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Large datasets including an extensive number of covariates are generated these days in many different situations, for instance, in
detailed genetic studies of outbreed human populations or in complex analyses of immune responses to different infections. Aiming
at informing clinical interventions or vaccine design, methods for variable selection identifying those variables with the optimal
prediction performance for a specific outcome are crucial. However, testing for all potential subsets of variables is not feasible and
alternatives to existingmethods are needed.Here, we describe a newmethod to handle such complex datasets, referred to as FARMS,
that combines forward and all subsets regression formodel selection.We apply FARMS to a host genetic and immunological dataset
of over 800 individuals from Lima (Peru) and Durban (South Africa) who were HIV infected and tested for antiviral immune
responses. This dataset includes more than 500 explanatory variables: around 400 variables with information on HIV immune
reactivity and around 100 individual genetic characteristics. We have implemented FARMS in R statistical language and we showed
that FARMS is fast and outcompetes other comparable commonly used approaches, thus providing a new tool for the thorough
analysis of complex datasets without the need for massive computational infrastructure.

1. Introduction

An important goal of biosciences research is the identification
of traits, markers, or features associated with an outcome of
interest. Such analyses may include complex datasets that can
include thousands of host and pathogen genetic markers as
well as clinical and experimental parameters that need to
be probed for possible associations. One such challenging
situation is the infection with Human Immunodeficiency
Virus (HIV). In this case, the design of an effective HIV
vaccine depends on a comprehensive delineation of immune
correlates of controlled infection that factors in host genetic
determinants, clinical parameters, and viral replication data.
Regression models, which interrogate possible mathematical
relation(s) between the outcome of interest and a subset

of relevant predictive characteristics, provide a convenient
framework for this identification [1, 2]. In this paper, we
have combined biostatistics and bioinformatics knowledge to
present a new regression method, FARMS, and demonstrate
its utility in an exemplary study where the relationship
between immune responses to HIV and relative disease
control is being explored.

A crucial and difficult step when building a regression
model is the selection of variables to be included in the final
model from a set of plausible and meaningful variables [3].
The selection problem has been widely discussed: Hocking
noted the importance and interest of selecting the best subset
of variables and concluded that there is no unique answer
to this problem [4]. Indeed, variable selection can be seen
as a special case of the model selection problem where each
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model under consideration could correspond to a distinct
subset of explanatory variables [5–7].There is a rich literature
discussing the appropriateness of stepwise methods, compu-
tational efficiency aspects, or False Discovery Rate selection
control [8–13].

When trying to define the best subset of explanatory
variables, one would be tempted to perform an all subsets
regression analysis in order to identify the best predictive
subset given a certain optimization criterion. However, if the
number 𝑛 of variables in the original dataset is exceedingly
large, an exhaustive test of all possible variable subsets is
generally not feasible, since fitting all the possible models
can be prohibitively time-intensive [14, 15]. Recognizing these
limitations, several methods have been proposed to reduce
the model space, although this reduction might lead to a
lack of interpretability and usability [7]. Some authors have
proposed rules for shrinkage methods, suggesting that one
could safely evaluate problems when there are at most 10
to 15 times more variables than observations, while others
have established criteria to delete variables, for example, Least
Absolute Shrinkage and Selection Operator (LASSO) [11, 16–
18].

In this paper, we present FARMS, as acronym for for-
ward and all subsets regression for model selection, a new
algorithm for model selection based on Liebminger et al.’s
proposal [19]. The unique feature of this algorithm is that it
combines forward variable selection and all subsets regres-
sion with improved prediction performance. Importantly,
it also requires less computational time than comparable
approaches. The motivation to develop this algorithm was
the urgent need to define immune parameters of controlled
HIV infection that could guide HIV vaccine development.
The special challenges with such analyses are the extreme
outbred population structure of the human host organism,
the extensive number of T cell responses an individual can
mount in response to HIV infection, and viral parameters,
especially viral genome sequence polymorphisms.

