
Browsing a Component Library using
Non-Functional Information †

Xavier Franch1, Josep Pinyol1, and Joan Vancells2

1 Universitat Politècnica de Catalunya (UPC),
c/ Jordi Girona 1-3 (Campus Nord, C6) E-08034 Barcelona (Catalunya, Spain)

franch@lsi.upc.es, josep.pinol.molas@arthurandersen.com
2 Universitat de Vic (Barcelona),

c/Sagrada Família, 7 E-08500 Vic (Catalunya, Spain)
joan.vancells@uvic.es

Abstract. This paper highlights the role of non-functional information
when reusing from a component library. We describe a method for selecting
appropriate implementations of Ada packages taking non-functional con-
straints into account; these constraints model the context of reuse. Con-
straints take the form of queries using an interface description language
called NoFun, which is also used to state non-functional information in Ada
packages; query results are trees of implementations, following the import
relationships between components. We define two different situations when
reusing components, depending whether we take the library being searched
as closed or extendible. The resulting tree of implementations can be ma-
nipulated by the user to solve ambiguities, to state default behaviours, and
by the like. As part of the proposal, we face the problem of computing from
code the non-functional information that determines the selection process.

1 Introduction

Software components can be characterised both by their functionality (what the com-
ponent does) and by their non-functionality (how the component behaves with respect
to some quality factors like efficiency, reliability, etc.). Both aspects should be con-
sidered during their specification, design, implementation, maintenance and also reuse.
If we focus on reusability, a component retrieved from a library regarding only its
functional behaviour may not fit into the non-functional requirements of the environ-
ment, hindering or even preventing its actual integration into the new system.

Despite this, usual software reuse methods (see [1] for a survey) take only func-
tional characteristics of components into account. The main reason behind this limita-
tion is that non-functional information does not appear in components; furthermore, it
often cannot be easily computed (or even cannot be computed at all) from the func-

† This work has been partially supported by the spanish CICYT project TIC97-1158.

tional part. As a result, retrieval of components cannot guaranty success with respect
to non-functional constraints (for instance, constraints about efficiency).

Our approach cope with this problem by coupling three different strategies. On the
one hand, we have designed an interface definition language called NoFun aimed at
stating non-functional aspects of software components in the components themselves.
This notation allows to introduce software attributes characterising components, li-
braries and whole systems; to put constraints on them; and also to establish how
component implementations behave with respect to them. On the other hand, we have
defined a method for retrieving software components from a library, based on the satis-
factibility of some non-functional constraints encapsulated in queries. The method
examines component implementations from a non-functional point of view; it will be
defined in two different scenarios depending on whether we require to solve the query
using just the implementations of the library or not. Last, a framework for computing
non-functional information of implementations from code has also been formulated.
The framework seems to be able to handle a relevant subset of quality factors (among
them, we remark efficiency) in a uniform way.

The paper focuses on the last two parts (especially the second one) and not on the
language, which have been formerly described in [2] and later in [3]. A first prototype
running on Linux is currently implemented.

2 The Framework

In the rest of the paper, we will view a software component as a pair built up from an
interface and an implementation. In our approach, the interface (enclosed in an Ada
package) optionally includes an Anna specification (see [2] for details). In the general
case, there will be components with the same specification but different implementa-
tions (enclosed in Ada package bodies), each one designed to fit a particular context of
use. Our reuse method will be on charge of selecting one or more functional-
equivalent components with the most appropriate implementation for a given context
represented by a query.

On the other hand, components are considered encapsulations of abstract data types.
Implementations will consist then of data structures as lists, trees and graphs. This
framework affects the kind of relevant non-functional attributes of components; for
instance, we measure efficiency with asymptotic notations [4] and not by response
time, throughput or number of accesses to disk, which are measures of interest when
considering other type of systems.

