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Abstract. In this paper we consider vector fields in R3 that are invariant under a

suitable symmetry and that posses a “generalized heteroclinic loop” L formed by two

singular points (e+ and e
−) and their invariant manifolds: one of dimension 2 (a sphere

minus the points e
+ and e

−) and one of dimension 1 (the open diameter of the sphere

having endpoints e
+ and e

−). In particular, we analyze the dynamics of the vector

field near the heteroclinic loop L by means of a convenient Poincaré map, and we prove

the existence of infinitely many symmetric periodic orbits near L. We also study two

families of vector fields satisfying this dynamics. The first one is a class of quadratic

polynomial vector fields in R
3, and the second one is the charged rhomboidal four body

problem.
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1. Introduction

In this paper we study the periodic motion around a generalized heteroclinic loop L
formed by a 2–dimensional sphere S2 and an interior diameter Γ of the sphere, see

Fig. 1. We suppose that the flow of a system X having such a loop is defined on

the closed ball D3 of R3 having as boundary S2. On S2 we have two foci, e+ and e−,

diametrally opposite at the endpoints of the diameter Γ. Every orbit on S2 different

from the two foci starts spiraling at e− and ends spiraling at e+. In fact, S2 \ {e+, e−}
is the 2–dimensional unstable manifold of e− which coincides with the 2–dimensional

stable manifold of e+. Moreover, the diameter Γ is formed by a unique orbit starting

at e+ and ending at e−; i.e. Γ is the 1–dimensional unstable manifold of e+ which

coincides with the 1–dimensional stable manifold of e−. We assume that the flow on D3

is symmetric with respect to a line of symmetry L orthogonal to the diameter Γ.

Analyzing the dynamics of the vector field X near this generalized heteroclinic loop

L by means of a convenient Poincaré map and using the symmetry of the problem we

can prove the existence of infinitely many symmetric periodic orbits of X near L. The
key point of this paper is that we can obtain the properties of the Poincaré map that

are necessary to prove the existence of symmetric periodic orbits by using geometric

arguments instead of using the analytic expression of the Poincaré map. This avoids

in this case the usual hard computations necessary for computing the image of the

Poincaré map and its intersection with the line of symmetry. Moreover it allows us to

prove the existence of infinitely many periodic orbits for any vector field X possessing

the heteroclinic loop L and the mentioned symmetry although we do not know the

explicit analytic expression of the vector field. Other papers following these geometric

approach are [2, 3, 4, 6].

To use heteroclinic loops for finding periodic orbits near using the geometry close to

these loops more than the tedious computations associated to the analytic expressions

of the Poincaré maps has a long tradition in the qualitative study of the differential

systems, see for instance [2, 4, 6, 8, 10, 18]. In many cases the heteroclinic loops

are formed by stable and unstable manifolds of the same dimension (see [12, 13]), or by

heteroclinic orbits which are intersection of stable and unstable manifolds (see [6, 7, 10]).

The heteroclinic loop L studied here is special in the sense that it is formed by stable and

unstable manifolds of different dimension, and their orbits are not intersection of stable

and unstable manifolds. As far as we know, the use of these kind of heteroclinic loops

in order to find periodic orbits is not very common in the literature and nevertheless

it is a very interesting problem from a dynamical point of view because it exhibits the

complicated dynamics near these heteroclinic loops in a very simple form. In [4] the

authors use similar techniques than the ones used here for proving the existence of

periodic orbits for a particular case of the charged rhomboidal 4–body problem, but

they do not mention explicitly the existence of the heteroclinic loop. Here we treat

the problem in a more general form, we describe the heteroclinic loop L, we give the

conditions that must verify a vector field X in D
3 in order to have periodic orbits near
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Figure 1. The generalized heteroclinic loop.

the heteroclinic loop L, and finally we give two particular examples of vector fields

satisfying this dynamics.

In Section 2 we prove the existence of infinitely many periodic orbits for any vector

field defined on the closed ball D3 having the described generalized heteroclinic loop

and the mentioned symmetry. In Section 3 we apply the analysis done in Section 2 to

a class of quadratic polynomial vector fields in R3, showing that the easiest nonlinear

systems already present complicated dynamics. Finally in Section 4 we use the results

of Section 2 to prove the existence of infinitely many symmetric periodic orbits for the

charged rhomboidal 4–body problem that pass near total collision, extending results of

[4]. The charged rhomboidal 4–body problem consist of describing the dynamics of 4

point particles endowed with a positive mass and an electrostatic charge of any sign,

moving under the influence of the respective Newtonian and Coulombian forces in such

a way that the four particles form a rhombus at every time.