HIV disease status is commonly assessed by determining
an individual’s CD4 T cell count and his/her steady state viral
load, also referred to as viral set point. It is this viral set
point that largely predicts how fast an individual will develop
AIDS. However, the mechanisms that determine the in vivo
viral set point remain poorly defined and likely include a
multitude of factors, including viral replicative fitness, viral
sequence diversity and host genetics as well as quantitative
and qualitative determinants of the cellular and humoral host
immune response [20].The cellular immune response toHIV,
mediated by CD4+ and CD8+ T cells, can be assessed by
relatively straight forward in vitro analyses that determine
the number of T cells in the body that can interact with
short antigenic viral determinants, referred to as “T cell
epitopes.” To this end, an in vitro ELISPOT assay can be
employed in which an individual’s peripheral blood T cells
are incubated with synthetic peptides (generally 15–20 amino
acids in length) representing the viral proteome [21, 22]. In
our analyses, there are 410 such partially overlapping peptides
(OLP), numbered from 1 to 425, as there are some gaps in
the not entirely continuous numbering [21]. Of importance,
reactivity to these 410 OLP depends, among other factors,

on the presence or absence of genes in the human leukocyte
antigen (HLA) [23] locus on chromosome 6, particularly the
HLA class I alleles [24]. These HLA class I alleles encode
specialized molecules that present small viral peptides on
the surface of infected cells to host’s CD8 T cells, also
referred to as cytotoxic T lymphocytes (CTL). The classical
HLA class I alleles include HLA-A, HLA-B, and HLA-C
alleles, of which each individual encodes 2 versions that
are inherited from the parents. There are close to 10,000
different allelic variants for the HLA-A, HLA-B, and HLA-C
loci together (http://hla.alleles.org/nomenclature/stats.html).
For each CD8+ T cell immune response detected in in vitro
assays one of the 6 HLA class I molecules “restricts” a T cell
response; that is, the T cell can react with viral antigen in
the context of this class I molecule. For effective antiviral
immunity and vaccine design alike, it is thought important
that many HLA class I alleles can be involved in the immune
defense both on the individual level and the population
level as this ensures a broad antiviral T cell reactivity. As
a consequence, large population screenings in HIV-infected
individuals will provide a multitude of genetic, clinical,
and experimental parameters. When intending to define
best models of OLP reactivity and host HLA genetics that
are associated with relative HIV control, this considerable
number of parameters poses a formidable challenge for the
necessary in-depth analysis.

2. Material and Methods

2.1. Datasets. The datasets included patients infected with
HIV from two geographic areas: 631 patients from Durban
(South Africa) and 236 patients from Lima (Peru) form two
different cohorts with population-specific host genetics and
immune reactivity data [25]. These two datasets were ana-
lyzed by means of FARMS aiming at assessing the predictive
value of immune and genetic parameters for in vivoHIV viral
loads in these untreated subjects. Protocols were approved
in Lima by the IMPACTA Human Research Committee
and in Durban by the Ethical Committee of the Nelson R.
Mandela School of Medicine at the University of KwaZulu-
Natal. All subjects provided written informed consent. We
gathered information about HIV viral load, human leukocyte
antigen [23] polymorphisms, and the reactivity of each of 410
individual overlapping peptides (OLP) spanning the entire
viral proteome. The main characteristics of this cohort are
summarized in Table 1. Although the HIV viral load of the
patient, given as number of viral copies per mL, is a continu-
ous variable, we note that there exists a lower detection limit
depending on the technology used. In the present case, the
lower detection limit was 50 copies/mL and, for the purpose
of the analyses, the values were set as 49 copies/mL. The
Box-Cox transformation was used to normalize the data: the
lambda parameter was estimated (lambda = 0.061) and log10
transformation was applied accordingly. After logarithmic
transformation, the data normality was assessed graphically
by histograms, density plot and Q-Q plot as well as by the
Shapiro-Wilk test.
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Table 1: Data description. Summary of cohort characteristics either joined or split by country (Lima and Durban) showing viral load and its
transformation log10 distribution. Below, number of HLA alleles and OLP present in the database and frequency of the top 5 parameters for
each category.

