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Abstract

We propose a novel multifactor dimensionality reduction method for epistasis detection in small or extended pedigrees,
FAM-MDR. It combines features of the Genome-wide Rapid Association using Mixed Model And Regression approach
(GRAMMAR) with Model-Based MDR (MB-MDR). We focus on continuous traits, although the method is general and can be
used for outcomes of any type, including binary and censored traits. When comparing FAM-MDR with Pedigree-based
Generalized MDR (PGMDR), which is a generalization of Multifactor Dimensionality Reduction (MDR) to continuous traits and
related individuals, FAM-MDR was found to outperform PGMDR in terms of power, in most of the considered simulated
scenarios. Additional simulations revealed that PGMDR does not appropriately deal with multiple testing and consequently
gives rise to overly optimistic results. FAM-MDR adequately deals with multiple testing in epistasis screens and is in contrast
rather conservative, by construction. Furthermore, simulations show that correcting for lower order (main) effects is of
utmost importance when claiming epistasis. As Type 2 Diabetes Mellitus (T2DM) is a complex phenotype likely influenced
by gene-gene interactions, we applied FAM-MDR to examine data on glucose area-under-the-curve (GAUC), an
endophenotype of T2DM for which multiple independent genetic associations have been observed, in the Amish Family
Diabetes Study (AFDS). This application reveals that FAM-MDR makes more efficient use of the available data than PGMDR
and can deal with multi-generational pedigrees more easily. In conclusion, we have validated FAM-MDR and compared it to
PGMDR, the current state-of-the-art MDR method for family data, using both simulations and a practical dataset. FAM-MDR
is found to outperform PGMDR in that it handles the multiple testing issue more correctly, has increased power, and
efficiently uses all available information.
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Introduction

The International HapMap Project [1] was designed to create a

genome-wide database of human genetic variation, with the

expectation that these data would be useful for genetic association

studies of common diseases. This expectation has been fulfilled

with just the initial output of genome-wide association analyses,

identifying nearly 500 loci for over 80 common diseases and traits

[2,3]. Despite these successes, it has become clear that usually only

a small percentage of total genetic heritability estimates can be

explained by the identified loci. For instance, for inflammatory

bowel disease (IBD), 32 loci significantly impact disease but they

explain only 10% of disease risk and 20% of genetic risk [4]. This

may be attributed to the fact that recent findings show many types

of genetic associations for various traits, with subtle effects: non-

additive genetic effects, non-SNP polymorphisms, epigenetic

effects, but also gene-environment and gene-gene interactions [5].

The role of genetic interactions in explaining phenotypic variability

has been described in several publications [6,7,8,9,10,11,12,13,14,15].

Interactions may lead to inconsistent results from the masking of

associations, they can be suggestive of important pathogenic

mechanisms and may elucidate relevant opportunities for intervention

[16,17]. Epistasis, defined as the deviation from additivity of effects

observed at multiple genetic exposures [18,19], may also explain part

of the genetic heritability that is left unexplained for most complex

disorders [20]. These reasons have made epistasis an increasingly

accepted characteristic of the genetic architecture of common,

complex disorders [21,22,23,24].

One of the potential reasons for the small number of large-scale

genetic interaction studies performed in humans so far is that
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although genetic interactions identified from model organisms

provide insight into biological processes, these biological processes

often lack sufficient overlap with other types of gene/protein

associations with traits of interest [25,26]. Also, the relatively low

success rate of large-scale epistasis searches to date may simply

reflect the limited ability to assess the many possible modes of

interaction, including pairwise interactions and threshold effects

[27] or inadequate solutions given to a difficult statistical challenge

[21]. In addition, subtle variation in allele frequency can either

introduce an interaction effect and likewise remove an interaction

effect from a particular dataset; this can make detection of epistasis

effects quite challenging [28]. Overviews of methods for epistasis

detection were given by Cordell [29,30] and by Onkamo and

Toivonen [31].

One non-parametric approach developed for epistasis analysis is

Multifactor Dimensionality Reduction [32,33,34] (MDR). Since its

conception, many methodological and applied papers have emerged

that build on or use MDR. To our knowledge, the current state-of-

the-art MDR-related method that can accommodate nuclear

families of any size and different types of outcome variables is the

recently proposed Pedigree-based Generalized MDR method [35]

(PGMDR) which generalizes the Generalized MDR method [36]

(GMDR) to family data. Its competitor, the MDR Pedigree

Disequilibrium Test [37] (MDR-PDT), is only suited for case-

control data and does not allow for covariate adjustments. Similar to

MDR, GMDR uses prediction accuracy measures for best model

selection. Significance assessment is based on random permutations.

