -an DP -

an FS -an SOR -an MQRankSum -an ReadPosRankSum -an InbreedingCoeff -mode 
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INDEL -tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 -L chr11 -L chr14 -L 

chr17 --maxGaussians 4 -recalFile 
$OUTPUT/ipf_cohort_genotyped.vcf.recalibrate_INDEL.recal -tranchesFile 

$OUTPUT/ipf_cohort_genotyped.vcf.recalibrate_INDEL.tranches -rscriptFile 
$OUTPUT/ipf_cohort_genotyped.vcf.recalibrate_INDEL_plots.R  

---------------------------------------------------------------------------------------------------------------- 
 

#Task13: GATK ApplyRecalibration 

java -jar $GATK -T ApplyRecalibration -R $REFERENCE -input 
$INPUT1/recalibrated_snps_raw_indels.vcf -mode INDEL --ts_filter_level 99.0 -recalFile 

$INPUT2/ipf_cohort_genotyped.vcf.recalibrate_INDEL.recal -tranchesFile 
$INPUT2/ipf_cohort_genotyped.vcf.recalibrate_INDEL.tranches -o 

$OUTPUT/ipf_cohort_genotyped.vcf.recalibrated_variants.vcf  
---------------------------------------------------------------------------------------------------------------- 

 
#Task14: snpEff annotation 

# hg19 as reference 

java -Xmx4g -jar $SNPEFF/snpEff.jar hg19 -v -noLog 
$INPUT/ipf_cohort_genotyped.vcf.recalibrated_variants.vcf> 

$OUTPUT/ipf_cohort_genotyped.vcf.recalibrated_variants.snpEff_ann_hg19.vcf 
 

# GRCh38.79 as reference 
java -Xmx4g -jar $SNPEFF/snpEff.jar GRCh38.79 -v -noLog 

$INPUT/ipf_cohort_genotyped.vcf.recalibrated_variants.vcf> 
$OUTPUT/ipf_cohort_genotyped.vcf.recalibrated_variants.snpEff_ann.vcf  

----------------------------------------------------------------------------------------------------------------  
 

#Task15: GATK VariantAnnotator 
java -jar $GATK -R $REFERENCE -T VariantAnnotator -A SnpEff -V 

$INPUT1/ipf_cohort_genotyped.vcf.recalibrated_variants.vcf -snpEffFile 
$INPUT2/ipf_cohort_genotyped.vcf.recalibrated_variants.snpEff_ann_GRCh38.79.vcf -L 

chr11 -L chr14 -L chr17 -o 
$OUTPUT/ipf_cohort_genotyped.vcf.recalibrated_variants.snpEff_ann_GRCh38.79.GA

TK_VR.vcf --dbsnp $DBSNP 
----------------------------------------------------------------------------------------------------------------  

 
#Task16: ANNOVAR annotation 

$ANNOVAR/table_annovar.pl 

$INPUT/ipf_cohort_genotyped.vcf.recalibrated_variants.vcf $ANNOVAR/humandb/ -
buildver hg19 -out 

$OUTPUT/ipf_cohort_genotyped.vcf.recalibrated_variants.vcf_bufferSize10000_annovar 
-remove -protocol 

refGene,cytoBand,genomicSuperDups,esp6500siv2_all,1000g2014oct_all,1000g2014oct_af
r,1000g2014oct_eas,1000g2014oct_eur,snp138,ljb26_all -operation g,r,r,f,f,f,f,f,f,f -nastring 

. -vcfinput 
----------------------------------------------------------------------------------------------------------------  
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#Task17: BEDtools file perations 

$BEDTOOLS/bin/multiIntersectBed -i $INPUT/*.bed > 
$OUTPUT/target_intervals.bed -header 

----------------------------------------------------------------------------------------------------------------  
 

#Task18: BEDtools and VCFtools file operations 
$VCFTOOLS/vcftools --gzvcf $INPUT1 --chr 11 --from-bp 1212759 --to-bp 1431096 --

recode --recode-INFO-all --out $OUTPUT/ALL1KGP_chr11.genotypes 
gzip -9 -k $OUTPUT/ALL1KGP_chr11.genotypes.recode.vcf 

$VCFTOOLS/vcftools --gzvcf $INPUT2 --chr 14 --from-bp 47308642 --to-bp 48144657 -
-recode --recode-INFO-all --out $OUTPUT/ALL1KGP_chr14.genotypes 

gzip -9 -k $OUTPUT/ALL1KGP_chr14.genotypes.recode.vcf 
$VCFTOOLS/vcftools --gzvcf $INPUT3 --chr 17 --from-bp 43672512 --to-bp 44836908 -