Viral load Log10 (Viral load)
Global Lima Durban Global Lima Durban

Median 37800 37240 37900 4.577 4.571 4.579
IQR (8715; 131500) (13310; 109000) (7075; 138500) (3.94; 5.119) (4.124; 5.038) (3.85; 5.141)

HLA OLP
Global Lima Durban Global Lima Durban

Total number 73 62 66 406 391 371

1st C∗07 A∗02 B∗15 76 76 78
(𝑁 = 310; 6.31%) (𝑁 = 168; 12.80%) (𝑁 = 233; 6.48%) (𝑁 = 293; 2.77%) (𝑁 = 76; 2.09%) (𝑁 = 234; 3.37%)

2nd A∗02 B∗35 C∗07 78 84 76
(𝑁 = 294; 5.99%) (𝑁 = 99; 7.54%) (𝑁 = 222; 6.17%) (𝑁 = 284; 2.69%) (𝑁 = 63; 1.74%) (𝑁 = 217; 3.12%)

3rd B∗15 C∗04 A∗30 84 81 84
(𝑁 = 278; 5.66%) (𝑁 = 88; 6.70%) (𝑁 = 205; 5.70%) (𝑁 = 262; 2.48%) (𝑁 = 61; 1.68%) (𝑁 = 199; 2.86%)

4th A∗30 C∗07 C∗06 25 85 25
(𝑁 = 225; 4.58%) (𝑁 = 88; 6.70%) (𝑁 = 194; 5.39%) (𝑁 = 192; 1.82%) (𝑁 = 53; 1.46%) (𝑁 = 178; 2.56%)

5th C∗04 B∗39 A∗68 41 78 41
(𝑁 = 217; 4.42%) (𝑁 = 59; 4.49%) (𝑁 = 162; 4.50%) (𝑁 = 190; 1.80%) (𝑁 = 50; 1.38%) (𝑁 = 151; 2.17%)

Information on the 2 HLA-A, 2 HLA-B, and the 2 HLA-
C alleles that every individual possesses was collected for
both cohorts. The HLA genes in the Peruvian cohort were
determined using a method that was sufficiently sensitive
to discriminate between different subtypes (i.e., variants) of
alleles at a 4-digit precision, while the Durban data consisted
of two-digit typing. New binary variables were generated, in
both Lima and Durban datasets, as follows: (i) for each allelic
variant on each of the three HLA loci (HLA-A, HLA-B, and
HLA-C) a binary variable was created with value 1 if the
subject had that respective variant and 0 otherwise; (ii) for
each OLP a binary variable was set with value 1 if the subject
has responded to this OLP and 0 otherwise.

2.2. FARMS Algorithm. FARMS is an algorithm that works
by iterating several steps according to a specified criterion.
Liebminger et al. proposed in 2007 [19] an algorithm for
model selection that combined forward variable selection
and all subsets regression. In their work, they compared
their proposed algorithm with a genetic algorithm and the
standard stepwise method applying all of them to three dif-
ferent datasets. They described how their algorithm selected
models with improved prediction performance in addition to
requiring less computational time. We have modified this
algorithm in order to include additional features and lend
it more flexibility according to our specific needs when ana-
lyzing HLA genetic data and human immune reactivity data
againstHIV.TheFARMS algorithm is available on theGRASS
web page at http://grass.upc.edu/software/farms code/view.

The basic FARMS algorithm is illustrated in Figure 1 by
means of a toy example consisting of a dataset of 10 variables.

Let 𝑃 be the set of all potential explanatory variables of the
outcome of interest. Define two subsets within 𝑃:

(a) 𝑃
𝑠
: the set of variables included in an initial model.

This set of variables is the starting point for the
exploration of 𝑃.

(b) 𝑃
𝐹
: the set of variables to be forced into a final model,

not including those already in 𝑃
𝑠
.

The algorithm iterates over the following steps:

(1) Start by building model𝑀
𝐵
with the variables 𝑃

𝑠
and

𝑃
𝐹
.