To easily accommodate continuous traits and variable adjustments,

GMDR is based on scores of a (generalized) linear model. In the

special case of no covariates and a binary outcome it reduces to the

classical MDR. PGMDR first constructs a non-transmitted genotype

for every non-founder in the pedigree. When parental genotype

information is missing, PGMDR samples one realization of the

nontransmitted genotype from the conditional distribution given the

minimal sufficient statistic for the null hypothesis through an

algorithm that is modified from Rabinowitz and Laird [38]. Second,

the non-founders and the non-transmitted genotypes are analyzed by

the GMDR algorithm. Significance assessment is again based on

permutations. To maintain the correlation structure within the

families, families as a whole are used as permuting units and the

transmitted and non-transmitted sets in a whole family are randomly

shuffled. PGMDR software is available from the URL http://www.

healthsystem.virginia.edu/internet/addiction-genomics.

The need for new statistical methods to overcome some of the

remaining statistical hurdles in epistasis detection, has led to the

development of FAM-MDR. The method combines features of

the GRAMMAR approach [39] with features of Model-based

MDR [40] (MB-MDR).

In the Materials and Methods section, we introduce the FAM-

MDR algorithm and describe our extensive simulation study to

examine type I error and power of this approach. To examine the

application of FAM-MDR to determine epistasis in family studies

of a complex disease, we examined data on glucose area-under-

the-curve (GAUC), an endophenotype of Type 2 Diabetes

Mellitus (T2DM) for which multiple independent genetic

associations have been observed, in the extended pedigrees of

the Amish Family Diabetes Study [41] (AFDS). Subsequently, we

describe the power and type I error performance of FAM-MDR

in our simulations and application to AFDS, as well as a

comparative study between FAM-MDR and PGDMR, in the

Results section. Finally, the Discussion elaborates on the

significance of our results, and the relevance of its application

to finding gene-gene interactions in a complex disease like

T2DM.

Materials and Methods

The FAM-MDR algorithm
FAM-MDR is an acronym for FAMily Multifactor Dimension-

ality Reduction and is an adaptation to related individuals of the

Model-Based Multifactor Dimensionality Reduction method [40]

(MB-MDR) for epistasis detection with unrelated individuals. An

implementation of the FAM-MDR algorithm is available through

the URL www.statgen.be. The approach consists of two parts.

Part I: In order to deal with familial correlations between

observations, data are first analyzed using a polygenic model

Yi~mzGizei, ð1Þ

with i indexing individuals, G distributed MVN(0,Ws2
poly) and e

distributed MVN(0,Is2
env), representing the additive polygenic

and environmental effects respectively. The polygenic effect has

variance s2
poly and is correlated within families, with correlation

matrix equal to the relationship matrix W. For the calculations we

use the polygenic function of R package GenABEL [39,42,43,44].

This package can be retrieved from the URL http://cran.

r-project.org/web/packages/GenABEL/index.html. The rela-

tionship matrix W can be derived either theoretically from the

pedigree structure, or can be estimated from the available genomic

data, in which case the genomic kinship is computed [45].

Genomic kinship is to be preferred when genome-wide data are

available, but of course in a candidate gene study genomic kinship

cannot be estimated in a reliable way and one will have to use

pedigree kinship [Aulchenko, GenABEL Tutorial]. The environ-

mental variance s2
env is assumed to be the same for all individuals.

In addition, environmental effects are assumed to be independent

between individuals, whether belonging to different families or

within the same family, giving rise to an environmental variance-

covariance matrix Is2
env (I : the identiy matrix of rank equal to the

number of individuals).

The residuals

êei~Yi{(m̂mzĜGi), ð2Þ

that have been derived from (1), are free from polygenic familial

correlation and can serve as new familial correlation-free traits to

be used in a genetic association analysis with measured genetic

markers. As a remark, m̂m and ĜGi are estimates of mean m and

polygenic effect (or breeding value) Gi obtained by the

Expectation-Maximisation (EM) algorithm using the maximum

likelihood (ML) paradigm, hence maximizing the joint likelihood

of fixed effects and variance components [44]. In the GRAMMAR

approach of Aulchenko et al. [39], such a genetic association

analysis targets associations with single markers, one at a time, and

is fully parametric in nature. In contrast, in the FAM-MDR

approach, associations with multiple loci at once are evaluated.

Part II: Once the data have been prepared in Part I, FAM-

MDR proceeds with investigating the association between the

newly defined trait Ynew~êei from Part I (in particular the

aforementioned residuals) and multi-locus measured genotypes,

using the potentially fully-parametric MB-MDR method (Figure 1).

It is justified to apply MB-MDR, that was developed for unrelated

individuals, to these residuals. Indeed, conditional on the observed

genotypes all the familial correlation has been accounted for.

