Browsing a Component Library using
Non-Functional Informationt

Xavier Franch, Josep Pinyéd) and Joan Vancefls

1 Universitat Politécnica de Catalunya (UPC),
¢/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)
franch@Ilsi.upc.es, josep.pinol.molas@arthurandersen.com
2 Universitat de Vic (Barcelona),
c/Sagrada Familia, 7 E-08500 Vic (Catalunya, Spain)
joan.vancells@uvic.es

Abstract. This paperhighlights the role of non-functional information
when reusing from a component library. Wescribea methodfor selecting
appropriateimplementationsof Ada packagestaking non-functional con-
straints into account;these constraints model the context of reuse.Con-
straints take the form of queriesusing an interface description language
called NoFun, which is also used state non-functional information in Ada
packages; queryesultsare treesof implementations,following the import
relationships between components. We define tlifferent situations when
reusing components, dependimgnetherwe take the library being searched
asclosedor extendible. The resulting tree of implementationscan be ma-
nipulated bythe userto solve ambiguities, to state defaultbehaviours,and
by the like. As part of the proposal, we face greblem of computing from
code the non-functional information that determines the selection process.

1 Introduction

Software components cdoe characterisedboth by their functionality (what the com-
ponent does) and by their non-functionality (htthve componentehaveswith respect
to somequality factorslike efficiency, reliability, etc.). Both aspectshouldbe con-
sidered during their specification, design, implementation, maintersantt@dso reuse.
If we focuson reusability,a componentretrievedfrom a library regardingonly its
functional behaviour may not finto the non-functionalrequirementf the environ-
ment, hindering or even preventing its actual integration into the new system.
Despitethis, usual softwarereusemethods(see[1] for a survey)take only func-
tional characteristics of components into account. The main rdetamdthis limita-
tion is that non-functional information does not appear in comporfntisermore,it
often cannotbe easily computed(or evencannotbe computedat all) from the func-

T This work has been partially supported by the spanish CICYT project TIC97-1158.

tional part. As a resultetrieval of componentsannotguarantysuccesswith respect
to non-functional constraints (for instance, constraints about efficiency).

Our approach cope with this problem bgupling threedifferent strategiesOn the
one hand,we havedesignedan interface definition languagecalled NoFun aimed at
stating non-functional aspects of software componentisséicomponentshemselves.
This notationallows to introduce software attributes characterisingcomponentsJi-
brariesandwhole systems;to put constraintson them; and also to establishhow
component implementations behave with respect to them. On thehatteive have
defined a method for retrieving software components from a library, badée eatis-
factibility of some non-functionalconstraintsencapsulatedn queries. The method
examines component implementations from a non-functional point of itiemill be
defined in twodifferent scenariodependingon whetherwe requireto solve the query
using just the implementations of the library or not. Last, a frameWeorkomputing
non-functionalinformation of implementationdrom codehas also beenformulated.
The framework seems to be able to haradtelevantsubsetof quality factors(among
them, we remark efficiency) in a uniform way.

The paper focuses on thest two parts(especiallythe secondone) andnot on the
language, which have been formerly described in [2]latedt in [3]. A first prototype
running on Linux is currently implemented.

2 The Framework

In the rest of the paper, we will view a software component as &pi#tirup from an
interfaceandan implementationIn our approach,the interface (enclosedin an Ada
package) optionally includes an Anggecification(see[2] for details).In the general
case, there will beomponentswith the samespecificationbut differentimplementa-
tions (enclosed in Ada package bodies), each one desigfiedatparticularcontextof
use. Our reuse method will be on chargeof selectingone or more functional-
equivalent components with the magipropriatémplementationfor a given context
represented by a query.

On the other hand, components are considered encapsulz#tiabstractdatatypes.
Implementationswill consistthen of datastructuresaslists, treesand graphs.This
frameworkaffectsthe kind of relevantnon-functionalattributesof components;or
instance we measureefficiency with asymptoticnotations[4] and not by response
time, throughput or number @fccesseso disk, which are measure®f interestwhen
considering other type of systems.