Non-functional information of software components will be actually integrated into
Ada packages by means the NoFun interface description language (lines starting with
"--|"). We classify this information into three kinds (see [3] for details):

− Non-functional attribute (short, NF-attribute): definition of software attributes
which serve as a mean to describe components and possibly to evaluate them.
Among the most widely accepted we can mention efficiency, maintainability, reli-
ability and usability.

− Non-functional behaviour of an implementation (short, NF-behaviour): assignment
of values to the NF-attributes bound to the component.

− Non-functional constraint on a software component (short, NF-constraint): con-
straint on the set of the NF-attributes bound to the component.

In fig. 1 we show an example of definition of an NF-attribute for reliability, which
relies on three other NF-attributes: test degree (integer from 0 to 5), error recovery and
portability (both boolean).

package RELIABILITY is

--: with ERROR_RECOVERY, TEST

--: properties

--: boolean FullyPortable; -- platform independence

--: enumerated ordered Reliability [none,low,medium,high]

--: depends on Test, ErrorRecovery, FullyPortable

--: defined as

--: not ErrorRecovery and not FullyPortable =>

--: Reliability = none

--: ErrorRecovery and not FullyPortable =>

--: Reliability = low

--: not ErrorRecovery and FullyPortable =>

--: Reliability = low

--: ErrorRecovery and FullyPortable =>

--: Test in [0..1] => Reliability = low

--: Test in [2..3] => Reliability = medium

--: Test in [4..5] => Reliability = high

end RELIABILITY;

Fig. 1. A package introducing a NF-attribute for reliability

This attribute can be used in component packages, as shown in fig. 2; NETWORK is
a component modeling geographical networks, which establishes connections between
items. We assume that items in the network are integers, and that the cost of a con-
nection is also an integer. The measurement units stand for data volume sizes:
NbItems for the number of items, and NbConns for the number of links. These units
are used later to establish efficiency results.

 package NETWORK is

... declaration of interface

--: with RELIABILITY

--: measurement units NbItems, NbConns

end NETWORK;

Fig. 2. A package for a component using the NF-attribute of fig. 1

Fig. 3 includes a NF-behaviour module giving values to these NF-attributes (Short-
estPath is a procedure computing shortest paths in the network). Note that the value
of the Reliability NF-attribute is not explicitly given, because it can be computed
from the other ones (we say it is derived). The implemented with construct labels the
package body for further package selection.

package body NETWORK is

--| implemented with ADJACENCY_MATRIX

--| behaviour

--| ErrorRecovery; FullyPortable; Test = 3

--| -- this implies Reliability = Medium

--| space(Network) = pow(NbItems, 2)

...

procedure ShortestPath ...

--| time(ShortestPath) = pow(NbItems, 2)

--| space(ShortestPath) = NbItems

...

end NETWORK;

Fig. 3. A package implementation for the component in fig. 2, including NF-behaviour

3 Queries

In our method, a query is the basic retrieval operation. It is aimed at selecting compo-
nents whose implementation fit better in the new system from a non-functional point
of view, identifying which conditions must hold in order for this selection to be cor-
rect. Query process relies on the NF-behaviour of implementations; this is why in the
rest of this section we talk about implementations instead of components. For every
NF-attribute in the scope of the implementation, the NF-behaviour states its value,
either implicitly or not, depending on whether the attribute is basic or derived; the NF-
constraints appearing in the behaviour module are used to fix the additional conditions.
One of the most important basic attributes is efficiency, whose can be computed with
the help of a tool (see section 7); we plan to extend the set of basic NF-attributes
computed in this way.

In order to combine queries later on, we assume that the selection is made from an
initial set of candidate implementations; so, queries may be viewed as mappings that
bind sets of implementations. More precisely, given a query q

M
 and a set S of imple-

mentations for an interface M (such that for every s∈S, the pair <M , s> is a compo-
nent from our point of view), the evaluation of q

M
 over S, written q

M
(S), yields:

− A set T ⊆ S such that implementations in T satisfy the conditions appearing in q
M
.