(2) The subset of variables not included in𝑀
𝐵
is divided

into user-defined fixed-sized groups of variables: 𝑃
𝑎
.

(3) For each 𝑃
𝑎
, build a new model based on fitting the

variables 𝑃
𝑎
, 𝑃
𝑠
, and 𝑃

𝐹
and select the best subset of

variables according to a predefined criterion 𝐶
1
.

(4) Select the best model𝑀
𝐵𝑆

among all the best subsets
obtained in step (3) following the criterion 𝐶

1
.

(5) Compare models 𝑀
𝐵
and 𝑀

𝐵𝑆
. While 𝑀

𝐵𝑆
is better

than 𝑀
𝐵
, define as 𝑃

𝑠
the explanatory variables

included in 𝑀
𝐵𝑆
, go to step (2) and start all over or

until a user-defined maximum time of computation
is reached. Otherwise go to step (6).

(6) 𝑀
𝐵
is declared the best model and the algorithm

finishes.

The user can choose to specify

(i) the criterion 𝐶
1
to select a subset of variables among

a group of them,
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(1) Original dataset:10 explanatory variables

(2) Compose a (random) starting model
(i) WithP𝐒

P𝐒

variables: , and X(3)

(ii) With fixed variables P𝐟 : X(10)

(3) Divide the remaining variables in groups of P𝐚 variables
(iii) Set it as “best model”, M𝐁: X(1) , X(2)

X(1) , X(2)

, X(3) , andX(10)

(4) For each combination of and P𝐟 and a set of P𝐚 variables, select the best
subset

(i) Selection by R2, adjusted R
2, Mallows’ Cp, AIC, or BIC

(5) Select the best subset and fit the model M𝐁𝐒

(i) Selection byR2, adjusted R
2, Mallows’ Cp, AIC, or BIC

(6) Is this new model M𝐁𝐒 better than the “best” model M𝐁 obtained by now?
Selection by AIC or BIC

(A) Yes : Set M𝐁𝐒 model as “best model” (M𝐁) and as starting model and go

(B) No : We are finished and M𝐁 is our best model

to step 3

versus

(i)

(i) 𝐏𝐚 groups: (X(4); X(5), (X(6); X(7)), and (X(8); X(9))

Figure 1: Illustration of FARMS algorithm. On a dataset of 10 covariates, variable “10” is forced to be always included. The starting model
includes 3 variables (in addition to the forced-in ones) and adds 2 more variables in each iteration.

(ii) the criterion 𝐶
2
to select between two candidate

models,
(iii) the “starting” variables𝑃

𝑆
in the initialmodel: the user

can specify the size of the set 𝑃
𝑆
as well as the initial

variables. If this is not specified, FARMS has a default
size value and by default chooses 𝑃

𝑆
randomly from

all the available variables, that is, within 𝑃-𝑃
𝐹
,

(iv) the variables forced into the final model 𝑃
𝐹
: the user

can specify some variables that should always be
included in the final selected model or leave this
option blank and allow for the selection of variables
among all the ones included in the original dataset
(𝑃),

(v) the total number of variables into the final model can
be fixed as well. By default, this number is the total

number of variables in the dataset; so the best model
could, a priori, include all the available variables.

The selection of the best model can be made according to any
of the following criteria: Mallows’ Cp [26], Akaike’s infor-
mation criterion (AIC) [27], and the Schwarz or Bayesian
information criterion (BIC) [28]. The best subset selection
can be additionally based on the 𝑅-square, the adjusted 𝑅-
square, and the residual sum of squares (RSS). All these
criteria originated from very different points of view: Mal-
lows’ Cp measures the performance of the variables in terms
of the standardized total mean squared error of prediction
(MSE) providing a balance between the lack of fit and the
complexity of the model for the observed data. The AIC
selects the candidate model that minimizes the estimated
information lost when the model is used to approximate
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the process that generated the observed data (full reality)
and it is a good option for prediction. The BIC, optimal for
explaining the relationship between outcome and covariates,
selects the model that maximizes the posterior probability
applying a severe penalty term for the number of parameters
in the model. Essentially, AIC and BIC will give similar
answers with BIC leading to simpler models than AIC
because it applies a larger penalty for complex models [29,
30]. Finally, the residual sum of squares, the coefficient of
determination 𝑅-square, and the adjusted 𝑅-square are used
[14] to measure the overall fit of a model, with the latter being
the preferred alternative because it penalizes the 𝑅-square
when extra variables are included in the model.

