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Abstract. Despite recent advances, early diagnosis of Alzheimer’s disease (AD) from electroencephalography (EEG) remains
a difficult task. In this paper, we offer an added measure through which such early diagnoses can potentially be improved. One
feature that has been used for discriminative classification is changes in EEG synchrony. So far, only the decrease of synchrony
in the higher frequencies has been deeply analyzed. In this paper, we investigate the increase of synchrony found in narrow
frequency ranges within the θ band. This particular increase of synchrony is used with the well-known decrease of synchrony
in the � band to enhance detectable differences between AD patients and healthy subjects. We propose a new synchrony ratio
that maximizes the differences between two populations. The ratio is tested using two different data sets, one of them containing
mild cognitive impairment patients and healthy subjects, and another one, containing mild AD patients and healthy subjects.
The results presented in this paper show that classification rate is improved, and the statistical difference between AD patients
and healthy subjects is increased using the proposed ratio.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common type
of dementia. It is characterized by cognitive deficits
and behavioral disturbances. AD starts with difficulties
to remember new information, and then individuals
experience other difficulties as the disease progresses
[1]. There is currently no cure for this disease, though
several medications are believed to delay the symptoms
[2]. An early diagnosis of AD is considered a key factor
that could benefit patients in early stages of the disease,
i.e., mild cognitive impairment (MCI) or mild AD.

∗Correspondence to: Jordi Solé-Casals, Data and Signal Process-
ing Group, University of Vic – Central University of Catalonia,
08500 Vic, Catalonia, Spain. Tel.: +34 938815519; Fax: +34
938814307; E-mail: jordi.sole@uvic.cat.

In order to develop a system for an early diag-
nosis of AD, the potential of a recording technique
known as electroencephalography (EEG) has been
investigated. EEG consists in recording brain-related
electrical potentials using different electrodes attached
to the scalp [3]. EEG activity is commonly divided
into specific frequency bands: 0.1–4 Hz (δ), 4–8 Hz (θ),
8–13 Hz (�), 13–30 Hz (�), and 30–100 Hz (�) [3].

A large number of studies have analyzed measurable
changes that AD causes on EEG. A review of these
studies can be found in [2, 4, 5]. Three major perturba-
tions have been reported in EEG: (i) power increase of δ

and θ rhythms and power decrease of posterior � and/or
� rhythms in AD patients (also known as EEG slow-
ing), (ii) EEG activity of AD patients seems to be more
regular than the EEG recording of healthy subjects
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(which correspond to reduced complexity of the EEG
signals for AD patients), and (iii) frequency-dependent
abnormalities in EEG synchrony [2, 4, 6].

Frequency-dependent abnormalities in EEG syn-
chrony in AD patients has been studied in detail [2, 4].
Most of the studies have analyzed synchrony changes
in different frequency bands (δ, θ, �, �, and �) [7]
by analyzing synchrony differences between different
brain regions [8], or by using multivariate measures [9].
These studies have mainly highlighted the decrease of
synchrony in � and � bands for AD patients [10, 11].
However, recent research [12] has revealed an increase
of synchrony in narrow bands inside the θ band for mild
AD patients confirming the results presented in [13, 14]
for EEG signals or [15] for magnetoencephalography.

This paper aims to evaluate the discriminative power
of this increase of synchrony in the θ band. We present
a method enabling to use the increase of synchrony
together with the well-known decrease of synchrony
in high frequencies. We propose a ratio between
synchrony measures in different frequency bands to
improve the early diagnosis of AD. The ratio has
been previously defined in [16]. However, the present
study combines the ratio with the selection of specific
frequency bands in a highly detailed analysis of all
possible combinations, which clearly enhances the dis-
crimination between AD patients and healthy subjects.

MATERIALS AND METHODS

The methods used in this paper to compute syn-
chrony measures have already been defined in [17].
In our study, however, a new frequency approach is
proposed, and a ratio is defined with synchrony values
computed in a different frequency range. In this sec-
tion, we first elaborate on the EEG data sets; next we
discuss the applied synchrony measures and how we
computed them.