− A T-indexed family Q
T
 = (q

t
)
t∈T

, such that q
t
 is in turn a V-indexed family of que-

ries, q
t
 = (q

t,v
(R

v
))

v∈V
, being V the set of components imported by t and R

v
 the set

of all the implementations of the component v. The query q
t,v

(R
v
) represent the

conditions that the imported implementation v must fulfil in order for t to be se-
lected by the original query.

We call the queries in Q
T
 subordinated queries and then q

M
 becomes the main query.

When referring to the result of the evaluation of q
M
, eval(q

M
), we will write as

eval(q
M
).T the set T and by eval(q

M
).Q

T
 the family of queries Q

T
.

From the syntactic point of view, a query is defined as a list of atomic queries,
q

M
(S) = aq

M,1
(S

1
) ⊕ ... ⊕ aq

M,k
(S

k
). Items in the list represent conditions in decreasing

order of importance; so, the initial set S can be restricted little by little until obtaining
the final result. Atomic queries are very close to NF-constraints, except that we require
them appearing in conjunctive normal form (CNF) and that we can use a pair of useful
operators to select implementations maximizing or minimizing the value of a given
NF-attribute. The operator ⊕ is called restriction operator, and it is defined in 3.2.

3.1 Atomic Queries

We define an atomic query aq
M
(S) as an expression given in CNF, possibly negated,

aq
M
(S) = A or aq

M
(S) = ¬A, such that A = A

1
 ∧ ... ∧ A

r
; de Morgan laws are applied to

eliminate disjunctions, and so A
i
 may become also negated, A

i
 = B

i
 or A

i
 = ¬B

i
. Logi-

cal connectives are in fact interpreted as set operators. Every B
i
 can be:

− A relational expression, comparing expressions of a measurable attribute domain.
Given the input set S, the evaluation of the relational expression E

1
 < E

2
 (for any

defined ordering <), denoted by eval(E
1
 < E

2
), is defined as (E[R] stands for the

evaluation of E with the values appearing in the behaviour module bound to R):

eval(E
1
 < E

2
) = { R∈S / E

1
[R] < E

2
[R] }.

− A quantification of the form max or min, to select a subset of implementations
inside S maximizing or minimizing a given expression E, defined as:

eval(max(E)) = { R∈S / (∀T∈S: E[T] ≤ E[R]) }.

eval(min(E)) = { R∈S / (∀T∈S: E[T] ≥ E[R]) }.

The evaluation eval(aq
M
(S)) of the atomic query aq

M
(S) is as follows:

− Computation of T requires the evaluation eval(B
i
) of all B

i
, which results in sets

S
i
 ⊆ S. If A

i
 = B

i
, then evaluation eval(A

i
) of A

i
 equals S

i
; if A

i
 = ¬B

i
, it equals

S - S
i
. Then, we define the evaluation of A as eval(A) = eval(A

1
) ∩ ... ∩ eval(A

r
).

Finally, we define eval(aq
M
(S)) = eval(A) if aq

M
(S) = A, and also

eval(aq
M
(S)) = S - eval(A) if aq

M
(S) = ¬A.

− The T-indexed family Q
T
 = (q

t
)
t∈R

 results in a V-indexed family of queries,
q

t
 = (q

t,v
(R

v
))

v∈V
, such that V is the set of all imported components in t, R

v
 is the

set of all the implementations of v, and q
t,v

 is the NF-constraint stated on v inside
t, which will be assumed to be true if no such NF-constraint exists.

3.2 Combination of Atomic Queries

We define here the meaning of the restriction operator ⊕ that combines atomic queries
to give the result of the main query. In fact, we give two different definitions consider-
ing two cases. In the first case, we focus on obtaining the best implementations for
the component of interest, even if there are not implementations for the imported
components in the library; we call it open case. In the second one, the closed case, the
restriction operator assumes that the implementations in the library are enough to
satisfy not only the main query but also the subordinated ones.