Data input and output formats to use FARMS are kept
very user-friendly. In brief, for data input, any database in a
format that 𝑅 can read (i.e., an Excel, TXT, or CSV file) is
suitable. Alternatively, data files generated by any statistical
software that are compatible with 𝑅 (such as SPSS or Stata)
can be used. FARMS output is composed of 2 parts: first,
an external txt file, written by 𝑅 on the working directory,
that adds a line on each algorithm iteration indicating the
following information: the number of iteration, time since
beginning of execution, value of the AIC and the BIC for
the selected model at this point in the analysis, and for each
variable on the dataset, an indication whether it is included
in the model in that iteration (value = 1) or not included
(value = 0) and second, an 𝑅 object within the software
environment including the information of the last model
selected (information already included in the file).This object
allows the user to easily fit the selected/best model within the
𝑅 environment and continue the data analysis. An illustration
of data input format and data output format is shown in
Figure 2.

2.3. Univariate Data Analysis. Univariate analysis for the
two cohorts (Lima and Durban) was performed over
each HLA subtype present (Supplementary Table 1 in
Supplementary Material available online at http://dx.doi.org/
10.1155/2015/319797) and each reactive OLP (Supplementary
Table 2) and related to HIV viral loads.The two cohorts were
both analyzed separately and pooled into a single dataset.
Specifically, for each HLA allele and for each OLP present
in the database, we wondered whether people having the
allele under analysis and/or responding to the OLP under
analysis showed a significantly higher or lower viral load
than the rest of the cohort. These questions were addressed
by means of a bilateral Student’s 𝑡-test to compare values of
viral loads between the two groups defined as having or not
having a specific HLA allele or making a response or not to
an individual OLP. Results were reported as 𝑃 values for a
95% confidence and corrected with 𝑞 values setting the False
Discovery Rate (FDR) to 10%.

2.4. Regression Methods. The following regression methods
other than FARMS were applied to these two cohorts in
order to find a relationship between the viral load and more
than one HLA or OLP at a time: all subsets regression,
forward selection regression, backward stepwise regression,

and forward stepwise regression which is a combination of
the previous two and which is later referred to as “Forward
Stepwise”.These regressionmethods, all of them criticized for
not being able to reflectmodel uncertainty accurately enough,
were included as benchmarks for FARMS performance. For
the implementation of the regression methods, few further
technicalities were taken into account:

(i) We randomly sorted HLAs andOLPs variables before
applying FARMS or any of the other approaches
to avoid any possible relation between the order of
the variables in the dataset and either the time of
execution or the obtained model.

(ii) For this methodological comparison we previously
evaluated FARMS not only to assess its robustness but
also to choose the best value for the parameters Ps and
Pa in terms of time and optimal statistical properties
in the model. Therefore, the number of variables in
the starting model (𝑃𝑠) and the number of variables
to be added in each step (𝑃𝑎) were set according to
the best results.

2.5. FARMS Robustness. In order to assess how robustly
FARMS performs, that is, how stable the final model remains
as the number of variables included initially or added in
each iteration of the algorithm was changed, we executed the
algorithm by varying the values of the number of variables in
the startingmodel and by changing the number of variables to
add on each step, that is, the size of groups to divide the rest of
variables. We let both parameters vary between 2 and 21 and
ran FARMS for each one of the 400 possible combinations
in two different scenarios with completely different variables,
HLA alleles and OLP. It is important to remember that, on
each execution, the starting model or starting variables were
selected randomly as we did not specify which ones to use.
As a by-product, we have used those executions to study
the computational time needed and the number of iterations
internally performed.