EEG data sets

Two data sets are considered in this study. One
data set contains EEG recordings of MCI patients
and healthy subjects, and the other one contains EEG
recordings of mild AD patients and healthy subjects.

The MCI data set

Patients who only complained of memory impair-
ment were recruited. They underwent thorough
neuropsychological testing that revealed a quantified
and objective evidence of memory impairment with no

apparent loss in either general cognitive, behavioral,
or functional status. The classification of very mild
dementia impairment required a Mini-Mental Status
Exam (MMSE) ≥24 and a Clinical Dementia Rating
(CDR) scale score of 0.5 with memory performance
less than one standard deviation below the normal ref-
erence (Wechsler Logical Memory Scale and Paired
Associates Learning subtests, IV and VII, ≤9, and/or
≤5 on the 30 min delayed recall of the Rey-Osterreith
figure test). Fifty-three patients met these criteria. Each
patient underwent single-photon emission computed
tomography (SPECT) at initial evaluation and was
followed clinically for 12–18 months. Twenty-five of
these fifty-three very mild AD patients developed prob-
able or possible AD according to the criteria defined
by the National Institute of Neurological and Com-
municative Disorders and Stroke, and the Alzheimer’s
Disease and Related Disorders Association (NINDS-
ADRDA). These subjects formed our group of patients
of the MCI data set (age: 71.9 ± 10.2 years old), while
56 age-matched healthy subjects constituted the con-
trol group (age: 71.7 ± 8.3 years old). EEG recordings
were conducted at the MCI stage. The control group
consisted of healthy subjects who had no memory or
other cognitive impairments. The scores of the MMSE
were 28.5 ± 1.6 for the control group and 26 ± 1.8 for
the MCI patients.

The EEG time series were recorded using 21
electrodes, positioned according to the 10–20 inter-
national system, with the reference electrode on the
right earlobe. EEG was recorded with Biotop 6R12
(NEC Sanei, Tokyo, Japan) at a sampling rate of
200 Hz, with analog bandpass filtering in the frequency
range 0.5–250 Hz and online digital bandpass filtering
between 4 and 30 Hz, using a third-order Butterworth
filter (forward and reverse filtering).

The mild AD data set

The mild AD data set consists of 24 healthy control
subjects (age: 69.4 ± 11.5 years old) and 17 patients
with mild AD (age: 77.6 ± 10.0 years old). The patient
group underwent a full battery of cognitive tests
(MMSE, Rey Auditory Verbal Learning Test, Ben-
ton Visual Retention Test, and memory recall tests).
The results from the psychometric tests were scored
and interpreted by a psychologist, and all clinical
and psychometric findings were discussed at a mul-
tidisciplinary team meeting. All age-matched controls
were healthy volunteers and had normal EEGs (con-
firmed by a Consultant Clinical Neurophysiologist).
The EEG time series were recorded using 19 electrodes
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positioned according to the Maudsley system, similar
to the 10–20 international system, at a sampling fre-
quency of 128 Hz. The EEGs were band-pass filtered
with a digital third-order Butterworth filter (forward
and reverse filtering) between 4 and 30 Hz.

Recording conditions common to both data sets

In both data sets, all recording sessions were con-
ducted with the subjects in a wakeful but resting state
with eyes closed. The length of the EEG recording
was about 5 min for each subject. Only those subjects
were retained in the analysis whose EEG recordings
contained at least 20 s of artefact-free data. As a result
of this approach, the number of subjects of the MCI
data set was further reduced to 22 MCI patients and 38
control subjects; in the mild AD data set, no reduction
was made. For the subjects eventually included in each
data set, statistical differences between the ages of the
patients were checked. The age differences between
patients and control subjects in the two data sets were
not significant (t-test p � 0.05).