Non-functional information of software components willdztually integratedinto
Ada packages by meatise NoFun interfacedescriptionlanguageg(lines starting with
"--|"). We classify this information into three kinds (see [3] for details):

- Non-functional attribute (short, NF-attribut: definition of software attributes
which serveas a meanto describecomponentsand possibly to evaluatethem.
Among the mostvidely acceptedve can mention efficiency, maintainability, reli-
ability and usability.

- Non-functional behaviounf animplementation(short, NF-behaviouy. assignment
of values to the NF-attributes bound to the component.

— Non-functionalconstrainton a software component(short, NF-constrain}: con-
straint on the set of the NF-attributes bound to the component.

In fig. 1 we show an exampleof definition of an NF-attributefor reliability, which
relies on three other NF-attributes: test degree (integer frons)) tror recoveryand
portability (both boolean).

package RELI ABILITY is
--: W th ERROR RECOVERY, TEST
--. properties
--: bool ean Ful | yPortabl e; -- platformindependence
--: enunerated orderedReliability [none, | ow, medi um hi gh]
-- depends on Test, ErrorRecovery, FullyPortable
.- defined as
-- not ErrorRecovery and not FullyPortable =>
-- Reliability = none
-- Error Recovery and not Ful | yPortabl e
-- Reliability = low
-- not ErrorRecovery and Ful | yPort abl e
-- Reliability = low
-- ErrorRecovery and Ful | yPortabl e =>

>

>

-- Test in [0..1] => Reliability = low
.- Test in[2..3] => Reliability = nedium
Test in [4..5] => Reliability = high

end RELI ABI LI TY;
Fig. 1. A package introducing a NF-attribute for reliability

This attribute can be used in component packages, as shdign 2; NETWORKis
a component modeling geographical networks, wieistablisheconnectiondbetween
items. We assume thdemsin the network areintegers,andthat the cost of a con-
nectionis also an integer. The measurementinits stand for data volume sizes:
Nbltemsfor the number of items, amdbConnsfor the numberof links. Theseunits
are used later to establish efficiency results.

package NETWORK i s
decl aration of interface
--: with RELIABILITY
.- nmeasurement units Nbltenms, NbConns
end NETWORK;

Fig. 2. A package for a component using the NF-attribute of fig. 1

Fig. 3 includesa NF-behaviourmodulegiving valuesto theseNF-attributes(Short-
estPathis a procedurecomputingshortestpathsin the network). Note that the value
of the Reliability NF-attributeis not explicitly given, becauset can be computed
from the other ones (we sayi$t derived. The implementedvith constructlabelsthe
package body for further package selection.

package body NETWORK i s
--| inmplenented with ADJACENCY_MATRI X
--| behavi our
- Error Recovery; FullyPortable; Test =3
- -- thisinplies Reliability = Medi um
- space(Network) = pow(Noltens, 2)
procedure ShortestPath ...
- time(ShortestPath) = pow(Nbltens, 2)
- space(Shortest Path) = Noltens

end NETWORK;

Fig. 3. A package implementation for the component in fig. 2, including NF-behaviour

3 Queries

In our method, a query is the basic retrieval operatias. dimedat selectingcompo-
nents whose implementation fit better in the rey@temfrom a non-functionalpoint
of view, identifying which conditionsnust hold in orderfor this selectionto be cor-
rect. Query process relies on the NF-behaviour of implementations; thig/is1 the
rest of thissectionwe talk aboutimplementationsnsteadof componentsFor every
NF-attributein the scopeof the implementationthe NF-behaviourstatesits value,
either implicitly or not, depending on whether the attribute is basic or deriveNfthe
constraints appearing in the behaviour module are used to fix the additionktions.
One of the most important basic attributes is efficiemdypsecanbe computedwith
the help of atool (seesection7); we plan to extendthe set of basic NF-attributes
computed in this way.