2. The main Theorem

Without loss of generality we can assume that the closed ball is D3 = {(x, y, z) ∈ R3 :

x2 + y2 + z2 6 1}, its boundary is S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}, the
interior diameter is Γ = {(x, y, z) ∈ R3 : x = y = 0,−1 < z < 1} and the line

of symmetry is L = {(x, y, z) ∈ R3 : x = z = 0}. Assume that the vector field

X = (f(x, y, z), g(x, y, z), h(x, y, z)) is defined on the closed ball D3 and it satisfies the

following conditions:

(C1) The sphere S2 is invariant under the flow of X .

(C2) On S2 the vector field X has two foci, e+ = {(0, 0, 1)} and e− = {(0, 0,−1)}.
(C3) Every orbit on S2 different from the two foci starts spiraling at e− and ends spiraling

at e+. In fact, S2 \ {e+, e−} is the 2–dimensional unstable manifold of e− (W u
e−)

which coincides with the 2–dimensional stable manifold of e+ (W s
e+).

(C4) The diameter Γ is formed by a unique orbit starting at e+ and ending at e−; i.e.

Γ is the 1–dimensional unstable manifold of e+ (W u
e+) which coincides with the
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1–dimensional stable manifold of e− (W s
e−).

(C5) The flow on D3 is invariant under the time–reversibility symmetry (x, y, z, t) −→
(−x, y,−z,−t); that is, it is symmetric with respect to the line of symmetry L (i.e.

the y–axis) and a change of the sign of the time.

Under these assumptions the vector field X possesses a generalized heteroclinic loop

L formed by the equilibrium points e+ and e− and the invariant manifolds W u
e− =W s

e+

and W s
e− = W u

e+ .

Let P = {(0, 0, 0)} be the intersection point of the line of symmetry L with the

diameter Γ and let Q = {(0, 1, 0)} and R = {(0,−1, 0)} be the intersection points of L

with S2.

Proposition 1 Assume that the vector field X is defined on the closed ball D3 and

it satisfies conditions (C1)–(C5), then X has infinitely many periodic orbits near the

heteroclinic loop L that cross exactly 2 times the plane z = 0 during a period. In

particular, we have infinitely many periodic orbits with one crossing near the point P

and the other one near Q, and infinitely many periodic orbits with one crossing near P

and the other one near R, see Figure 2.

Proof: Using the invariance of the vector field X with respect to the symmetry

(x, y, z, t) −→ (−x, y,−z,−t) we have that if φ(t) = (x(t), y(t), z(t)) is a solution of X ,

then ψ(t) = (−x(−t), y(−t),−z(−t)) is also a solution. This symmetry can be used in

the standard way in order to obtain symmetric periodic solutions. Using the symmetry

and the uniqueness theorem on the solutions of the differential system associated to X

it is easy to see that if x(0) = z(0) = 0, then the orbits φ and ψ must be the same.

Moreover, if there exists a time τ > 0 such that x(τ) = z(τ) = 0 and x(τ)2 + z(τ)2 6= 0

for all 0 < t < τ , then the orbit must be periodic of period 2τ . In other words, if an

orbit intersects the line of symmetry L in two different points, then it is a periodic orbit.

The use of time–reversibility symmetries in order to find symmetric periodic orbits is

a classical technique (see [17]) and it is very used at the present time (see for instance

[14]).

We start giving some definitions and some notations. Assume that εi > 0 are

sufficiently small values for all i = 1, 2, 3. We consider the segment γ = {(0, y, 0) ∈ L :

y ∈ (0, ε1)}, and the section Σ = {(x, y, z) ∈ D3 : z = 0}. We also consider a small

topological cylinder in a neighbourhood of the equilibrium point e− = {(0, 0,−1)} with

base on S2 and boundaries Σ1 and Σ2 with Σ1 = {(x, y, z) ∈ D3 : z = −1+ ε2, x
2+y2 6

ε3} and Σ2 = {(x, y, z) ∈ D3 : z 6 −1 + ε2, x
2 + y2 = ε3}, see Figure 2.

We define a map π : γ −→ Σ in the following way. We denote by ϕ(t, q) the

flow generated by system X , satisfying ϕ(0, q) = q. We consider the diffeomorphism

π0 : γ → Σ1 defined by π0(q) = p, where p is the point at which the orbit ϕ(t, q)

intersects the cross section Σ1 for the first time. By the continuity of the flow ϕ with

respect to initial conditions, if q is sufficiently close to the point P , then the orbit ϕ(t, q)

is close to the orbit Γ for all t in a finite interval of time. Since the orbit Γ expends a
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Figure 2. The map π.

finite time for going from the point P to the point S = Σ1 ∩ Γ, we can guarantee that

for all q ∈ γ sufficiently close to P the orbit ϕ(t, q) intersects Σ1. Consequently if ε1 is

sufficiently small, then the map π0 is well defined. Moreover, the image by π0 of γ is an

arc on Σ1 with S as one of its endpoints (see Figure 2).