3. Results

3.1. Predicting HIV Viral Loads in terms of Response Rates to
OLP and Presence of HLA Alleles. When we applied FARMS
to the specific HIV-derived datasets presented here, individ-
ual OLP and OLP combinations were identified, which have
a high predictability of viral load in chronically HIV infected
subjects. Our FARMS based analyses also showed that OLP
reactivity (i.e., the specificity of the T cell response to HIV)
had a greater predictability than host genetics (HLA class I
genes) [25]. From a vaccine point of view, this revelation is
crucial as it indicates that individuals with poorHLA genetics
still have a possibility to mount effective T cell responses to
HIV and that vaccine immunogen design could profit from a
focus on such relevant regions in the viral proteome.

3.2. FARMS Evaluation. The best model selected in all the
400 FARMS runs was always the same regardless of the
number of variables included initially or added in each
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vresp

1 0 0 0 1 0 1 1 0 0 1

2 0 1 1 0 1 1 0 0 0 0

3 1 1 0 0 1 0 0 1 0 0

4 1 0 0 0 0 0 0 1 0 1

5 0 1 1 1 0 1 0 0 0 0

...

N 0 1 1 0 0 0 0 1 1 0

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

-0.6264538

0.1836433

-0.8356286

1.5952808

0.3295078

-0.3053884

(a) Example of dataset input format

farms(df[1],df[2:11],addSize=2,startSize=3,

covarf=c(10),resname="OutputFileName")

(b) Example of FARMS function call

usedTime

[1] 0 0

AIC

[1]

BIC

[1]

Sigma

[1]

RSq

[1]

AdjRSq

[1]

MallowsCp

[1]

NumIter

[1] 3

models

models 1 0 0 1 0 0 1 1 0 0

m 1 0 0 0 0 0 0 1 0 0

Data

1 1 0 0 0 1 0 1 1 0 0

2 0 0 1 1 0 1 1 0 0 0

...

N 0 0 1 1 0 1 1 0 0 0

$

$

$

$

$

$

$

$

$

$

X10 X1 X2 X3 X4 X5 X6 X7 X8 X9

269.9368 267.5311

285.5679 277.9518

0.9015789 78.4611773

0.03316931 0.01763214

-0.007539346 -0.002622864

0.000000 3.945667

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9][,10]

(c) Example of output from FARMS function within 𝑅 environment

Time;AIC;BIC;Sigma;R^2;Adj R^2;MallowsCp;X10;X1;X2;X3;X4;X5;X6;X7;X8;X9;

0;269.93683771477;285.56785883069;0.901578919774;0.0331693140239;-0.0075393464381;1.238457762547;1;0;0;1;0;0;1;1;0;0

0;267.53108264467;277.95176338863;78.46117732028;0.0176321436344;-0.0026228637132;3.945667016824;1;0;0;0;0;0;0;1;0;0

(d) Example of TXT file output from FARMS function

Figure 2: Illustration of FARMS input and output. (a) FARMS function requires data as𝑅 data frame containing all the variables (response and
explanatory variables). (b) Calling the FARMS function within 𝑅 requires the indication of at least the response variable and the explanatory
variables. In this illustration, which follows the explanation of Figure 1, we also indicate the number of variables to add in each iteration, the
number of variables to compose the starting model, the columns containing the forced-in variables, and the name of the output file. (c) By
default, FARMS function returns an 𝑅 object containing information for each iteration (two iterations in this illustration) and the dataset as
processed by the algorithm. (d) Optionally, FARMS function can produce a text file containing the same information as the 𝑅 object output,
adding a text line for each iteration, helping also tomonitor the algorithm execution and to track the evolution of models until the final model
is obtained.
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Table 2: Comparison of results when basing variable selection on the FARMS algorithm or common strategies. The number of covariates
included in the final model excludes the “forced in” covariates. FARMS parameters used in this case are number of adding covariates = 8,
number of starting covariates = 10, and the selecting criteria for both best subset and best model was the BIC. (All runs were executed on an
Intel Xeon x5680 machine with 6 CPU cores and 95GB RAMmemory under a Linux Suse 11.0 OS).