In order to combine queries later ame assumehat the selectionis madefrom an
initial set of candidateémplementationsso, queriesmay be viewed as mappingsthat
bind sets of implementations. More precisgiuen a queryq,, anda setS of imple-
mentations for an interfadd (such thafor everysS, the pair <M, s> is a compo-
nent from our point of view), the evaluationgf overS, writteng, (S), yields:

— A setT [Ssuch that implementations Tnsatisfy the conditions appearingdy).

= A T-indexed familyQ_= (q),,, suchthatq, is in turn a V-indexedfamily of que-
ries,q, = (g, (R)),.,» beingV the setof componentsmportedby t andR the set

of all the implementationsof the componentv. The query q (R) representhe
conditionsthat the importedimplementationv must fulfil in orderfor t to be se-
lected by the original query.

We call the queriesin Q. subordinatecjueriesandthen g, becomeghe main query
When referring to the result of the evaluationof g, eval@,), we will write as
eval(,). T the sefl and by evalf).Q, the family of querieQ..

From the syntacticpoint of view, a query is definedas a list of atomic queries
q,(S = ao,, (S)0..0aq, (8). ltemsin the list representonditionsin decreasing
order of |mportance S0, the initial setan be restricted little by littlantil obtaining
the final result. Atomic queries are very close to NF-constraints, exceptehatuire
them appearing in conjunctive normal form (CNF) and that we can use @f paieful
operatorgo selectimplementationgnaximizing or minimizing the value of a given
NF-attribute. The operatdt is calledrestriction operatorand it is defined in 3.2.

3.1 Atomic Queries

We definean atomic query aq, (S asan expressiorgivenin CNF, possibly negated,
aq (9 =Aoraq,(S = -A such thah =A [...0A; de Morgan laws are applied
eliminate disjunctions, and 9 may become also negatedl=B, or A = -B,. Logi-
cal connectives are in fact interpreted as set operators. Bveay be:

— A relationalexpressioncomparingexpression®f a measurablettribute domain.
Given the input se§, the evaluationof the relational expressiok, < E, (for any
definedordering<), denotedby evalE, < E), is definedas (E[R] standsfor the
evaluation oft with the values appearing in the behaviour module bouR): to

evalE, <E) = { RUS/E[R] <E|[R] }.
— A quantificationof the form maxor min, to selecta subsetof implementations
insideS maximizing or minimizing a given expressiéndefined as:
eval(maxE)) = { ROS/ (OTOS E[T] < E[R]) }.
eval(ming)) = { ROS/ (OTOS E[T] = E[R]) }.
The evaluation evag, (S) of the atomic quergq (S is as follows:

— Computationof T requiresthe evaluationeval@®) of all B,, which resultsin sets
S US If A =B, thenevaluationeval(A) of A, equalsS; if A, =-B,, it equals
S- S. Then we define the evaluatlon@faseval@) = evaIQA) N eval).
Flnally, we define eval@q,(S) = eval@) if aq,S = A, and also

eval@q,(9) =S- eval@) if aq (S = -A.

- The T-indexed family Q, = (q), . results in a V-indexed family of queries,
| = (qtv(R), Such thatv is the setof all importedcomponentsn t, R is the
set of all the implementations wof andq, v is the NF-constraintstatedon v inside

t, which will be assumed to e if no such NF-constraint exists.

3.2 Combination of Atomic Queries

We define here the meaning of the restriction opeiattirat combinesatomic queries
to give the result of the main query. In fact, we give two diffedsiinitions consider-
ing two casesln the first case,we focuson obtainingthe bestimplementationgor
the componentof interest, evenif there are not implementationsfor the imported
components in the library; we calldpen caseln the second one, tlotosedcase the
restrictionoperatorassumeghat the implementationsin the library are enoughto
satisfy not only the main query but also the subordinated ones.