We consider a second diffeomorphism π1 : Σ1 −→ Σ2 defined by π1(q) = p, where p

is the point at which the orbit ϕ(t, q) intersects Σ2 for the first time. If ε3 is sufficiently

small, then the orbit ϕ(t, q) intersects Σ2 for all q ∈ Σ1 \{S}, because e− is a hyperbolic

equilibrium point with W u
e− = S

2 \ {e+, e−} and W s
e− = Γ. Moreover, since e− is an

unstable focus on S2 and the point π0(P ) = S ∈ W s
e−, the image π1(π0(γ)) is a spiral on

Σ2 that approaches to S2, when we approach to P , spiraling infinitely many times (see

again Figure 2).

We define a third map π2 : Σ2 −→ Σ, defined by π2(q) = p, where p is the point at

which the orbit ϕ(t, q) intersects Σ for the first time. Since from condition (C3) every

orbit on S
2 starts at e− and ends at e+, if ε2 and ε3 are sufficiently small then the point

p is well defined.

Finally, we consider the map π : γ −→ Σ defined by π = π2 ◦ π1 ◦ π0. Since the

orbits expend a finite time for going from Σ2 to Σ, π2 is a diffeomorphism. Therefore

the image π(γ) is a spiral on Σ that approaches to S2, when we approach to P , spiraling

infinitely many times.

We note that π(γ) intersects the line of symmetry L infinitely many times near the

point Q, and infinitely many times near the point R. Since the points of γ belong to

the line of symmetry, those intersection points correspond to orbits of X that cross the

line of symmetry at two different points; that is, they correspond to symmetric periodic

orbits. By the construction, these periodic orbits cross exactly 2 times the plane z = 0.

�

The periodic orbits given by Proposition 1 are obtained from the intersection points

of the image by π of the segment γ = {(0, y, 0) ∈ L : y ∈ (0, ε1)} with the line of
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Figure 3. The map Π.

symmetry L. If we repeat the arguments of the proof of Proposition 1 with the segment

γ′ = {(0, y, 0) ∈ L : y ∈ (−ε1, 0)} instead of γ we would obtain infinitely many

symmetric periodic orbits that are different from the ones obtained above.

Proposition 2 Assume that the vector field X is defined on the closed ball D3 and

it satisfies conditions (C1)–(C5), then X has infinitely many periodic orbits near the

heteroclinic loop L that cross exactly 4 times the plane z = 0 during a period.

Proof: We proceed in a similar way as in the proof of Proposition 1. We consider

γ, Σ, Σ1 and Σ2 defined as in that proof; and we consider another small topological

cylinder in a neighbourhood of the equilibrium point e+ = {(0, 0, 1)} with base on S2

and boundaries Σ3 and Σ4 where Σ3 = {(x, y, z) ∈ D3 : z > 1 − ε4, x
2 + y2 = ε5},

Σ4 = {(x, y, z) ∈ D
3 : z = 1 − ε4, x

2 + y2 6 ε5}, and ε4, ε5 > 0 are sufficiently small

(see Figure 3).

Let π0 and π1 be defined as in the proof of Proposition 1. We define a third

map π2 : Σ2 −→ Σ3, defined by π2(q) = p, where p is the point at which the orbit

ϕ(t, q) intersects Σ3 for the first time. Since W u
e− = W s

e+ = S2 \ {e+, e−}, if ε2 and ε3
are sufficiently small, then the point p is well defined. Moreover, the orbits expend a

finite time for going from Σ2 to Σ3, so π2 is a diffeomorphism. Therefore the image

π2(π1(π0(γ))) is a spiral on Σ3 that approaches to S2, when we approach to P , spiraling

infinitely many times (see Figure 3).

We define another map π3 : Σ3 −→ Σ4 defined by π3(q) = p, where p is the point

at which the orbit ϕ(t, q) intersects Σ4 for the first time. If ε4 is sufficiently small,
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then this point p is well defined because e+ is a hyperbolic equilibrium point with

W s
e+ = S2 \ {e+, e−} and W u

e+ = Γ. Moreover, the image π3(π2(π1(π0(γ)))) is a spiral on

Σ4 that approaches to the point S ′ = Σ4∩Γ, when we approach to P , spiraling infinitely

many times (see again Figure 3).

We define π4 : Σ4 −→ Σ in a similar way than π−1
0 . Finally we consider the map

Π : γ −→ Σ defined by Π = π4 ◦ π3 ◦ π2 ◦ π1 ◦ π0. The image Π(γ) is a spiral on Σ that

approaches to P spiraling infinitely many times.