Moreover, MB-MDR flexibly deals with different outcome types,

including those measured on a continuous scale. Like MDR, MB-

MDR reduces a high-dimensional interaction space to a 1-

FAM-MDR Epistasis Screening
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dimensional space, by assigning genetic effect size labels to multi-

locus genotypes, which will be further referred to as risk labels.

Key steps involved in a FAM-MDR Part II analysis are

summarized graphically in Figure 1. Because some characteristics

of MB-MDR have been altered in the FAM-MDR algorithm, we

summarize the key steps and properties of MB-MDR, and point out

changes we made to the initial MB-MDR algorithm. Throughout

this paper, for ease of exposition, we focus on two-locus models and

diallelic markers, although both MB-MDR and FAM-MDR are

applicable in principle to more general settings as well.

In MB-MDR step 1, for a selection of a pair of SNPs, each

genotype cell is tested against the eight others for association with

the trait. The cells that are found to be significantly associated with

the outcome, at a liberal threshold of 0.1, are then called high risk

(H ) or low risk (L) based on the position of the selected association

measure (e.g. T statistic or odds ratio) in the spectrum of all

possibilities. Those cells that are not significant at the threshold 0.1

are labeled as non-evidence cells (O). For a more detailed

discussion of the MB-MDR method we refer to Calle et al. [40]

and also to their technical report available from the URL http://

www.recercat.net/handle/2072/5001.

In step 2, two additional tests are performed for association with

the trait: testing H versus fL,Og and testing L versus fH,Og. This

gives rise to two Wald-type statistics of association, WH and WL,

that are either derived from a parametric or a non-parametric

testing approach.

In step 3, the significance of WH and WL is assessed through

permutations. This is different from the classical MB-MDR

implementation, but is an elegant way to compensate for the data

snooping in MB-MDR steps 1–2 and to correct for the otherwise

overly optimistic test results. Note that in the initial implementa-

tion of MB-MDR, depending on the number of combined cells in

either the high (low) risk cells pool, a different null distribution for

the corresponding Wald test statistic WH (WL) was derived. These

marginal null distributions were generated by simulating reference

data with similar characteristics. The multiple testing issue that

arises when considering different SNP pair combinations, is

tackled by MB-MDR [40] using BH-FDR (Benjamini-Hochberg

False Discovery Rate) methodology.[46] Because of the afore-

mentioned dependency on number of combined cells, and the

complexity of the significance assessment via a simulation-based

null distribution derivation in step 3, we chose to implement a

different approach. FAM-MDR therefore implements a permuta-

tion strategy by simply randomly permuting the familial

correlation-free residuals (2) obtained in FAM-MDR Part I. This

assumes a general null-hypothesis of no association between any of

the measured markers and trait (no main effects, no interaction

effects). This strategy does not depend on the number of combined

cells, nor on reference data.Although MB-MDR allows in

principle for multiple model selection, we have furthermore

restricted the approach to select only the best model, for the

purpose of comparison with PGMDR. In particular, we derive the

permutation null distribution of the maximum test statistic, i.e.

maximized over the two different tests (WH and WL) and all two-

SNP combinations j: maxH=L,j(WH,j ,WL,j) and recommend 1000

replications for doing so.

Moreover, we emphasize that corrections for main effects and

covariate adjustments are also possible in FAM-MDR and we

Figure 1. Summary of the steps involved in a FAM-MDR analysis. The figure shows the three steps of FAM-MDR Part II on one of the
simulated datasets for Model M27, p~0:25, g2~0:1 and h2~0:8, for the analysis without main effects correction.
doi:10.1371/journal.pone.0010304.g001
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choose to carry these out prior to association testing. Extending

the polygenic model (1) to a (two-locus) measured genotype (MG)

model [47] with the particular main effect/covariates present in

the model, has several advantages over adjusting while identifying

risk cells and/or testing for association between new one-

dimensional genetic constructs and the trait of interest. First, it

leads to more stable parametric estimations when adopting a

parametric regression approach in FAM-MDR Part II. Second, a

priori adjustment paves the way for a fully non-parametric

epistasis screening and thus faster MB-MDR runs on adjusted

residuals. Nevertheless, for the purpose of this paper, we will

continue to use the parametric linear model paradigm (in fact the

one-parameter Wald test is equivalent to the Student t-test) and

not the non-parametric alternative, the Wilcoxon rank sum test.

Third and most importantly, when residuals are free from

identified important main effects, the null hypotheses of no

association and of no epistasis become equivalent and the

permutation procedure is a correct procedure for claiming

epistasis, i.e. association above and beyond the main effects

corrected for in FAM-MDR Part I.