The Open Case. The main idea behind open query computationis to evaluate
atomic queries in order of appearance, wttilaining a single implementationfor the
abstract data type being reusedthus the componenis uniquely defined;the result
of an atomic query is considered as the input ofdlewing one. However,thereare
two cases that do not fit into this scheme:

— Evenafter processingall atomic queries,more than one implementationis still
possible. In this case, all of them are considered as the result of the query.

- An atomic query is not satisfidaly any of the implementationgesultingfrom the
previous oneln this case,we consideras the result of the querythe implementa-
tions obtained in this previous atomic query.

In both situations,someuserinteractionis requiredfor selectingone of them (see
section 6).
The evaluation is defined in two steps. First, we definetmnectionbetweentwo
consecutive atomic queries by connecting their input and output sets:
S =S
(ST 1<isk

Now, the evaluation of the quegy(S) is stated as:

S = evalaq

eval@,(9) = evalaqM‘i(Sl)), 1<i<n, such that:
| eval@q, (S)).T =10 (i>10 |evalaq, (S)).T|>1
O
| evalenyi(Ss)) [>10(@ <kO | evaléqMM(S).T|=0).

1+1

The computation of the family of queries is straightforward from the set.
As a correctnesscondition for evaluation of queries, it must hold that
eval@q, ,(S)).T# 3.

The Closed Case.If we chooseto obtain a result suchthat all the queriesare
solved withthe existing implementationsijt could be the casethat restrictingexces-
sively the setof implementationsn a query processindeadsto unsolvablesubordi-
nated queries. So, we redefitie evaluationof queryq, (S preventingthis case.The
definition usesa predicatesolvablethat checksif thereis a unsolvablesubordinate
guery; as subordinated queries may activate others, the predicate takes a recursive form:

eval@,(9) = evalaqM‘i(S;)), 1<i<n, such that:
Oa: qDevaI(aoMi(S,)).QT: solvable(q)
U
{1 eval(aqM’i(Sl)).T |=10@¢>10 | evalenyi_l(Sl_l)).T |>1
U
| eval@q, (S)).T | >10G <kO |eval@q,,, (S,,)).T | =00
[: qlevalf@aq, ., (S,,))-Qr: —solvable(q) }
Being: '
solvable) = eval@).T # @ O 0qg": g'Teval@).Q;: solvableq").

As a correctnesgondition for the evaluation of queries,it must hold both that
eval@q, (S)).T # @ andlq: qDevaI(aqw (5)).Qy: solvableg).

4 Selection Trees

As the evaluation of queries is defined in a recursive fdrns, naturalto usetreesof
implementations to represent its result; gal them selectiontrees One could think
also to use directed graphs, but it wouldteorrectsincean implementationselected
in two different queries may ushfferentimplementationgor one or more of its im-
ported components.

Selection trees consist of the following elements:

- Nodes We distinguish two types afodes:interfacenodes representedby ellipses,
andimplementation nodesepresentethy rectanglesThereis a specialimplemen-
tation node, calledoid, that appears when there ai@ implementationssatisfying
a particular query.

— BranchesThere are two types of branch&sport branchesgoingfrom implemen-
tation nodesto interfaceones,andrepresentedy arrows; and selectionbranches
going from interfaces to implementations and represented by undirected lines.

In fact, componentodesare not strictly necessarybut we include them for clarity
reasons and also to support some kinds of user interaction.

5 An Example

Let NETWORK_USER_IMPhe a package usindETWORKas definedin figure 2.
Let's assume that this new component is mainly devotedrngputeshortestpathsin
the network by means e operationShortestPathAlso, let's assumehat the net-
work is nearly fully connected.

There exist differenimplementationdor NETWORK which differ in two points:
the strategyto representhe underlyinggraph(we focus in adjacencylists and adja-

cencymatrix) andthe algorithm that implementsthe operationShortestPath With
respect to the first point, an additional factist be consideredhow the datastructure
is indexed using items (integers). Note that we have three different tasgésms are
known in advance; the items are kobwn but the numberof itemsis bounded;and
there is no information about the items. Let's assume the second case.