We note that Π(γ) intersects γ and γ′ both infinitely many times. Since the points

of γ belong to the line of symmetry, those intersection points correspond to symmetric

periodic orbits of X . The points of γ ∩ Π(γ) correspond to the symmetric periodic

orbits found in Proposition 1 (that have exactly 2 intersection points with z = 0), and

probably to new ones (that have exactly 4 intersection points with z = 0). The points of

γ′∩Π(γ) correspond to symmetric periodic orbits that cannot be found in Proposition 1

and that have exactly 4 intersection points with z = 0. �

We can apply similar arguments to analyze the intersection points of γ′ ∩ Π(γ′)

and γ ∩Π(γ′). We note that the symmetric periodic orbits obtained form the points of

γ′ ∩ Π(γ) and γ ∩ Π(γ′) are the same.

Doing similar arguments as the ones used in Propositions 1 and 2, it is not difficult

to see that the periodic orbits coming from the intersection points of π(Π(γ)) with

the line of symmetry L provide the symmetric periodic orbits found in Proposition 1,

and additionally provide infinitely many symmetric periodic orbits that cross exactly

6 times the plane z = 0 during a period. The intersection points of Π2(γ) with the

line of symmetry L provide the symmetric periodic orbits found in Proposition 2, and

additionally provide infinitely many symmetric periodic orbits that cross exactly 8 times

the plane z = 0 during a period; and so on. In short we have proved the following result,

which is the main result of this paper.

Theorem 3 Assume that the vector field X is defined on the closed ball D3 and it

satisfies conditions (C1)–(C5). For each n ∈ N the vector field X has infinitely many

periodic orbits near the heteroclinic loop L that cross exactly 2n times the plane z = 0

during a period.

3. Polynomial vector fields

In this section we characterize the class of quadratic polynomial vector fields in R3

satisfying conditions (C1)–(C5). So the easier nonlinear vector fields in R3 already

present a complicated dynamics as the provided by Theorem 3.

We consider an arbitrary quadratic polynomial vector field X = (P,Q,R) in R3

with

P =
∑

06i+j+k62

aijk x
iyjzk , Q =

∑

06i+j+k62

bijk x
iyjzk ,

R =
∑

06i+j+k62

cijk x
iyjzk .

(1)
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Assuming that the straight line x = y = 0 is invariant under the flow ofX (condition

(C4)) we have that

a000 = a001 = a002 = b000 = b001 = b002 = 0 .

Imposing that the system associated to X is invariant under the symmetry (C5) we get

that
a100 = a110 = a011 = b200 = b010 = b020 = b101 = c100

= c110 = c001 = c011 = 0 .

Now we impose condition (C1). The sphere S
2 is invariant under the flow of X

when the function 2 x ẋ+ 2 y ẏ + 2 z ż evaluated at z = ±
√

1− x2 − y2 equals to zero.

By imposing this condition we obtain the following relations

a010 = −b100, a020 = −b110, a101 = c002 − c200, a200 = 0,

b011 = c002 − c020, c000 = −c002, c010 = 0, c101 = 0.

Condition (C4) says that X has no singular points on Γ = {(x, y, z) ∈ R
3 : x =

y = 0,−1 < z < 1} and that the flow of X on Γ goes in the decreasing direction of

the z axis. The flow of X on the straight line x = y = 0 is given by ẋ = 0, ẏ = 0 and

ż = c002(z
2 − 1). So if c002 > 0, then condition (C4) is satisfied.

From condition (C2), the equilibrium points e+ = {(0, 0, 1)} and e− = {(0, 0,−1)}
must be foci. Let α = c020+c200−2 c002 and β = (c020 − c200)

2−4 b100
2. The eigenvalues

of the linear part of X at the equilibrium points e+ and e− are

λ1 = 2 c002, λ2,3 =
−α±

√
β

2
, (2)

and

λ1 = −2 c002, λ2,3 =
α∓

√
β

2
, (3)

respectively. So the coefficients must satisfy that β < 0, and consequently |b100| >
|c020 − c200|/2.

Finally we impose that every orbit on S2 different from the two foci starts spiraling

at e− and ends spiraling at e+ (condition (C3)). In order to impose this condition we

write the vector field X in spherical coordinates x = r cos θ cosφ, y = r cos θ sin φ and

z = r sin θ. If the derivative dθ/dt evaluated at r = 1 is positive for all θ ∈ (−π/2, π/2)
and φ ∈ [0, 2π), then condition (C3) is satisfied. After some computations we get

dθ

dt

∣

∣

∣

∣

r=1

=
1

2
cos θ [α + (c200 − c020) cos(2φ)]

So we need that α > |c200 − c020|.

In short we have proved the following result.