The Open Case. The main idea behind open query computation is to evaluate
atomic queries in order of appearance, until obtaining a single implementation for the
abstract data type being reused and thus the component is uniquely defined; the result
of an atomic query is considered as the input of the following one. However, there are
two cases that do not fit into this scheme:

− Even after processing all atomic queries, more than one implementation is still
possible. In this case, all of them are considered as the result of the query.

− An atomic query is not satisfied by any of the implementations resulting from the
previous one. In this case, we consider as the result of the query the implementa-
tions obtained in this previous atomic query.

In both situations, some user interaction is required for selecting one of them (see
section 6).

The evaluation is defined in two steps. First, we define the connection between two
consecutive atomic queries by connecting their input and output sets:

S
1
 = S.

S
i
 = eval(aq

M,i-1
(S

i-1
)).T, 1 < i ≤ k.

Now, the evaluation of the query q
M
(S) is stated as:

eval(q
M
(S)) = eval(aq

M,i
(S

i
)), 1 ≤ i ≤ n, such that:

| eval(aq
M,i

(S
i
)).T | = 1 ∧ (i > 1 ⇒ | eval(aq

M,i-1
(S

i-1
)).T | > 1

∨
| eval(aq

M,i
(S

i
)) | > 1 ∧ (i < k ⇒ | eval(aq

M,i+1
(S

i+1
)).T | = 0).

The computation of the family of queries is straightforward from the set.
As a correctness condition for evaluation of queries, it must hold that

eval(aq
M,1

(S
1
)).T ≠ Ø.

The Closed Case. If we choose to obtain a result such that all the queries are
solved with the existing implementations, it could be the case that restricting exces-
sively the set of implementations in a query processing leads to unsolvable subordi-
nated queries. So, we redefine the evaluation of query q

M
(S) preventing this case. The

definition uses a predicate solvable that checks if there is a unsolvable subordinate
query; as subordinated queries may activate others, the predicate takes a recursive form:

eval(q
M
(S)) = eval(aq

M,i
(S

i
)), 1 ≤ i ≤ n, such that:

∀q: q∈eval(aq
M,i

(S
i
)).QT: solvable(q)

∧
{ | eval(aq

M,i
(S

i
)).T | = 1 ∧ (i > 1 ⇒ | eval(aq

M,i-1
(S

i-1
)).T | > 1

∨
| eval(aq

M,i
(S

i
)).T | > 1 ∧ (i < k ⇒ | eval(aq

M,i+1
(S

i+1
)).T | = 0 ∨

 ∃q: q∈eval(aq
M,i+1

(S
i+1

)).QT: ¬solvable(q) }.
Being:

solvable(q) ≡ eval(q).T ≠ Ø ∧ ∀q': q'∈eval(q).QT: solvable(q').

As a correctness condition for the evaluation of queries, it must hold both that
eval(aq

M,1
(S

1
)).T ≠ Ø and ∀q: q∈eval(aq

M,1
(S

1
)).QT: solvable(q).

4 Selection Trees

As the evaluation of queries is defined in a recursive form, it is natural to use trees of
implementations to represent its result; we call them selection trees. One could think
also to use directed graphs, but it would be incorrect since an implementation selected
in two different queries may use different implementations for one or more of its im-
ported components.

Selection trees consist of the following elements:

− Nodes. We distinguish two types of nodes: interface nodes, represented by ellipses,
and implementation nodes, represented by rectangles. There is a special implemen-
tation node, called void, that appears when there are not implementations satisfying
a particular query.

− Branches. There are two types of branches: import branches, going from implemen-
tation nodes to interface ones, and represented by arrows; and selection branches,
going from interfaces to implementations and represented by undirected lines.

In fact, component nodes are not strictly necessary, but we include them for clarity
reasons and also to support some kinds of user interaction.