Finally, a note on how FAM-MDR handles missing data. For

missing genotypes, FAM-MDR uses the available cases (AC)

paradigm. In other words, if a particular pair is considered, only

individuals with complete data for this pair are included in the

analysis, while individuals with missing data for one or two SNPs

involved are not considered. Individuals with missing trait values

are used in FAM-MDR Part I only when they are useful for

deriving the relationship matrix, but never for the polygenic

calculations themselves. Indeed, if the number of markers is small,

the theoretical relationship matrix is used and the complete

pedigree is needed for calculating this in a correct way. When the

number of markers is large, FAM-MDR relies on the genomic

kinship matrix and there is no need to keep individuals with

missing trait values in the analysis. Note that since we are not using

the individuals with missing trait values for the polygenic

calculations, we essentially are performing a complete case (CC)

analysis. Also, when correcting for main effects/covariates - since

we only use those individuals with complete data on the main

effects/covariates that are regressed out in Part I, we are again

following the CC paradigm. In Part II, FAM-MDR obviously does

not use missing new trait values, whether these are due to missing

trait values or missing main effects/covariates adjusted for.

Missing new trait values are also not included in the permutation

procedure. It is good to recall that both AC and CC are valid

under a missing completely at random (MCAR) missingness

process [48].

Simulation study
We simulated data consisting of 250 nuclear families, with the

number of children drawn from a multinomial distribution with

probabilities 1/4 to have one child (hence a trio), 1/2 to have two

children, and 1/4 to have three children. On average, this gave

rise to 1000 individuals. We assumed that no data were missing. In

other words, complete information on genotypes at all loci and

complete information on phenotypes were available.

To generate genotypes for these individuals, we first generated ten

diallelic markers: SNPl ,l~1,:::,10, in linkage equilibrium. In

addition, we assumed Hardy-Weinberg equilibrium for every

generated marker. In other words, the genotype frequencies can be

determined from the allele frequencies as follows: fl0~(1{pl)
2,

fl1~2pl(1{pl), and fl2~p2
l . The allele frequencies of a non-

functional SNP, SNPj was fixed at pj~0:1z(j{3)0:05, j~3,:::,10,

whereas the allele frequencies of the functional SNP pair

SNP1,SNP2ð Þ were taken to be equal, and varied as

(p1,p2)~(p,p), p[f0:1,0:25,0:5g. Parental genotypes were then

drawn according to the population genotype frequencies above.

Children’s genotypes were assumed to follow Mendelian inheritance

patterns.

Assuming the presence of additive polygenes and a residual

environmental effect, phenotypes were simulated according to the

(two-locus) MG model

YI~mk1i ,k2i
zGizei, ð3Þ

with the notations of Expression (1) before. Note the difference of

the fixed effect mean term, m in (1), which is replaced by mk1i ,k2i
in

(3). Here, kli refers to the minor allele count kl[f0,1,2g for

individual i and mk1k2
represents the mean trait values according to

the functional SNP pair. Trait values per family were then sampled

from a multivariate normal distribution, with as components of the

mean vector the trait mean values mk1i ,k2i
corresponding to the two-

locus genotypes that the individuals constituting the family belong

to, and as variance-covariance matrix the part of Ws2
polyzIs2

env

pertaining to that family. In what follows, we explain in detail the

simulation parameter settings of our choice.

First, we notice that the population two-locus model variance

s2
loci is computed as a weighted sum of squares, with weights

determined by population genotype frequencies (exploiting no LD

between the markers)

s2
loci~

X
k1

X
k2

f1k1
f2k2

(mk1k2
{m::)2, ð4Þ

in which the overall mean m:: is computed as

m::~
X
k1

X
k2

f1k1
f2k2

mk1k2
: ð5Þ

In a similar way, the single-locus means and variances are

respectively given by

mk1
:~
X
k2

f2k2
mk1k2

, ð6Þ

m:k2
~
X
k1

f1k1
mk1k2

, ð7Þ

and

s2
1~

X
k1

f1k1
(mk1

:{m::)2, ð8Þ

s2
2~

X
k2

f2k2
(m:k2

{m::)2: ð9Þ

Hence, since p1~p2, and therefore also s2
1~s2

2, the epistatic

variance s2
epi, defined as the part of the two-locus model variance

that is not explained by the contributing loci separately, is given in

our simulation settings by s2
epi~s2

loci{2s2
1. Different contributions

to the two-locus model variance of the epistatic variance s2
epi or the

main effects model variance will be important in interpreting

simulation results.