Proposition 4 The quadratic polynomial vector fields of the form

X = (−a y − b y2 + (c− d) x z, a x+ b x y + (c− e) y z,−c + d x2 + e y2 + c z2)

with c > 0, e + d− 2 c > |d− e| and |a| > |e− d|/2 satisfy conditions (C1)–(C5).
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Figure 4. The rhombus formed by the four particles.

Then applying Theorem 3 we obtain the following result.

Theorem 5 Let X be a quadratic vector field defined as in Proposition 4, and let L
be the heteroclinic loop formed by the equilibrium points e+ = {(0, 0, 1)} and e− =

{(0, 0,−1)} and the invariant manifolds S2 = {(x, y, z) ∈ R3 : x2+y2+z2 = 1}\{e+, e−}
and Γ = {(x, y, z) ∈ R

3 : x = 0, y = 0,−1 < z < 1}. For each n ∈ N the vector field

X has infinitely many periodic orbits near the heteroclinic loop L that cross exactly 2n

times the plane z = 0 during a period.

4. The charged 4–body problem

4.1. Introduction

The charged 4–body problem corresponds to the study of the dynamics of 4 point

particles endowed with a positive mass and an electrostatic charge of any sign, moving

under the influence of the respective Newtonian and Coulombian forces. These kind

of problems have been studied among others in [1, 2, 4, 16]. In this paper we study a

particular problem, when the point particles form a rhombus at every time. That is,

we consider four point particles with masses m1, m2, m3 and m4 and charges q1, q2, q3
and q4 , located at the vertices of a rhombus. From here on, the center of mass is fixed

at the origin. In order to preserve the rhomboidal configuration for all time we must

take m1 = m2, m3 = m4, q1 = q2, q3 = q4 and suitableness symmetrical velocities

for the four particles, see Figure 4. Choosing a convenient unit of mass we can suppose

that m1 = m2 = 1 and 0 < m3 = m4 = α 6 1.

Taking the units of mass and of charge conveniently we can assume that the

gravitational constant and the Coulomb’s constant are equal to one. We define the

new parameters λij = mimj − qiqj for i, j = 1, 2, 3, 4 and i 6= j, then if λij > 0 the

resultant force between the particles i and j is attractive, and if λij < 0 then it is

repulsive. It is clear that depending on the sign of the above parameters it is possible

to avoid any kind of binary collision or even the total collision.

We will prove that, fixed a level of energy Eh with h < 0, the charged rhomboidal 4–

body problem satisfies conditions (C1)–(C5) and consequently Theorem 3 can be applied

to find infinitely many symmetric periodic orbits of this problem.
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In [4] the authors use very similar techniques than the ones used here in order

to prove the existence of infinitely many symmetric periodic orbits passing near total

collision for the charged rhomboidal four body in the particular case λ34 = 0. Here we

find those periodic orbits for values of λ34 < 0.

4.2. Equations of motion

Let x > 0 be the half distance between the particles 1 and 2 and let y > 0 be

the half distance between the particles 3 and 4 , see Figure 4. We observe that x = 0

corresponds to double collision between the particles 1 and 2 ; y = 0 represents double

collision between the particles 3 and 4 . The total collision corresponds to x = 0 and

y = 0 simultaneously.

In these coordinates the equations of motion can be written as

ẍ = −
[

λ12
4x2

+
2λ13x

(x2 + y2)
3

2

]

, ÿ = − 1

α

[

λ34
4y2

+
2λ13y

(x2 + y2)
3

2

]

, (4)

where the two dots denote the second derivative with respect to t.

The configuration space of the above system is the first quadrant in the (x, y) plane

without the axes which correspond to the collision singularities of (4).

Note that if λ12 = λ34 = 0 and α = 1 , equations (4) describe a Kepler problem;

Newtonian or Coulombian depending on the sign of λ13 . When λ12 = λ34 = 0

and α < 1 , equations (4) describe the Anisotropic Kepler problem, widely studied in

[3, 5, 9].

System (4) can be written in Hamiltonian form by taking q = (x, y)T , M =

diag{2, 2α} and p =M q̇ . In these coordinates system (4) becomes

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (5)

where

H =
1

2
pTM−1p − U(q) . (6)

and the potential U is

U =
λ12
2x

+
4λ13

√

x2 + y2
+
λ34
2y

. (7)

In short, the charged rhomboidal four–body problem can be formulated as the motion

of a fictitious one particle of position q under the dynamics of the Hamiltonian system

(5).

4.3. McGehee Coordinates

We introduce McGehee coordinates [15] in order to analyze the behavior of the orbits

in a neighborhood of the total collision, in this way we define

r =
√

2(x2 + αy2) , θ = arctan

√
α y

x
, v = r1/2ṙ , u = r3/2θ̇ .
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Since both x and y are positive we have that θ ∈ (0, π/2) ; v and u are the radial

and tangential velocity of q scaled by the factor r1/2 . We also scale the time variable

by dt/dτ = r3/2.