From each subject in both data sets, one artefact-
free EEG segment of 20 s was analyzed. For the MCI
data set, a researcher pre-processed the data by visual
inspection and selected portions of 20 s with no visible
artefacts. No further pre-processing on this data was
applied. For the mild AD data set, artefact rejection
method described in [18] was applied on visually clean
selected portions of 20 s.

Synchrony measures

In order to study the increase of synchrony in
the θ band, a set of synchrony measures was used:
Coherence, Granger Causality (including Granger
coherence, Partial coherence (PC), Directed trans-
fer function (DTF), Full frequency directed transfer
function (ffDTF), Partial directed coherence (PDC)
and Direct directed transfer function (dDTF)), Omega
Complexity, and Phase Synchrony. These synchrony
measures have been previously reviewed [17].

Bandpass filtering and computation of EEG
measures

Signals were bandpass filtered using third order But-
terworth filters. Butterworth filters were selected since
they can easily be implemented, and they offer a mag-
nitude response that is maximally flat in the pass band.

Two different sets of frequency ranges were defined
for this study. All the possible frequency ranges inside

the θ band and the � band were used, defining two
sets of frequency ranges. For the first set of frequency
ranges (θ(f1, f2)), the starting frequency f1 varied
from 4 to 7 Hz, and the width W varied from 1 to 4
(e.g., 4–5 Hz, 4–6 Hz, 4–7 Hz, 4–8 Hz,... 7–8 Hz). The
maximum frequency of analysis (f2 = f1 + W) was
limited to 8 Hz. A total of 10 frequency ranges were
used for the study.

For the second set of frequency ranges, the � band
was analyzed (α(f3, f4)). In this case, f3 varied from
8 to 12 Hz, and W varied from 1 to 5 (e.g., 8–9 Hz,
8–10 Hz, 8–11 Hz, 8–12 Hz,... 12–13 Hz). The maxi-
mum frequency of analysis (f4 = f3 + W) was limited
to 13 Hz. A total of 15 frequency ranges were used for
this study.

The computation of synchrony measures was per-
formed as defined in [17]. For bivariate measures,
electrodes were aggregated into five different regions,
with each region corresponding to a specific brain area,
i.e., frontal, parietal, occipital, and left and right tem-
poral. To compute the synchrony between two regions,
one first computes the synchrony between each EEG
signal from one region and each signal from the other.
The next step is evaluating synchrony measures by
computing the average synchrony values of these sig-
nal pairs. Once the synchrony between each region pair
is computed, the average of synchrony between regions
(10 pairs) is calculated to obtain a global synchrony
value for each subject.

A different approach was used to compute EEG
synchrony for multivariate measures. The Omega com-
plexity was applied to all EEG signals of the data
set. However, for the Granger measures, this would
have required estimating a 21-dimensional Multi-
variate Autoregressive (MVAR) model. In order to
avoid this high dimensional estimation, time averaging
between electrodes of the same region was computed,
leading to averaged EEG time series for each of the
five above defined regions. The Granger measures
were then applied to these five averaged EEG signals
[17]. Finally, the Granger values between the regions
were averaged (10 pairs) to obtain a global synchrony
measure.

Statistical analysis

To evaluate the difference between populations, the
statistical significance of the differences between syn-
chrony values was studied using the Mann-Whitney
test. Differences between MCI patients and control
subjects as well as between mild AD patients and con-
trol subjects were studied.
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The Mann-Whitney test is a non-parametric test that
allows us to investigate statistical differences between
two populations without assumptions of Gaussianity
(most of the measured distributions are non-Gaussian).
Low p-values indicate significant differences between
the medians of the two populations.