FAM-MDR Epistasis Screening
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The total phenotypic variance, which is given by

s2
tot~s2

locizs2
polyzs2

env, ð10Þ

was kept fixed at s2
tot~1 for all simulations. The total heritability

h2 of the trait, defined as

h2~
s2

locizs2
poly

s2
tot

, ð11Þ

was taken to be h2[f0:3,0:5,0:8g. The proportion g2 of the total

variance s2
tot explained by the total two-locus model variance s2

loci,

g2~
s2

loci

s2
tot

, ð12Þ

varied as g2[f0,0:01,0:02,0:03,0:05,0:1g. Because of the afore-

mentioned assumptions, and the definitions for h2 and g2, we have

s2
loci~g2, s2

poly~(h2{g2), and s2
env~(1{h2). Hence, given h2

and g2, the three variance contributions are completely deter-

mined. Since only 10 SNPs were considered in all scenarios, the

relationship matrix was derived from the nuclear family actual

relationships.

Second, the fixed mean part in (3) needs to be determined. For

this, we consider two two-locus models, M27 and M170, of Li and

Reich [49,50]. The key feature of Model M27 is that phenotypic

means increase when for both loci at least one variant allele is

present. In contrast, in Model M170 increased phenotypic values

occur only when at one (and only one) locus a heterozygous

genotype is observed. Explicitly, Models M27 and M170 are

respectively determined by

mM27
k1ik2i

!

0 0 0

0 1 1

0 1 1

0
B@

1
CA, ð13Þ

And

mM170
k1ik2i

!

0 1 0

1 0 1

0 1 0

0
B@

1
CA: ð14Þ

It is important to realize that the two-locus variance s2
loci, can be

computed from the genotype-specific means mk1k2
above and the

minor allele frequency p. Hence, since the total trait variance s2
tot

was set to 1, and since particular values for the two-locus model

heritability g2 were also pre-specified, the means in (13) and (14)

are actually proportional to the specifications to the right of the

corresponding expression.

To enhance the interpretation of future simulation results, it is

instructive to more closely look into the decomposition of the two-

locus model variances for Models M27 and M170 into main effects

and epistatic variance (Table 1). We observe that for Model M27

the contribution of main effects becomes increasingly important

with increasing p, whereas for Model M170 the reverse is true,

leading to a pure epistasis scenario for p~0:5.

The two different genetic two-locus models (M27 and M170),

three possible minor allele frequencies p of the causal SNP pair, 5

different non-zero values for g2 and three different values for the

total heritability h2, lead to a total of 90 simulation settings. For

each of these settings 100 data sets were simulated.

Under the general null hypothesis of no association with the

trait (no main effects, nor two-way interaction effects), in

particular, g2(~s2
loci)~0, the different genetic models M27 and

M170 are irrelevant. The three possible choices for the minor

allele frequency p of the causal SNP pair, and the three possible

values for h2 result in nine different general null hypothesis

simulation settings. For each of these settings we generated 400

datasets.

Because we are primarily interested in detecting epistasis effects

above and beyond main effects, when these main effects are

present, we also generated a different type of null data, under the

null hypothesis of no epistasis, but main effects. Hence, g2
w0 and

mmain
k1k2

~mk1
:zm:k2

, ð15Þ

effectively reducing the two-locus variance to 2s2
1vs2

loci, while

increasing the polygenic variance. For each of the 75 simulation

settings, we again generated 100 datasets.

To reduce the computational burden of our extensive

simulation study, we adopted a sequential approach [51] during

the permutation step of FAM-MDR (FAM-MDR Part II step 3).

We carried out the permutation calculations in batches of 100, and

each time evaluated a go or no go to continue or not, setting the

maximum number of permutations to 1000. To this end, we

determined the binomial (1{c)100% confidence interval of the

significance level a at the current number of permutations, with

a~0:05 and c~0:05. If the current estimate of the permutation p-

value fell outside this confidence interval, the permutation

procedure terminated and a definite conclusion about significance

or non-significance was made. If the current estimate of the

permutation p-value fell inside the confidence interval, no

decisions were made about significance and an additional batch

of 100 permutations were performed. A drawback of this

sequential approach is that no accurate estimate of the

permutation p-value is output. Hence, whereas it serves its

purpose for simulation studies, it is less well suited for real data

applications.

Only to enhance an honest comparison of simulations results

with PGMDR, we also introduced a liberal version of FAM-MDR,

referred to as FAM-MDR*. In contrast to PGMDR [35] and

GMDR [36], for which the permutation null distribution is only

derived with respect to the actual SNP pair identified by the initial

epistasis screening, FAM-MDR screens all SNP pairs in a

permuted dataset. By doing so, FAM-MDR assesses significance

of the best SNP-pair, while appropriately correcting for multiple

testing. FAM-MDR* assesses marginal significance of the best

Table 1. Relative importance of main effects and epistatic
variances for different two-locus models.

M27 M170

p Main Epist. Main Epist.