Under this assumption, implementations will use instancegyeharicMAPPING
component to access the data structimeitems. In the caseof an adjacencylist, the
mappingassociatedists to items; in the adjacencymatrix case,it returnsintegers
between 1 andll to access the matrix.

Operationson mappingsareinsertion, deletion and retrieval using the item as a
key. So, standard mapping implementatian be usefulhere:hashing,AVL trees,
ordered lists, etc. In the cas€& hashing,chainedstrategywill usein turn the generic
LIST component to link synonymous keys.

Lastly, note eaclof theseimplementationswill alsousethe LIST componentto
build adjacency lists when necessary and to build the resBhatestPath

To keep the example in a reasonable size, we reitdcet of implementationof
the components introduced so far (see figtkeeimplementationgor lists (ordered,
unordered with pointers and unordered with arrays), two for mapfihgmedhashing
and AVL trees) and alstwo for priority queuegheapsandAVL treeswith accesdo
minimum element), which are used in some versions oStiwtestPatlimplementa-
tion (improved Dijkstra algorithm).

We are goingo processhe querybelow, which canbe readas: first, minimizing
the timeof finding shortestpathswith a reasonableeliability (the reliability canbe
relaxed if we argust building a first prototypeof the application);next, minimizing
type representation space; last, maximizing reliability. As initiafarethe query, we
takethe setof all NETWORKimplementationsntroducedabove.All of this, with
the (asymptotic)relationshipNbConns= power{(\bltems 2) (being NbConnsand
Nbltemsthe representatiorin NoFun sentence®f the numberof connectionsand
items, necessary to state efficiency), coming ftbmfully connectedcharacteristicof
the network (in the query, the semicolon stands for the composition operator):

min(time(ShortestPath)) and Reliability >= medium
min(space(Network)) ; max(Reliability)

Fig. 5, left, shows the selection tree of the query; its generation follows fronotihe
functional characteristics of the componefi&o ambiguitiesarisewhich correspond
to the existenceof two pairs of siblings. To make them more visible, we draw an
ambiguity spherelinking all the selectionbranchesthat stem from the samenode.
Explicit interactionwith the useris neededgeitherto provide an additional query to
solve every ambiguity, or to choose an implementation directly by nanigisinase,
UNORDERED_POINTERSvhich is valid in both contexts, seems to be preferable.

------------ I npl enent ati ons for NETWIRK

-- Al of themrequire:

-- from MAPPING fast accessing tine;

-- onlists, the first two ones dynam c storage

-- (to avoid wasting space), and all of them

-- require fast insertion time for building the
-- result of ShortestPath.

ADJ_LISTS = -- adjacency lists and Dijkstra algorithm
-- with priority queues.

space(Network) = Noltens + NoConns
time(ShortestPath) = (Noltenms+NoConns) * | og(Nbltens)
Reliability = medium
requires on MAPPING mn(tine(lnsert, Delete, GCet))

on LIST: mn(tinme(Put)) and Dynam cSt or age

on PRICR TY_QUEUE

time(Put, First, RenFirst) <= |og(NoE ens)

ADJ_LISTS 2 -- adjacency lists and Dijkstra algorithm
space(Network) = Noltens + NoConns
time(ShortestPath) = power(Noltens, 2)
Reliability = medi um
requi res on MAPPING mn(tine(lnsert, Delete, Cet))
on LIST: mn(tine(Put)) and Dynam cSt or age
ADJ_MATRI X -- adjacency matrix and Dijkstra al gorithm
space(Network) = power (Nbltens, 2)
time(ShortestPath) = power (Noltens, 2)
Reliability = high
requires on MAPPING mn(tine(lnsert, Delete, Cet))
on LIST: mn(time(Put))