Time (seconds)*
Mean (IQR) Number of vars.** BIC AIC 𝑅

2 Adj. 𝑅2

HLA

FARMS 1.27 (1.00; 1.40) 9 2235.4 2183.03 11.67% 10.74%
All subsets >1 month — — — — —

Forward selection1 3.84 (3.13; 3.52) 17 2259.4 2168.86 14.69% 12.98%
Forward stepwise1 4.32 (3.51; 3.90) 17 2259.4 2168.86 14.69% 12.98%
Forward selection2 2.01 (1.62; 1.88) 10 2235.45 2178.27 12.36% 11.33%
Forward stepwise2 2.35 (1.89; 2.18) 9 2235.44 2183.03 11.67% 10.74%
Forward selection3 1.99 (1.61; 1.88) 10 2235.45 2178.27 12.36% 11.33%
Forward stepwise3 2.38 (1.92; 2.22) 9 2235.44 2183.03 11.67% 10.74%
Backward stepwise3 13 s 10 2236.52 2174.58 12.93% 11.81%

OLP

FARMS 33.4 (19.47; 37.95) 12 2224.8 2158.11 14.77% 13.57%
All subsets >1 month — — — — —

Forward selection1 393.2 (324.40; 336.60) 79 2396.53 2010.56 38.40% 32.22%
Forward stepwise1 545.9 (451.70; 469.70) 83 2415.46 2010.53 38.97% 32.51%
Forward selection2 401.7 (329.50; 343.40) 80 2403.3 2012.56 38.40% 32.13%
Forward stepwise2 462.4 (382.50; 401.50) 76 2385.18 2013.51 37.76% 31.77%
Forward selection3 38.09 (31.34; 33.11) 12 2224.82 2158.11 14.77% 13.57%
Forward stepwise3 38.31 (31.34; 33.43) 12 2224.82 2158.11 14.77% 13.57%
Backward stepwise3 >12 hours 23 2232.63 2108.63 21.68% 19.45%

1Selection by AIC and base model with intercept-only.
2Selection by AIC and base model with forced-in variables.
3Selection by BIC and base model with forced-in variables.
*Time obtained after 100 executions for each scenario.
**Including forced-in variables.

iteration of the algorithm in either of the two different
scenarios described at the end of Section 2.This homogeneity
was only altered 11 times when using the OLP variables. In
389 runs, the final selected model contained a total of 12
variables with BIC = 2224.82. However for the remaining 11
combinations the final selected model included 15 variables,
5 of them different from the previous 12, and had a slightly
smaller BIC (2218.85). In terms of prediction, the dominant
model has a coefficient of determination close to 15% in
contrast to 18% in the less frequent model.

As expected, these two varying parameters affected the
number of iterations that FARMS needed to reach the best
model and also impacted the computational time required.
Figure 3 shows the evolution of time until the best model
is selected for the HLA-only and the OLP-only models
according to the number of variables in the starting model
and the size of the adding subset. These results indicate that
the number of covariates in the starting model does not have
a strong effect on the total time of execution, although a
large number of variables produce more variability: when
the number of starting covariates is larger than 15, the
time needed increases more than 50-fold. Compared to the

starting size of variables, the number of variables to be added
on each step has a much more profound effect on the total
time of execution: as the number of variables to be added
increases, the time also increases.

From these modulations and in light of the aims of the
study (i.e., identifying a limited number of OLP that could be
incorporated into an HIV vaccine sequence), we determined
the optimum values of these two parameters: the number of
variables for the starting model was set to 10, and the number
of adding variables was set to 8.