-recode --recode-INFO-all --out $OUTPUT/ALL1KGP_chr17.genotypes 
gzip -9 -k $OUTPUT/ALL1KGP_chr17.genotypes.recode.vcf 

----------------------------------------------------------------------------------------------------------------  
 

#Task19: VCFtools and command line file operations 

(zcat $INPUT1 | head -250 | grep ^#; zcat $INPUT1 | grep -v ^#; zcat $INPUT2 | grep 
-v ^#; zcat $INPUT3 | grep -v ^# ) | gzip -c > $OUTPUT/ALL1KGP_chr-11-14-

17.genotypes.vcf.gz  
 

grep CEU $GENOME/integrated_call_samples_v3.20130502.ALL.panel | cut -f1 > 
$OUTPUT/CEU.samples.list 

grep GBR $GENOME/integrated_call_samples_v3.20130502.ALL.panel | cut -f1 > 
$OUTPUT/GBR.samples.list 

grep FIN $GENOME/integrated_call_samples_v3.20130502.ALL.panel | cut -f1 > 
$OUTPUT/FIN.samples.list 

grep IBS $GENOME/integrated_call_samples_v3.20130502.ALL.panel | cut -f1 > 
$OUTPUT/IBS.samples.list 

grep TSI $GENOME/integrated_call_samples_v3.20130502.ALL.panel | cut -f1 > 
$OUTPUT/TSI.samples.list 

cat $OUTPUT/*.samples.list > 
$OUTPUT/1KGP_phase3_CEU_FIN_GRB_IBS_TSI_individuals.txt 

 
$VCFTOOLS/vcftools --gzvcf $INPUT/ALL1KGP_chr-11-14-

17.genotypes.controls.vcf.gz --out $OUTPUT/ALL1KGP_chr-11-14-
17.genotypes.controls.vcf.gz --plink 

----------------------------------------------------------------------------------------------------------------  
 

#Task20: GATK CombineVariants 
java -jar $GATK -T CombineVariants -R $REFERENCE --variant cases.vcf --variant 

controls.vcf -o cases_controls.vcf -genotypeMergeOptions UNIQUIFY 
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6.4. Appendix A4. Approximate computing times and number of generated 

files for each of the GATK and non-GATK steps integrated in the 

bioinformatics pipeline 

# 
Task 

GATK walker / 

other tools 

Estimated 
computing 

time 
Output file type # files 

1 RealignerTargetCreator 3 d target_intervals.list 192 

2 IndelRealigner 6 h realigned_reads.bam 384 

3 BaseRecalibrator 18 h recal_data.table 192 

4 BaseRecalibrator 16 h recal_data_post.table 192 

5 AnalyzeCovariates  1.5 h recalibration_plots.pdf 192 

6 PrintReads 13 h recal_reads.bam 384 

7 HaplotypeCaller 3 d raw.snps.indels.g.vcf 384 

8 CombineGVCFs < 1 h cohort.g.vcf 2 

9 GenotypeGVCFs < 1 h cohort_genotyped.vcf 2 

10 VariantRecalibrator < 1h cohort_genotyped.vcf.recalibrate_SNP.recal 

cohort_genotyped.vcf.recalibrate_SNP.tranches 

cohort_genotyped.vcf.recalibrate_SNP 
_plots.R.pdf 

6 

11 ApplyRecalibration < 1h recalibrated_snps_raw_indels.vcf 2 

12 VariantRecalibrator < 1h cohort_genotyped.vcf.recalibrate_indels.recal 

cohort_genotyped.vcf.recalibrate_indels.tranches 

cohort_genotyped.vcf.recalibrate_indels 
_plots.R.pdf 

5 

13 ApplyRecalibration < 1h cohort_genotyped.vcf.recalibrated_variants.vcf 2 

14 snpEff < 1h Annotated VCF file (with snpEff) 6 

15 VariantAnnotator < 1h Annotated.VCF.snpEff_GRCh38.79.GATK_VR 4 

16 ANNOVAR < 1h Annotated VCF file (with ANNOVAR) 5 
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# 
Task 

GATK walker / 

other tools 

Estimated 
computing 

time 
Output file type # files 

17 BEDtools  2 h bam.rmdup.bam.bed 197 

18 BEDtools 

VCFtools 

 ALL1KGP_chr11.genotypes.recode.vcf 

ALL1KGP_chr14.genotypes.recode.vcf 

ALL1KGP_chr17.genotypes.recode.vcf 

9 

19 VCFtools < 1 h ALL1KGP_chr-11-14-17.5pops.genotypes.vcf 

ALL1KGP_chr-11-14-17.26pops.genotypes.vcf 

4 

20 CombineVariants 

VCFtools 

< 1 h  Cases and controls VCF 6 
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