------------ I npl enentations for LIST

CRDERED -- keep elenents in order; makes use of pointers.
tinme(Put) = NbHE ens; Dynam cStorage
UNORDERED PO NTERS -- keep el enents wi thout order;

-- makes use of pointers.
tinme(Put) = 1, DynanicStorage
UNCRDERED_ARRAY -- elements stored in an array, |inking
-- them without any order.
tinme(Put) = 1, not Dynani cStorage

____________ I npl enent ations for HASH NG

CHAI NED_HASHI NG -- hash tabl e |inking synonynous with lists
time(lnsert, Delete, Get) = 1; not Dynam cStorage

require on LI ST: Dynam cStorage -- nunber of collisions
-- not known in advance
AVL: -- an AWL tree naking use of dynam c storage.

time(lnsert, Delete, Get) = | og(NoH ens); Dynam cStorage

------------ I npl enentations for PROR TY QUEUE
HEAP. -- elenents stored in an array nanaged as a heap
time(Put, First, RenFirst) = | og(NoHE ens)
not Dynani cSt or age
AVL WTH MN -- an AVL with an additional pointer to the
-- mni num el errent .
time(Put, First, RenFirst) = | og(NoHE ens)
Dynam cSt or age

Fig. 4. Non-functional behaviour (highlights) for some components

To illustratethe importancethat relationshipshetweendifferent efficiency parame-
ters have during selection,we reformulatethe samequery in a different situation,
considering networks with a few connectiomfis situation canbe modeledwith the
(asymptotic) relationshiplbConns= Nbltems andthen the query selectsas network
implementationthe first one, becauseDijkstra algorithm takes profit of the use of
priority queues. Now, implementation for lists is uniquégtermineddueto the addi-
tional constraintof using dynamicstoragefor them, while implementationfor map-
pings do not vary. Concerning priorigueuespoth existing implementationssatisfy
the NF-constraints, and so both appear in the resulting selection tree (fig. 5, right).

ADJ_MATRIX ADJ_LIST_1
PRIORIT
QUEUE
UNORDER{ |UNORDER CHAINED UNORDER HEAP AVL WITH| |cHAINED
ED_PTERS| |ED_ARRA _HASHING ED_PTERSY _MIN _HASHING
UNORDER|] UNORDER
Ep_pTers| |ORPERED ep_prery | ORPERED

Fig. 5. Two selection trees for a query

6 User Interaction

In order to make our proposal more useful, the method thaewepresenteds com-
plemented with the abilityo guidethe processand eventuallyaffectits result. There
are many reasons supporting this decision:

— As seenin the example,query evaluationmay yield ambiguousselectiontrees.
Usersshould then chooseone of the existing alternatives,or else an additional
query may be formulated on the involved component.

- Some users may prefer not to fully rely on the query processing algdrithonly
to guide the process and processing atomic quiitties by little, perhapsstopping
the process before than expected or switcfiiom onetype of queryto anotherto
compare results.

— Correctnesgonditionsmay be violated eitherin the main queryor in subordinate
ones. In the first case, the query should be relaxed amtdbessstartedagain. We
do not allow selection of implementations violating queries.

To carry out this interaction, the selection trealepictedin the screenas seenin fig

6. Ambiguities could be solvedeitherby clicking one of the candidateimplementa-
tions, or else by clicking thambiguity sphereandtyping a queryin a new window.

This last action will be also possible whelicking a void node,to edit the unsolved
guery and make it less restrictive.

7 Automatic Computation of Efficiency

Efficiency is computedputting togetherthree different elements:patterns,a synthe-
sizedattributein the grammar,and programannotations.First of all, a synthesized
attribute has beedefinedfor computingefficiency from the syntacticallayout of the
code. This solves some cases, but obviothly attributeis not ableto handlecom-
putation with loops.

Loops canbe annotatedThis meansthat the programmercaninclude NoFun ex-
pressions in théda codewhich statethe cost of the loop, probablyin termsof the
efficiency parameters.