Synchrony ratio and classification

To evaluate the difference between populations rep-
resenting an increase of synchrony in the θ band, we
defined the following ratio by dividing a synchrony
value in the θ band (syncθ(f1, f2)) by a synchrony
value in the � band (syncα(f3, f4)):

r = syncθ(f1, f2)

syncα(f3, f4)
(1)

Ratio (1) was computed for each of the measures.
This ratio aims to maximize the distance between pop-
ulations. As presented in [12], an increase of synchrony
was discovered for mild AD subjects in the θ band for
narrow bands. Therefore the synchrony in the θ band
is placed in the numerator of the ratio. On the basis
of existing literature [2,4], we also know that there
is a decrease of synchrony for AD patients in the �
band. Therefore the synchrony in the � band is placed
in the denominator increasing the value of r for AD
patients.

The values (syncθ(f1, f2)) and (syncα(f3, f4))
refer to the synchrony values computed in the θ

band and the � band, respectively. Frequency ranges
θ(f1, f2) and α(f3, f4) are selected for each measure
in order to maximize the difference between AD and
healthy subjects. Given this aim, the frequency range to
be used in θ(f1, f2) is the one that presents the highest
synchrony mean value for AD patients in comparison
with healthy subjects. Therefore (syncθ(f1, f2)) is the
synchrony value computed in that frequency range.
The same procedure is applied to define α(f3, f4).
However, as we are looking for a decrease of synchrony
in AD patients in the � band, the frequency range used
in α(f3, f4) is the one that presents the minimum mean
value for AD patients. By selecting the frequency range
θ(f1, f2) with higher mean value for AD patients and
the frequency range α(f3, f4) with lower mean value
for AD patients we are maximizing the differences
between AD and healthy subjects. Later on, this will
make it easier to distinguish between these two pop-
ulations. This procedure designed to select θ(f1, f2)
and α(f3, f4) was repeated for each of the measures
we used.

Classification Rate (CR) was computed using Lin-
ear Discriminant Analysis (LDA). LDA was used to
classify computed synchrony measures obtained from
the EEG data of AD patients and control subjects. As
the number of subjects in the database is small, the
Leave-One-Out (LOO) procedure was used. In this
LOO cross-validation scheme of N observations, N-
1 are used for training while the last one is used for
evaluation. This process is repeated N times, leaving
one different observation for evaluation each time. The
mean success classification value in percentage (%) is
obtained as a final result.

RESULTS

The presented ratio was used to improve the early
diagnosis of patients with AD. Table 1 presents the
values obtained using the ratio. In this table, for each
data set, we show the selected frequency range inside
the θ band and the � band, θ(f1, f2) and α(f3, f4),
respectively. The CR and p-values are displayed. Fre-
quency ranges that do not present any increase (θ band)
or decrease (� band) of synchrony for AD patients are
highlighted in italics. In these highlighted values, the
standard θ and � bands were used instead of a specific
frequency range.

As it can be seen from the results in Table 1, using the
ratio rather than only the synchrony value improves CR
for the MCI data set for several measures: Coherence,
PC, DTF, ffDTF, and dDTF. The same measures give
a lower p-value in comparison with that obtained indi-
vidually. For the MCI dataset, the best CR is 83.33%
(sensitivity 81.82% and specificity 84.21%) obtained
by dDTF. The second and the third best results,
obtained by DTF and ffDTF, are 75.00% (sensitivity
68.18% and specificity 78.95%). The results presented
for the mild AD data set show that the CR obtained with
the ratio in all measures has values equal to or higher
than the value obtained with the synchrony measures
only. The p-values computed for the ratio were also
lower than those obtained using the synchrony measure
only. The CR is also improved for almost all measures
in comparison with obtained results using individual
features. The best CR is 87.80% (sensitivity 82.35%
and specificity 91.67%) obtained by DTF. The second
and the third best results obtained are 82.93% obtained
by PC (sensitivity 76.47% and specificity 87.50%) and
dDTF (sensitivity 58.82% and specificity 100%).