5 An Example

Let NETWORK_USER_IMPL be a package using NETWORK as defined in figure 2.
Let's assume that this new component is mainly devoted to compute shortest paths in
the network by means of the operation ShortestPath. Also, let's assume that the net-
work is nearly fully connected.

There exist different implementations for NETWORK, which differ in two points:
the strategy to represent the underlying graph (we focus in adjacency lists and adja-

cency matrix) and the algorithm that implements the operation ShortestPath. With
respect to the first point, an additional fact must be considered: how the data structure
is indexed using items (integers). Note that we have three different cases: the items are
known in advance; the items are not known but the number of items is bounded; and
there is no information about the items. Let's assume the second case.

Under this assumption, implementations will use instances of a generic MAPPING
component to access the data structure via items. In the case of an adjacency list, the
mapping associates lists to items; in the adjacency matrix case, it returns integers
between 1 and N to access the matrix.

Operations on mappings are insertion, deletion and retrieval using the item as a
key. So, standard mapping implementations will be useful here: hashing, AVL trees,
ordered lists, etc. In the case of hashing, chained strategy will use in turn the generic
LIST component to link synonymous keys.

Lastly, note each of these implementations will also use the LIST component, to
build adjacency lists when necessary and to build the result of ShortestPath.

To keep the example in a reasonable size, we restrict the set of implementations of
the components introduced so far (see fig. 4): three implementations for lists (ordered,
unordered with pointers and unordered with arrays), two for mappings (chained hashing
and AVL trees) and also two for priority queues (heaps and AVL trees with access to
minimum element), which are used in some versions of the ShortestPath implementa-
tion (improved Dijkstra algorithm).

We are going to process the query below, which can be read as: first, minimizing
the time of finding shortest paths with a reasonable reliability (the reliability can be
relaxed if we are just building a first prototype of the application); next, minimizing
type representation space; last, maximizing reliability. As initial set for the query, we
take the set of all NETWORK implementations introduced above. All of this, with
the (asymptotic) relationship NbConns = power(NbItems, 2) (being NbConns and
NbItems the representation in NoFun sentences of the number of connections and
items, necessary to state efficiency), coming from the fully connected characteristic of
the network (in the query, the semicolon stands for the composition operator):

 min(time(ShortestPath)) and Reliability >= medium ;

 min(space(Network)) ; max(Reliability)

Fig. 5, left, shows the selection tree of the query; its generation follows from the non-
functional characteristics of the components. Two ambiguities arise which correspond
to the existence of two pairs of siblings. To make them more visible, we draw an
ambiguity sphere linking all the selection branches that stem from the same node.
Explicit interaction with the user is needed, either to provide an additional query to
solve every ambiguity, or to choose an implementation directly by name. In this case,
UNORDERED_POINTERS, which is valid in both contexts, seems to be preferable.

------------ Implementations for NETWORK
-- All of them require:
-- from MAPPING, fast accessing time;
-- on lists, the first two ones dynamic storage
-- (to avoid wasting space), and all of them
-- require fast insertion time for building the
-- result of ShortestPath.

ADJ_LISTS_1: -- adjacency lists and Dijkstra algorithm
 -- with priority queues.

 space(Network) = NbItems + NbConns
 time(ShortestPath) = (NbItems+NbConns) * log(NbItems)
 Reliability = medium
 requires on MAPPING: min(time(Insert, Delete, Get))

on LIST: min(time(Put)) and DynamicStorage
on PRIORITY_QUEUE:

 time(Put, First, RemFirst) <= log(NbElems)