We note that θ = 0 corresponds to binary collision between the particles 3 and

4, and θ = π/2 corresponds to binary collision between the particles 1 and 2. On the

other hand, r = 0 corresponds to the total collision.

In McGehee coordinates system (4) becomes

ṙ = rv , v̇ = u2 +
v2

2
− U(θ) ,

θ̇ = u , u̇ = −uv
2

+ U ′(θ) ,
(8)

where now the dot denotes the derivative with respect to τ ,

U(θ) =

√

α

2

[

λ12√
α cos θ

+
8λ13√

α cos2 θ + sin2 θ
+

λ34
sin θ

]

, (9)

and U ′(θ) means derivation with respect to the variable θ . In the new variables the

energy relation H = h goes over to

u2 + v2 = 2U(θ) + 2hr . (10)

We observe that in equation (9) the potential U depends only on the angular variable

θ , here we have used the fact that U is a homogeneous function in the variables x and

y with degree of homogeneity −1 . In Devaney [7] we can see that system (8) appears

usually when we study the total collision manifold.

Since the original system (4) can be written in Hamiltonian form (5), in terms of

a function which is quadratic in the momenta, we obtain that the system is reversible,

property which persists when we introduce McGehee coordinates, in other words the

system (8) possesses the symmetry (r, v, θ, u, τ) −→ (r, −v, θ, −u, −τ) .
The total collision manifold Λ is characterized by

Λ =
{

(r, v, θ, u) : r = 0, v2 + u2 = 2U(θ) , θ ∈ (0, π/2)
}

. (11)

Since ṙ = 0 when r = 0 in the first equation of (8), we have that Λ is invariant

under the flow; from the energy relation (10) we also have that Λ is independent of the

value of the constant energy h ; i.e., each energy surface has the same total collision

manifold Λ in its boundary.

We note that by (11) the total collision manifold Λ is not defined when U(θ) < 0 for

all θ ∈ (0, π/2). Clearly, the shape of the collision manifold is strongly related with the

shape of the potential function U(θ). This function is analyzed in the following section.

4.4. The total collision manifold

In [1] there is a classification of all possible shapes of U(θ) with respect to the parameters

when λ12 6= 0 and λ34 6= 0 . In this paper we are interested just in the case on which the

total collision manifold is compact. In this way we first fix the sign of the parameters

in such a way that λ12 < 0, λ34 < 0 and λ13 > 0. That is, we are supposing that we
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have repulsion between the particles 1 and 2, as well as between the particles 3 and 4,

and we have attraction between the particles 1 and 3, 1 and 4, 2 and 3, and 2 and 4.

Let,

β =
λ12
λ34

, δ =
λ13
λ34

, κ = 8δ (α− 1) .

By the choice of the signs of the parameters we have that β > 0, δ < 0 and κ > 0. The

derivative of the potential function U(θ) given in (9) is

U ′(θ) =

√

α

2
λ34

[

β sin θ√
α cos2 θ

+
κ sin θ cos θ

(α cos2 θ + sin2 θ)
3

2

− cos θ

sin2 θ

]

.

Let

g(θ) =
β√
α
+

κ

(α + tan2 θ)
3

2

− 1

tan3 θ
, (12)

then

U ′(θ) =

√

α

2
λ34

sin θ

cos2 θ
g(θ) . (13)

Therefore, the critical points of U(θ) for θ ∈ (0, π/2) are the roots of the equation

g(θ) = 0 .

By straightforward computations we get

(i) lim
θ→0+

g(θ) = −∞ , and lim
θ→π/2−

g(θ) = βα−1/2 .

(ii) If g′(θg) = 0 then θg = arctan [α1/2
(

κ2/5 − 1
)

−1/2
], where κ > 1 .

(iii) g(θg) = α−3/2[βα+ (κ2/5 − 1)5/2] .

(iv) The function g has a unique zero θ0 in (0, π/2) .

Using these properties of the function g , and since the potential function (9)

satisfies that

lim
θ→0+

U(θ) = −∞ and lim
θ→π/2−

U(θ) = −∞,

we obtain the next result.

Proposition 6 When λ12 < 0, λ34 < 0 and λ13 > 0, the potential function U(θ) has

exactly one critical point θ0 on the interval (0, π/2) , which is a maximum.