Figures 1 and 2 contain the box plots of the syn-
chrony values and the ratio for all measures. Both
figures show that for almost all the measures, AD



E. Gallego-Jutglà et al. / EEG Based Index to Improve AD Diagnosis 1179

Ta
bl

e
1

C
om

pu
te

d
va

lu
es

of
C

R
an

d
p-

va
lu

es
fo

r
se

ve
ra

ld
if

fe
re

nt
sc

en
ar

io
s:

T
he

fr
eq

ue
nc

y
ra

ng
e

th
at

pr
es

en
te

d
th

e
hi

gh
es

tm
ea

n
sy

nc
hr

on
y

va
lu

e
fo

r
ea

ch
da

ta
se

ti
n

th
e

θ
ba

nd
,t

he
fr

eq
ue

nc
y

ra
ng

e
th

at
pr

es
en

te
d

th
e

lo
w

es
tm

ea
n

sy
nc

hr
on

y
va

lu
e

fo
r

ea
ch

da
ta

se
ti

n
th

e
�

ba
nd

,a
nd

th
e

ra
tio

co
m

pu
te

d
be

tw
ee

n
th

os
e

fr
eq

ue
nc

y
ra

ng
es

.T
he

th
re

e
be

st
re

su
lts

ob
ta

in
ed

fo
r

ea
ch

da
ta

se
tu

si
ng

th
e

ra
tio

ar
e

in
bo

ld

M
C

I
D

at
a

se
t

M
ea

su
re

Se
le

ct
ed

fr
eq

.
C

R
p-

va
lu

e
Se

le
ct

ed
fr

eq
.

C
R

p-
va

lu
e

C
R

p-
va

lu
e

ra
ng

e
θ
(f

1
,
f

2
)

θ
(f

1
,
f

2
)

(%
)

θ
(f

1
,
f

2
)

ra
ng

e
α

(f
3
,
f

4
)

α
(f

3
,
f

4
)

(%
)

α
(f

3
,
f

4
)

R
at

io
(%

)
R

at
io

C
oh

er
en

ce
5–

6
61

.6
7

0.
26

61
8–

9
60

.0
0

0.
04

70
66

.6
7

0.
01

11
G

ra
ng

er
C

oh
er

en
ce

4–
8

61
.6

7
0.

00
89

8–
11

63
.3

3
0.

01
32

53
.3

3
0.

42
95

PC
6–

7
61

.6
7

0.
03

24
12

–1
3

56
.6

7
0.

24
06

70
.0

0
0.

00
06

D
T

F
4–

5
53

.3
3

0.
62

89
12

–1
3

60
.0

0
0.

09
01

75
.0

0
0.

00
22

ff
D

T
F

4–
5

53
.3

3
0.

62
89

12
–1

3
60

.0
0

0.
08

72
75

.0
0

0.
00

21
PD

C
4–

5
58

.3
3

0.
02

56
8–

13
56

.6
7

0.
61

81
58

.3
3

0.
03

00
dD

T
F

6–
7

70
.0

0
0.

01
44

12
–1

3
61

.6
7

0.
00

78
83

.3
3

8.
81

×
10

−7
O

m
eg

a
C

om
pl

ex
ity

5–
6

50
.0

0
0.

35
34

8–
10

68
.3

3
0.

01
38

58
.3

3
0.

02
77

Ph
as

e
sy

nc
hr

on
y

4–
8

60
.0

0
0.

13
47

8–
10

70
.0

0
0.

00
93

55
.0

0
0.

17
46

M
ild

A
D

D
at

a
se

t

M
ea

su
re

Se
le

ct
ed

fr
eq

.
C

R
p-

va
lu

e
Se

le
ct

ed
fr

eq
.

C
R

p-
va

lu
e

C
R

p-
va

lu
e

ra
ng

e
θ
(f

1
,
f

2
)

θ
(f

1
,
f

2
)

(%
)

θ
(f

1
,
f

2
)

ra
ng

e
α

(f
3
,
f

4
)

α
(f

3
,
f

4
)

(%
)

α
(f

3
,
f

4
)

R
at

io
(%

)
R

at
io

C
oh

er
en

ce
5–

6
68

.2
9

0.
01

79
10

–1
1

68
.2

9
0.