ADJ_LISTS_2: -- adjacency lists and Dijkstra algorithm
 space(Network) = NbItems + NbConns
 time(ShortestPath) = power(NbItems, 2)
 Reliability = medium
 requires on MAPPING: min(time(Insert, Delete, Get))

on LIST: min(time(Put)) and DynamicStorage

ADJ_MATRIX: -- adjacency matrix and Dijkstra algorithm
 space(Network) = power(NbItems, 2)
 time(ShortestPath) = power(NbItems, 2)
 Reliability = high
 requires on MAPPING: min(time(Insert, Delete, Get))

 on LIST: min(time(Put))

------------ Implementations for LIST

ORDERED: -- keep elements in order; makes use of pointers.
 time(Put) = NbElems; DynamicStorage

UNORDERED_POINTERS: -- keep elements without order;
 -- makes use of pointers.

 time(Put) = 1; DynamicStorage

UNORDERED_ARRAY: -- elements stored in an array, linking
 -- them, without any order.

 time(Put) = 1; not DynamicStorage

------------ Implementations for HASHING

CHAINED_HASHING: -- hash table linking synonymous with lists
 time(Insert, Delete, Get) = 1; not DynamicStorage
 require on LIST: DynamicStorage -- number of collisions

-- not known in advance

AVL: -- an AVL tree making use of dynamic storage.
 time(Insert, Delete, Get) = log(NbElems); DynamicStorage

------------ Implementations for PRIORITY QUEUE

HEAP: -- elements stored in an array managed as a heap
 time(Put, First, RemFirst) = log(NbElems)
 not DynamicStorage

AVL_WITH_MIN: -- an AVL with an additional pointer to the
-- minimum element.

 time(Put, First, RemFirst) = log(NbElems)
 DynamicStorage

Fig. 4. Non-functional behaviour (highlights) for some components

To illustrate the importance that relationships between different efficiency parame-
ters have during selection, we reformulate the same query in a different situation,
considering networks with a few connections. This situation can be modeled with the
(asymptotic) relationship NbConns = NbItems, and then the query selects as network
implementation the first one, because Dijkstra algorithm takes profit of the use of
priority queues. Now, implementation for lists is uniquely determined due to the addi-
tional constraint of using dynamic storage for them, while implementation for map-
pings do not vary. Concerning priority queues, both existing implementations satisfy
the NF-constraints, and so both appear in the resulting selection tree (fig. 5, right).

Fig. 5. Two selection trees for a query

6 User Interaction

In order to make our proposal more useful, the method that we have presented is com-
plemented with the ability to guide the process and eventually affect its result. There
are many reasons supporting this decision:

− As seen in the example, query evaluation may yield ambiguous selection trees.
Users should then choose one of the existing alternatives, or else an additional
query may be formulated on the involved component.

NETWORK

ADJ_MATRIX

UNORDER-
ED_ARRAY

LIST MAPPING

UNORDER-
ED_PTERS

CHAINED
_HASHING

LIST

ORDERED
UNORDER-
ED_PTERS

NETWORK

ADJ_LIST_1

AVL_WITH
_MIN

LIST PRIORITY
_QUEUE

HEAP
UNORDER-
ED_PTERS

MAPPING

CHAINED
_HASHING

LIST

ORDERED
UNORDER-
ED_PTERS

− Some users may prefer not to fully rely on the query processing algorithm but only
to guide the process and processing atomic queries little by little, perhaps stopping
the process before than expected or switching from one type of query to another to
compare results.

− Correctness conditions may be violated either in the main query or in subordinate
ones. In the first case, the query should be relaxed and the process started again. We
do not allow selection of implementations violating queries.

To carry out this interaction, the selection tree is depicted in the screen as seen in fig
6. Ambiguities could be solved either by clicking one of the candidate implementa-
tions, or else by clicking the ambiguity sphere and typing a query in a new window.
This last action will be also possible when clicking a void node, to edit the unsolved
query and make it less restrictive.

7 Automatic Computation of Efficiency

Efficiency is computed putting together three different elements: patterns, a synthe-
sized attribute in the grammar, and program annotations. First of all, a synthesized
attribute has been defined for computing efficiency from the syntactical layout of the
code. This solves some cases, but obviously this attribute is not able to handle com-
putation with loops.