3.3. FARMS Performance in Head-to-Head Comparisons with
Other Methods. In order to compare the performance of
FARMS with other established approaches, the data from
Lima and Durban were used (Table 2). All subsets regression
analysis exceeded one month of execution time for both sce-
narios (HLA and OLP variables), thus not providing us with
a precise time to completion. The analysis using backward
stepwise algorithm needed much more computational time,
at least 3-fold longer, than the other stepwise approaches or
FARMS and was thus only run once. The selected models
using forward regression or forward stepwise took longer
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Figure 3: Evolution of the computing time (in seconds) needed to reach the final model according to FARMS parameters: starting number
of covariates (P Start) and number of covariates added in each step (P Add). First two rows of figures refer to the HLA-only model; rows 3
and 4 correspond to OLP-only covariates model.
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with forced-in variables; 3: selection by BIC and base model with forced-in variables).

than FARMS when the selecting criterion was either the AIC
or the BIC.

Models obtained with stepwise methods varied as we
changed their parameters: selection by AIC or BIC and
intercept-only baseline model or with forced-in variables.
When setting the more appropriate parameters to approxi-
mate FARMS and stepwise methods (selection based on BIC
and setting the model with forced-in variables as baseline
model), forward selection provided a slightly worse model
when using HLA variables; otherwise, the models obtained
with FARMS and stepwise methods were the same and
only differed in the time needed. These comparisons further
confirm the validity of FARMS approach and demonstrate its
favorable computational time.

To further investigate the time differences between
FARMS and more comparable stepwise approaches, we ran
all the methods in the two scenarios (HLA and OLP) 100
times and compared their execution time by Student’s 𝑡-test:
Figure 4 summarizes the time of execution needed by each
approach in addition to the time used in each run. FARMS
was significantly faster than stepwise approaches applied to
HLA-only covariates (76 covariates): FARMS usually needed
one second, whereas both forward regression and forward
stepwise approaches needed up to 3 times longer to comple-
tion (𝐹-test 𝑃 value < 2.2𝑒 − 16). This difference increased
and showed FARMS to be also significantly faster when the
OLP-only (406 covariates) dataset was evaluated as FARMS
completed the task roughly 10x faster than standard forward
or stepwise approaches (𝐹-test 𝑃 value < 2.2𝑒 − 16) (Table 1).
Thus, FARMS offers a novel, versatile, and flexible approach

that is not dependent on excessive computational power and
runs in widely available 𝑅 packages.

4. Discussion

We here report the development and performance of a new
algorithm for variable selection referred to as FARMS. Over-
all, this new algorithm, when applied to high-dimensional
datasets, yields better results in less time compared to other
regression approaches (stepwise or all subsets techniques).

Stepwise algorithms use as a starting model either the
intercept-only or the full model and build on this model
by introducing or excluding variables one by one with
no reference to other variables until the best model is
selected according to an information criterion. The method
we propose here starts with a random model containing
some variables but not a full model and improves it by
selecting subsets of variables with different sizes, allowing the
algorithm to include in a single step more than one variable.

The common information criterion used in model selec-
tion is the AIC, but selection by BIC has been suggested to
represent a better option for our specific situation: BIC penal-
izes the number of covariates, helping our goal of finding best
model with fewer covariates. In addition, the BIC criterion
leads to the final model faster when the dataset contains a
large number of covariates. FARMS also implements other
criteria that facilitate obtaining better models according to
their prediction capacity, such as 𝑅-square or adjusted 𝑅-
square. These improvements in the FARMS implementation
allow formaking a better comparison of thosemethodologies
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and enable the user to change the model selection according
to the purpose of the data analysis.

Additional features that can be readily implemented in
FARMS and can be very useful for statistical analyses include
the evaluation of quadratic terms (the square of the value
of each covariate), which can help to explain nonlinear
relationship among the variables. In addition, FARMS offers
the possibility of introducing the evaluation of the interaction
terms, although for large datasets this may increase comple-
tion time considerably (but still less than needed by common
approaches such as stepwise). Finally, the FARMS strategy
can also be extended to other regression approaches, such as
logistic regression,which iswidely used in the biomedical and
genetics field, as there are already packages in 𝑅 that select
best subsets of variables for logistic regression.
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