0.10 0.16 0.68 0.29 0.42

0.25 0.30 0.39 0.06 0.88

0.50 0.43 0.14 0.00 1.00

Abbreviations: Main = ratio s2
1

�
s2

loci of each of the main effects variances s2
1 to

the two-locus variance s2
loci , Epist. = ratio s2

epi

.
s2

loci of the epistatic variance s2
epi

to the two-locus variance s2
loci .

doi:10.1371/journal.pone.0010304.t001
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model by computing the empirical marginal p-value of the pair

found. This was done by only maximizing over the two test

statistics WH and WL, and by restricting attention to the specific

pair jfound identified via the initial epistasis data analysis:

maxH=L WH,jfound
,WL,jfound

� �
. Although FAM-MDR* is less com-

putationally intensive, it leads to overly optimistic results, and

increased false positive rates, just like PGMDR. In line with

PGMDR [35], 1000 permuations were used to estimate

significance, hence no sequential approach is adopted.

Finally, we analyzed all simulated datasets with both FAM-

MDR and FAM-MDR*. We applied PGMDR to all simulation

settings with non-zero epistasis, and to 200 (out of 400) generated

data sets for each of the simulations settings under the general null

hypothesis of no association. Every analysis is carried out once

with and without main effects correction. The former involves

adjusting for SNP1 and SNP2 by assuming a co-dominant mode of

inheritance. The analysis with correction for main effects leads to

the detection of two-locus effects beyond co-dominant main

effects. The analysis without correction for main effects leads to the

detection of a two-locus model but without giving a clue about

whether this model is genuinely indicative for epistasis or for main

effects, or for both. In PGMDR analyses, and when correcting for

SNP1 and SNP2 main effects, we created two dummy variables for

each of the causal SNPs and submitted them as covariates to the

PGMDR software.

Amish Family Diabetes Study
The Amish Family Diabetes Study [41] (AFDS) is a study to

identify the genetic determinants of type 2 diabetes and related

traits in multi-generational extended pedigrees from the Old

Order Amish (OOA) community, a genetically-isolated group in

Lancaster County, Pennsylvania. For this analysis, we examined

genotype data for 25 SNPs in five diabetes candidate genes,

adipocnectin receptors 1 and 2 (ADIPOR1, ADIPOR2), adiponectin

(APM1, also known as ADIPOQ), calsequestrin 1 (CASQ1), and

hepatocyte nuclear factor 4A (HNF4A), in 1427 individuals from a

single large multi-generational pedigree subdivided into 243

independent families for analysis and 25 SNPs. In previous

analyses in the AFDS [52,53,54,55], rs1884614 in HNF4A [52],

rs2275703 and rs617698 in CASQ1 [54], and rs1029629 in

ADIPOR2 [53] were found to be significantly associated with the

continuous trait Glucose area under curve (GAUC). The latter was

estimated using the trapezoid method from glucose levels taken at

30-minute intervals in a three-hour oral glucose tolerance test

(OGTT) administered to all AFDS subjects without a prior history

of diabetes [56]. We examined log (GAUC) as our continuous

trait of interest, in non-diabetic individuals with GAUC measure-

ment available, setting GAUC to missing for diabetics and

individuals with unknown diabetes status because for diabetics the

GAUC measurement is expected to be biased. We took the natural

logarithm of GAUC because the Shapiro-Wilk test strongly

rejected normality of the residuals of the polygenic model in an

analysis on GAUC itself, whereas it did not so in an analysis on

log (GAUC). After removing Mendelian errors as found by FBAT

(downloadable from URL http://www.biostat.harvard.edu/

,fbat/default.html), we used the check.marker function of R

package GenABEL on these 725 non-diabetics with GAUC

measurement available. We put extr.call and extr.perid.call equal

to 0.25, so that markers and individuals with call rates below 0.25

are removed prior to main analysis. For the main analysis we put

callrate and perid.call to 0.9 so we discard iteratively markers and

individuals with call rates below 0.9. We discarded four SNPs,

rs6666089 and rs1342387 in ADIPOR1, and rs617599 and

rs1186694 in CASQ1, due to low callrates. All markers had minor

allele frequencies above 1%. We also discarded 105 individuals

due to low callrates, by putting their GAUC measurement to

missing. All analyses are based on the remaining 21 markers and

620 individuals.

In order to derive the correct relationships between the 620

individuals of interest, FAM-MDR also makes use of the

remaining 807 individuals without GAUC measurement available

and – in order to recognize relationships between offspring – of

additional parental information (804 parents, without genotype

nor phenotype information). Hence, ‘‘information’’ of 2231

individuals was exploited by FAM-MDR. The 620 individuals of

interest correspond to 136 independent families. Of these, 75

consisted of unrelated single individuals with no genotyped first-

degree relatives, 33 were nuclear families (comprising 51 of the

620 individuals or interest), and 28 were multi-generational

families. However, these 28 families included 471 or 76% of the

620 individuals.