Loops can be annotated. This means that the programmer can include NoFun ex-
pressions in the Ada code which state the cost of the loop, probably in terms of the
efficiency parameters.

Obviously, annotations are uncomfortable to deal with; they require an extra effort
from programmers, and also prevents our scheme to be applicable to existing pro-
grams. So, we have defined patterns as the mean to identify program schemes which
determine some efficiency results. Patterns can be global, this is to say, independent
of the component, as the ones for computing efficiency of recursive procedures and
loops incrementing a control variable; or they can be specific, when some program
schemes on components are identified, as for instance patterns for graph traversals.
This last kind of patterns are of interest not only to avoid annotations, but also to
obtain more accurate results.

Once asymptotic expressions are obtained, we can apply a simplification calculus
to obtain reduced expressions, which are the final results to be assigned to the NF-
behaviour of components.

8 Conclusions

A proposal for software reuse that takes non-functional issues into account has been
presented. The proposal consists of a language to state non-functional attributes, be-

haviour and constraints; a method for reuse which takes the form of queries written
with the same notation; and a framework for computing some quality factors, pres-
ently efficiency. The result of the query is a tree of implementations, modifiable by
the user, which follows the import relationships between components. Reuse has been
studied in two different situations, depending on whether we force the resulting tree to
be completed using just the implementations of the library or not. The efficiency of
the selection method is not a function on size of the library, but on: 1) the average
number of component implementations, 2) on the average height of selection trees,
and 3) the amount of atomic queries that appear in non-atomic ones; these factors will
generally be moderate enough to assure a good response time.

The most related approach to ours is the faceted-classification scheme presented in
[5] and which is the basis of other proposals, many of them implemented on the
WWW [6, 7]. In [5], facets are mostly used to select components by the functionality
their provide; however, the ideas can be applied to non-functionality by considering
facets as enumerated NF-attributes, which are a particular domain constructor in No-
Fun. In this sense, our approach generalizes facets by allowing other kind of domains.
Another difference is that [5] incorporates a notion of similarity between components;
we have not adopted this idea because the language presents other features that allow
to rank components (ordered domains) and to retrieve those ones maximizing / mini-
mizing the value of one or more NF-attributes. Lastly, [5] does not allow to retrieve
trees of components but just individual ones. On the other hand, there is an interesting
feature which we do not provide at the moment, namely the fuzziness quality of some
NF-attributes.

References

1. Mili, H.; Mili, F.; Mili, A.: Reusing Software: Issues and Research Directions. IEEE
Transactions on Software Engineering 21, 6. IEEE Computer Society (1995)

2. Franch, X.: Including Non-Functional Issues in Anna/Ada Programs for Automatic Im-
plementation Selection. Proceedings of Ada Europe 97 (London, UK). Lecture Notes in
Computer Science, Vol. 1251. Springer-Verlag, Berlin Heidelberg New York (1997)

3. Franch, X.: Systematic Formulation of Non-Functional Characteristics of Software.
Proceedings of International Conference on Requirements Engineering (ICRE) (Colo-
rado Springs, USA). IEEE Computer Society (1997)

4. Brassard, G.: Crusade for a better Notation. SIGACT News, 16, 4 (1985)
5. Prieto-Díaz, R.: Classifying Software for Reusability. IEEE Software 4, 1. IEEE Com-

puter Society (1987)
6. Boisvert, R.F.: A Web Gateway to a Virtual Mathematical Software Repository. Proceed-

ings of 2nd International WWW Conference, Chicago (Illinois, U.S.A.) (1994)
7. Poulin, J.S.; Werkman, K.J.: Melding Structured Abstracts and the WWW for Retrieval of

Reusable Components. Proceedings of Symposium on Software Reusability (Seattle,
U.S.A.) (1995)