Let θ0 be the critical point of U given in Proposition 6, we are interested in the

possible sign of U(θ0) . Since g(θ0) = 0 , using (9) and (12), we get after some algebraic

manipulations that

U(θ0) =

√

α

2

1

cos3 θ0

[

8λ13

(α+ tan2 θ0)
3

2

+
λ34

tan3 θ0

]

. (14)

From here, since θ0 ∈ (0, π/2), the sign of U(θ0) is the same that the sign of

the expression between the brackets. After some computations we finally obtain the

conditions on the parameters to get U(θ0) > 0. We put them into the following result.
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Proposition 7 Let θ0 be the critical point of the potential U(θ) , if 8δ + 1 < 0 and

θ0 > arctan[α1/2((−8δ)2/3 − 1)−1/2] , then U(θ0) > 0.

We observe that, if the parameters satisfy the hypotheses of Propositions 6 and 7,

then the potential function U(θ) is convex, it has a maximum θ0 ∈ (0, π/2) with

U(θ0) > 0, limθ→0+ U(θ) = −∞, and limθ→π/2− U(θ) = −∞ and consequently there

are no binary collisions. Moreover, we can find 0 < θ1 < θ0 < θ2 < π/2 such that

U(θ1) = U(θ2) = 0 and U(θ) > 0 for all θ ∈ (θ1, θ2). In summary we have the next

result.

Theorem 8 If λ12 < 0, λ34 < 0 and λ13 > 0, 8δ + 1 < 0 and θ0 >

arctan[α1/2((−8δ)2/3 − 1)−1/2] , then the charged rhomboidal four body problem has a

total collision manifold Λ = {(r, v, θ, u) : r = 0, v2 + u2 = 2U(θ), θ ∈ [θ1, θ2]} that

is homeomorphic to a 2–dimensional sphere. Moreover there are no binary collisions

between the particles, but there are total collisions.

4.5. Equilibrium points

In this section we compute the equilibrium points of system (8), which are strongly

related with the critical points of the potential U(θ). Since the equilibrium points

(r0, v0, θ0, u0) are zeros of the vector field given by (8) and satisfy the energy relation

(10), we obtain

r0 = 0, u0 = 0, U ′(θ0) = 0, v0 = ±
√

2U(θ0) . (15)

In the hypotheses of Theorem 8 we have that U(θ0) > 0, so in this case the global

flow given by (8) has two equilibrium points, both in Λ, given by (15) that, roughly

speaking, they correspond to the northern and southern poles of Λ, respectively. We

denote them by e+ and e− according with v0 > 0 or v0 < 0.

Since the last three equations of system (8) do not depend on r and the coordinate

r can be obtained from the energy relation (10), in order to describe the flow of (8) on

a fixed energy level H = h, it is sufficient to describe the flow of the system formed by

the last three equations of (8)

v̇ = u2 +
v2

2
− U(θ) , θ̇ = u , u̇ = −uv

2
+ U ′(θ) . (16)

We note that if the parameters satisfy the hypotheses of Theorem 8, then the level of

energy Eh of (8) with h < 0 is homeomorphic to the closed ball of R3, D3 = {(u, θ, v) ∈
R3 : v2 + u2 6 2U(θ), θ ∈ [θ1, θ2]} with boundary S2 = {(u, θ, v) ∈ R3 : v2 + u2 =

2U(θ), θ ∈ [θ1, θ2]}. Moreover S2 is invariant under the flow of (16), see (10). From here

on we take the coordinates of the points of R3 as (u, θ, v).

We linearize the vector field (16) at the equilibrium points e+ = {(0, θ0,
√

2U(θ0))}
and e− = {(0, θ0,−

√

2U(θ0))}. The eigenvalues at them are given by

µ1 = v0, µ2,3 =
−v0 ±

√

v20 + 16U ′′(θ0)

4
,
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with eigenvectors

v1 = (0, 0, 1), v2,3 =

(

v0 ±
√

v20 + 16U ′′(θ0)

4
, 1, 0

)

, (17)

respectively. Note that the vectors v2 and v3 are tangent to S2.

We observe that if v0 6= 0 and U ′′(θ0) 6= 0, then the two equilibrium points

are hyperbolic. In this case we can compute the stable and the unstable invariant

manifolds associated to these equilibrium points. We denote by W
s,(u)
P the global stable

(unstable) invariant manifold associated to the equilibrium point P . In the assumptions

of Theorem 8, note that since θ0 is a maximum of U(θ0) , then U ′′(θ0) 6 0 .

A vector field F is gradient like with respect to a function g if all non-equilibrium

solutions of ẋ = F (x) are increasing with respect to g .

Theorem 9 Let e+ and e− be the equilibrium points (15) for the flow given by (16),

where U(θ0) > 0 and U ′′(θ0) < 0 . We assume that the energy value is h < 0.