Because the present PGMDR implementation cannot deal with

large multi-generational (non-nuclear) pedigrees, and only for

reasons of comparison between PGMDR and FAM-MDR, we

split multi-generational pedigrees into nuclear families. In the

resulting set of nuclear pedigrees, 344 individuals were represented

twice, most often as offspring in one pedigree and parents in

another. The net result of the splitting process was a set of 584

non-independent nuclear families, comprising 2575 ( = 2231+344)

individuals. Of the 620 individuals with GAUC measurement

available, 161 were represented twice, resulting in a total of 781

individuals of interest to us, in 363 non-independent families. Of

these families, 255 were part of the 28 extended pedigrees, while

the remaining 108 were mutually independent. There is clearly a

need to account for the lack of independence between these

nuclear families. Unfortunately, the PGMDR software is unable to

do so. Solely for reasons of comparison, FAM-MDR was applied

to the split-pedigree data, as well as to the original multi-

generational family data.

Analyses were carried out with and without correction for the

main effects of rs1884614 in HNF4A, rs2275703 and rs617698 in

CASQ1, and rs1029629 in ADIPOR2. They were regressed out in

FAM-MDR Part I, or entered as covariates in PGMDR, using co-

dominant coding. P-values were based on 1000 permutations for

both PGMDR and FAM-MDR, hence no stopping rules were

used. The significance level was set at a~0:05.

Without main effects correction, FAM-MDR on the original

data uses all 620 individuals with GAUC value available. When

correcting for main effects, missing genotype information

contributes to an increased missingness rate for the new trait

values. Here only 572 or 92% of the 620 individuals have non-

missing new trait values. On the split-pedigree data, 781

individuals are available for FAM-MDR without main effects

correction, and 726 for FAM-MDR with main effects correction.

Note that this is in fact an artificial increase in sample size of 26%

and 27% respectively. In contrast to FAM-MDR, PGMDR works

with the transmitted genotype information. Of the 620 individuals

with a GAUC value available, the 75 unrelated individuals

(singletons) obviously did not have parental information available,

giving rise to 545 individuals eligible for PGMDR analysis.

Furthermore, whenever genotypes for any SNP are completely

missing for a family, PGMDR simply discards the whole family

from the entire epistasis screening. As a result, PGMDR uses only

537 individuals in an analysis without correction for main effects,

and 501 individuals in an analysis with main effects correction,

amounting to reductions of 13% and 12% compared to the

corresponding FAM-MDR analyses. Consequently, PGMDR does

not use all information available.
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Results

Simulation study
As a quality check on the simulated data, we first assessed the

values of the Hardy Weinberg and Linkage Disequilibrium

correlation coefficients rHW and rLD, in the parents only. All

correlation coefficients were consistent with the theoretical value of

0. More specifically, we observed that for all considered simulation

settings the 95% confidence intervals of the correlation coefficients

rHW and rLD lied within the range ½{0:11,0:11�. We have also fit

a full MG model with a covariate coding for the exact

dichotomization that is behind our models. In this way we were

able to consistently estimate the effect sizes, showing that our data

are indeed behaving in the way we intended.

We first considered simulation results under the general null

hypothesis of no association (no main effects, no two-order

interactions). Empirical type I error rates were defined as the

number of times the selected best 2-locus model was assessed

significant, divided by the number of simulations. From Table 2,

we notice that FAM-MDR typically gives smaller empirical type I

error rates than the nominal type I error rate of a~0:05. In other

words, FAM-MDR has the tendency to be conservative. In

contrast, FAM-MDR* and PGMDR are much too liberal. The

latter is not surprising, since both FAM-MDR* and PGMDR

completely ignore the multiple testing issue. These results are

confirmed by Figure 2, showing the Probability-Probability (PP)

plots of the p-value distributions under the general null hypothesis

of no association for p~0:5 and h2~0:3. The PP-plots are based

on 100 datasets and 1000 permutations, without stopping rule to

obtain exact p-values. The plots show the expected ordered p-

values (i{1=2)=100 on the horizontal axis and the observed

ordered p-values p(i) on the vertical axis. By consequence, a

certain theoretical significance level on the vertical axis can be

related to a particular empirical type I error rate on the horizontal

axis. For FAM-MDR (panel A) the curve lies slightly above the

diagonal, indicating a rather conservative approach. For FAM-

MDR* (panel B) and PGMDR (panel C) the curve lies far below

the diagonal, pointing to an extremely liberal approach. Only

when performing the PGMDR on simulated data with two

functional (and no non-functional!) SNPs (panel D), the PP-plot

looks acceptable, although rather conservative as well.