00
02

80
.4

9
4.

86
×

10
−5

G
ra

ng
er

C
oh

er
en

ce
4–

5
75

.6
1

0.
00

03
10

–1
1

58
.5

4
0.

22
86

75
.6

1
0.

00
01

PC
4–

5
63

.4
1

0.
00

91
9–

10
56

.1
0

0.
05

50
82

.9
3

8.
50

×
10

−5
D

T
F

6–
7

87
.8

0
3.

41
×

10
−6

12
–1

3
63

.4
1

0.
10

94
87

.8
0

4.
41

×
10

−6
ff

D
T

F
4–

5
73

.1
7

1.
71

×
10

−5
12

–1
3

73
.1

7
0.

01
55

80
.4

9
9.

31
×

10
−6

PD
C

4–
5

75
.6

1
3.

88
×

10
−6

12
–1

3
73

.1
7

0.
00

72
78

.0
5

1.
20

×
10

−6
dD

T
F

4–
5

73
.1

7
0.

00
01

12
–1

3
65

.8
5

0.
01

55
82

.9
3

1.
78

×
10

−6
O

m
eg

a
C

om
pl

ex
ity

4–
6

56
.1

0
0.

20
88

8–
13

63
.4

1
0.

02
06

78
.0

5
0.

00
05

Ph
as

e
sy

nc
hr

on
y

5–
6

65
.8

5
0.

04
57

8–
11

70
.7

3
0.

00
02

78
.0

5
2.

74
×

10
−5
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Fig. 1. Box plots showing the results obtained with the MCI data set. Third column shows the results obtained for the ratio. We can observe that
box plots are more separated using the ratio than using only θ or � bands (specific frequency range in Hz on the top of each box plot).
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Fig. 2. Box plots showing the results obtained with the mild AD data set. Third column shows the results obtained for the ratio. We can observe
that box plots are more separated using the ratio than using only θ or � bands (specific frequency range in Hz on the top of each box plot).



1182 E. Gallego-Jutglà et al. / EEG Based Index to Improve AD Diagnosis

patients have higher synchrony values in the θ band and
lower synchrony values in the � band. In Fig. 1 (which
corresponds to the MCI data set), measures that present
a clear difference are those that achieved the best classi-
fications results (DTF, ffDTF, and dDTF). In Fig. 2, our
results for the mild AD data set are presented. In this
figure, measures that present a clear difference are PC,
DTF, and dDTF, again those that obtained the best CR.
In both cases the ratio increases the distance between
two distributions, which makes it easier to classify sub-
jects into one of the groups, as the results of the CR
have shown.

DISCUSSION

The results we have presented show that the ratio
improves classification of the individuals as either AD
patients or healthy subjects. The p-values obtained are
smaller for the ratio than for the synchrony measures
alone. The results obtained for the mild AD data set
present higher CR than the results obtained for the
MCI data set. The box plots shown in Figs. 1 and
2 demonstrate that the ratio increases the difference
between AD patients and healthy subjects. However,
results obtained with the mild AD data set present a
higher difference than the ones obtained with the MCI
data set.

Interestingly, most of the results were obtained in
narrow band frequency ranges, with a width of one or
two hertz. The frequency range of 4–5 Hz appears in
both data sets as one where the synchrony is higher
for AD patients than for healthy subjects. On the other
hand, the frequency range of 12–13 Hz appears in the
� band as that where the synchrony is lower for AD
patients.

Our results show that for the MCI data set we achieve
a CR of 83.33%, and for mild AD data set we achieve
a CR of 87.8%. Previous studies using these data sets
and synchrony measures achieved comparable results.
In [17, 19], the same results were achieved using the
MCI data set, but in this case using two measures as
input features to a LDA classifier. When these studies
used only one measure as a single feature, the best CR
decreased to 70.0%. For the mild AD data set, a CR of
85.0% was achieved using two measures and LDA, but
using only one measure the CR decreased to 82.9% in
[19]. The two obtained values in [19] are lower than
the ones obtained in this study.