(a) W s
e+ = S2 \ {e+, e−} where dimW s

e+ = 2 , and W u
e+ = {(u, θ, v) : u = 0, θ =

θ0,−
√

2U(θ0) < v <
√

2U(θ0)} = Γ where dimW u
e+ = 1 ;

(b) W s
e− =W u

e+ and W u
e− = W s

e+ .

Proof: From (16) the flow on S2 is given by

v̇ =
u2

2
, θ̇ = u , u̇ = −uv

2
+ U ′(θ) . (18)

Since v̇ > 0 and it is not identically zero on any orbit of (18) different from e+

and e−, the vector field given by (18) is gradient like with respect to the coordinate v .

Therefore, all the orbits on S
2 \ {e+, e−} have α–limit e− and ω–limit e+.

Observe that the segment Γ is invariant under the flow of (16), it joins the

equilibrium points e+ and e−, and the flow on it goes in the decreasing direction of

the v axis. We note that the orbit Γ is an ejection–collision homothetic orbit of (8),

because h < 0; i.e. it is an orbit that at any time form a central configuration.

By the Hartman’s Theorem (see, for instance, [11]), and (17), the statements (a)

and (b) follows. �

4.6. Symmetric periodic orbits

Now we apply Theorem 3 to system (16). First we see that system (16) satisfies

conditions (C1)–(C5) of Section 2.

Assume that the parameters satisfy the hypotheses of Theorem 8. Then system (16)

satisfies condition (C1) because S2 = {(u, θ, v) ∈ R3 : v2 + u2 = 2U(θ), θ ∈ [θ1, θ2]} is

invariant under the flow of (16). If v20+16U ′′(θ0) < 0, then system (16) has two foci on S2,

e+ = {(0, θ0,
√

2U(θ0))} and e− = {(0, θ0,−
√

2U(θ0))}, so condition (C2) is satisfied.

From Theorem 9, W s
e+ = W u

e− = S2 \ {e+, e−} and W u
e+ = W s

e− = {(u, θ, v) : u =

0, θ = θ0,−
√

2U(θ0) < v <
√

2U(θ0)} = Γ, thus conditions (C3) and (C4) are satisfied.
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Finally, since system (8) possesses the symmetry (r, v, θ, u, τ) −→ (r, −v, θ, −u, −τ) ,
system (16) is invariant under the symmetry (u, θ, v, τ) −→ (−u, θ, −v, −τ) , so

condition (C5) is satisfied.

Let L be the heteroclinic loop formed by the equilibrium points e+ and e− and

their invariant manifolds W s
e+ = W u

e− and W u
e+ = W s

e− . Applying Theorem 3 to system

(16) we have that if the parameters satisfy the hypotheses of Theorem 8 and condition

v20 + 16U ′′(θ0) < 0, then for each n ∈ N system (16) has infinitely many periodic orbits

near the heteroclinic loop L that cross exactly 2n times the plane v = 0 during a period.

Clearly the periodic solutions of (16) give periodic solutions of (8) on the fixed energy

level Eh. Therefore we have proved the following result.

Theorem 10 Assume the hypotheses of Theorem 8 and the condition v20+16U ′′(θ0) < 0.

For each h < 0 and for each n ∈ N, the charged rhomboidal four body problem (8) has

infinitely many periodic orbits having fixed energy h that pass close to total collision.

Moreover these periodic orbits cross exactly 2n times the plane v = 0 during a period.

5. Discussion section

Using only geometrical and topological arguments we have provided sufficient conditions

in order that a vector field in R3 has infinitely many periodic solutions near a heteroclinic

loop L formed by a 2–dimensional sphere and an inner diameter of it. The use of

geometrical arguments allows us to obtain the properties of the Poincaré map that are

necessary in order to prove the existence of those periodic orbits without knowing the

explicit analytic expression of the Poincaré map and without knowing the exact analytic

expression of the vector field. Moreover the use of the mentioned geometrical arguments

avoids the hard computations necessary for computing the image of the Poincaré map

when the explicit analytic expression of the vector field is known.

We have also showed that the loop L appears in classical physics systems as the

charged 4–body problem, and in systems which are being studied intensively by the

mathematicians during these last years as the polynomials differential systems. Recently

the study of the periodic orbits of polynomial vector fields in dimension larger than 2 is

object of a great interest, see for instance [19, 20, 21] and the references quoted there.

Notice that we have only proved the existence of infinitely many periodic orbits

near the loop L, but we have not computed those periodic orbits explicitly. When the

analytic expression of the vector field is known those periodic orbits could be computed

analytically sometimes and numerically in general from the explicit analytic expression

of the Poincaré map, but this was not the objective of this work.

The periodic orbits found here are not transversal as intersection of the stable and

unstable manifolds so they are not related with the standard notion of chaos. Moreover

these periodic orbits are not obtained from bifurcation because we do not need to move

any parameter in order to obtain them.
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