Obviously, annotations are uncomfortabdedealwith; they requirean extra effort
from programmersandalso preventsour schemeto be applicableto existing pro-
grams. So, wéavedefinedpatternsasthe meanto identify program schemeghich
determine somefficiency results.Patternscan be global, this is to say, independent
of the componentasthe onesfor computing efficiency of recursiveproceduresand
loops incrementinga control variable;or they canbe specific, when some program
schemen componentsareidentified, as for instancepatternsfor graph traversals.
This last kind of patternsare of interestnot only to avoid annotations,but also to
obtain more accurate results.

Onceasymptoticexpressiongre obtained,we canapply a simplification calculus
to obtain reducedexpressionswhich arethe final resultsto be assignedto the NF-
behaviour of components.

8 Conclusions

A proposalfor softwarereusethat takesnon-functionalissuesinto accounthasbeen
presentedThe proposalconsistsof a languageto statenon-functionalattributes,be-

haviourand constraints;a methodfor reusewhich takesthe form of querieswritten
with the samenotation; anda frameworkfor computing some quality factors, pres-
ently efficiency. The result of the queryis a tree of implementationsmodifiable by
the user, which follows the import relationships between components. Reuseehas
studied in two different situations, depending on whethefonee the resultingtree to
be completedising just the implementationf the library or not. The efficiency of
the selectionmethodis not a function on size of the library, but on: 1) the average
numberof componentmplementations?) on the averageheight of selectiontrees,
and 3) the amount of atomic queries that appear in non-atomek; thesefactorswill
generally be moderate enough to assure a good response time.

The mostrelatedapproachto oursis the faceted-classificatioschemepresentedn
[5] andwhich is the basis of other proposals,many of them implementedon the
WWW [6, 7]. In [5], facets are mostly usedgelectcomponentdy the functionality
their provide; however,the ideascanbe appliedto non-functionalityby considering
facetsas enumerated\F-attributes,which area particulardomainconstructorin No-
Fun. In this sense, our approach generalizes facets by allowingkattiesf domains.
Another difference is that [5] incorporates a notirsimilarity betweencomponents;
we have notdoptedthis ideabecausehe languagepresentsother featuresthat allow
to rank componentérdereddomains)andto retrievethoseonesmaximizing/ mini-
mizing the value of oner more NF-attributes.Lastly, [5] doesnot allow to retrieve
trees of components but just individual ones. On the other hand, therimisrasting
feature which we do not provide at the moment, nartreyfuzzinessquality of some
NF-attributes.

References

1. Mili, H.; Mili, F.; Mili, A.: Reusing Software: Issuesand ResearchDirections. |IEEE
Transactions on Software Engineering 21, 6. IEEE Computer Society (1995)

2. Franch, X.: Including Non-Functionallssuesin Anna/AdaProgramsfor Automatic Im-
plementation SelectionProceedingf Ada Europe97 (London, UK). LectureNotesin
Computer Science, Vol. 1251. Springer-Verlag, Berlin Heidelberg New York (1997)

3. Franch, X.: Systematic Formulation of Non-Functional Characteristicsof Software.
Proceedingof International Conferenceon RequirementsEngineering (ICRE) (Colo-
rado Springs, USA). IEEE Computer Society (1997)

4. Brassard, G.: Crusade for a better Notation. SIGACT News, 16, 4 (1985)

5. Prieto-Diaz,R.: Classifying Softwarefor Reusability. IEEE Software4, 1. IEEE Com-
puter Society (1987)

6. Boisvert, R.F.: A Web Gateway to a Virtual MathematisaftwareRepository. Proceed-
ings of 2nd International WWW Conference, Chicago (lllinois, U.S.A.) (1994)

7. Poulin, J.S.; Werkman, K.J.: Melding Structured Abstracts and the WWW for Retieval
ReusableComponents.Proceedingsof Symposiumon Software Reusability (Seattle,
U.S.A)) (1995)