Different results were obtained in [20] where a com-
bination of Relative Power (RP) and other measures
were used. The best result in [20] for MCI data set was

78.33% using Stochastic Event Synchrony and the RP
in the θ band as input features into a LDA classifier.
Therefore, for the MCI data set, the ratio and opti-
mization of the frequency ranges clearly improves the
CR and simplify the classification system. However,
for the mild AD data set, using RP in the θ band and
ffDTF as features, the best CR obtained was 95.12%.
This result improves our best CR for this data set. Nev-
ertheless, it is important to note that: (i) input space is
two-dimensional (a vector of two features as input for
the classifier), whereas we have only one-dimensional
space, and (ii) features used to obtain the best CR were
different for both data sets, whereas we use the ratio in
both data sets. Keeping in mind that the objective is to
deal with the early diagnosis of AD, our proposed ratio
r yields good classification performance on both EEG
data sets, which is interesting for medical applications.

On the other hand, earlier studies were mainly
focused on the decrease of synchrony for AD patients
in higher frequencies [4, 17, 21]; only a few studies
have presented an increase of synchrony in the θ band.
In our study, such increase of synchrony in the θ band
is confirmed for mild AD patients, and an increase of
synchrony in narrow bands is also found in MCI sub-
jects. Other earlier studies [13, 22–25] also presented
an increase of synchrony in the θ band, usually in a spe-
cific region like the posterior cingulate gyrus area, or
the area covered by the electrodes P3-P4, C3-C4, F3-
F4, and FP1-FP2. Locatelli et al. [14] found an increase
of synchrony in the θ band only for a limited number
of subjects who displayed severe cognitive problems.
Other studies [11] reported an increase of global syn-
chrony in the θ band using a multivariate measure.
Some of the above studies highlight the decrease of
synchrony in the � band, instead of the increase in θ

band. Our results show an increase on the global syn-
chrony value in the θ band. Mild AD patients present
a higher increase of synchrony in the θ band than MCI
patients. This may be related to the fact that mild AD is
a stage in which the cognitive deficits are higher than
in MCI [23].

Comparing results from different studies remains a
difficult task. The most important issue is the high vari-
ability among the different methods used in the studies.
Few studies consider multiple synchrony measures.
Usually only one synchrony measure is considered
in each paper, which is often different in each study.
Besides, experimental conditions between studies may
be different, e.g., different recording conditions, elec-
trode placements, and/or patient inclusion criteria. This
last condition may be a key factor to explain the vari-
ability of results found in the literature. Finally, it



E. Gallego-Jutglà et al. / EEG Based Index to Improve AD Diagnosis 1183

should be noted that our two data sets are fairly small.
A larger database is required in order to generalize our
results.

In future work we will further explore several
aspects. First, we will analyze whether a better CR
could be achieved by combining the proposed ratio
with different synchrony measures. Second, we will
investigate changes in the inter-region synchrony
instead of global synchrony; this will allow us to iden-
tify which regions exhibit the strongest perturbations
in synchrony, and therefore to obtain more insight on
how to discriminate AD patients from healthy sub-
jects. Third, we plan to study how the spatial averaging
approach affects the synchrony, due to the fact that it
may affect the values of inter-region and global syn-
chrony. Finally we plan to investigate if the ratio can be
useful in the early diagnose of other neurodegenerative
diseases, or if it can help to distinguish between dif-
ferent types of neurodegenerative disease, for example
between AD and vascular dementia.
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Esteve Gallego-Jutglà thanks the University of Vic
– Central University of Catalonia (UVic-UCC) for par-
tially supporting this project under a PhD grant (“Amb
el suport de l’ajut predoctoral de la Universitat de Vic –
Universitat Central de Catalunya”). Jordi Solé-Casals
and Esteve Gallego-Jutglà acknowledge support from
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