Second, we considered the simulated null data under the null

hypothesis of no epistasis, in the presence of main effects. If under

this null a two-locus model is identified (that is, a two-locus model

is assessed significant), then a type I error has been made with

regard to the null hypothesis of no interaction, and the significant

result may be largely driven by main effects. Type I error rates for

a variety of scenarios are given in Table 3. The analyses

correcting for main effects have reasonable type I error rates,

although also they tend to be rather conservative. This holds for

both Models M27 and M170. The analyses not correcting for

main effects have the tendency to give rise to an increased

number of false positives. This increase is sometimes dramatic,

going even up to 1. The estimated type I error rates point towards

the importance of using analysis techniques that are able to

appropriately account for important lower order effects. The

observation that type I error rates increase with increasing values

of g2, is to be expected. Indeed, when g2 increases, also the main

effects variance increases. Moreover, as the minor allele

frequency p of the functional SNPs increases, type I error rates

increase for Model M27 but decrease for Model M170. This can

be explained by the relative importance of the main effects with

varying p for the different models (Table 1). Note that for Model

M170 and p~0:5 no results are stated because this situation

corresponds to a pure epistasis scenario. Figure S1 (Supporting

Information) gives a graphical illustration of the liberal type I

error rates. Panel D shows results for the analysis not correcting

for main effects on data generated under the null of no epistasis

for model M27 and the extreme g2~0:1. We observe that the

probability-probability plot in this setting is perfectly horizontal at

height 0. This extreme case corresponds to the fact that the type I

error rate is 1 for this situation.

Third, we considered simulated data under the alternative

hypothesis of epistasis (possibly in the presence of main effects).

For every simulation setting, empirical power was defined as the

number of times the correct pair SNP1,SNP2ð Þ was selected and

declared significant, divided by the number of simulated data sets.

For PGMDR, it happened that two or even three models were

reported by the software. In this event, the reported models had

exactly the same cross-validation consistency, and we selected the

model with the lowest permutation p-value. In the rare event that

also the reported permutation p-values were tied, we made a random

choice, except when the true functional model was among the

reported results. In the latter case, we always selected the true

functional model among the tied results. Table 4 gives an overview of

the simulation results under a variety of alternative hypotheses.

Figure 3 displays our findings graphically for h2~0:3. In the

Supporting Information, we give additional power graphs for

h2~0:5 and h2~0:8, for Model M27 (Figure S2) and Model

M170 (Figure S3), but these do not fundamentally differ from those

for h2~0:3. In general, FAM-MDR has systematically higher power

than PGMDR, even with appropriate correction for multiple testing.

Note that FAM-MDR* may well be the most powerful approach

but, like PGMDR, it does not appropriately handle multiple testing

problems. There are a few exceptions to these general observations.

However, in these exceptional cases, the power gain of PGMDR is

always very small, and the apparent better performance of PGMDR

can just as well be due to sampling variability. Indeed, the standard

error of a binomial proportion is about 0.05 for 100 simulated

datasets. The results of Table 4 show that power estimates increase

with increasing two-locus heritability g2.

Our simulation data does not show a systematic trend with

increasing total heritability h2. When correcting for main effects,

Table 2. Type I error rates under the general null hypothesis
of no association.

Corr. No C.

p h2 F F* PG F F* PG

0.1 0.3 0.0200 0.5700 0.4450 0.0250 0.6725 0.4700

0.5 0.0275 0.4550 0.5300 0.0300 0.5650 0.5300

0.8 0.0100 0.4825 0.5950 0.0175 0.5450 0.4900

0.25 0.3 0.0275 0.5650 0.4750 0.0250 0.6650 0.5250

0.5 0.0225 0.5325 0.4750 0.0200 0.6025 0.5200

0.8 0.0175 0.5125 0.4800 0.0150 0.6000 0.4800

0.3 0.3 0.0275 0.5525 0.5400 0.0275 0.6475 0.5600

0.5 0.0175 0.5625 0.5350 0.0325 0.6300 0.5600

0.8 0.0100 0.4900 0.4750 0.0100 0.5250 0.5100

Results are based on 400 simulated datasets for each setting for FAM-MDR and
FAM-MDR* and 200 datasets for PGMDR. As an aid to interpretation the type I
error rates §0:1 are indicated in bold. Abbreviations: Corr. = with main effects
correction, No C. = without main effects correction, F = FAM-MDR,
F* = FAM-MDR*, PG = PGMDR.
doi:10.1371/journal.pone.0010304.t002
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the power decreases with minor allele frequency p for model M27.

The reverse is observed for Model M170. This can be explained

by the proportion s2
epi

.
s2

loci of the epistatic variance to the total

two-locus variance, varying with p for the two models in a different

way, as given in Table 1. For example, for Model M27 and

p~0:5, in which case the ratio s2
epi

.
s2

loci is only 0.14, the power is

very low. For the analysis without correction for main effects,

power is less dependent on p and high power levels are probably

indicative for excessive type I error rates due to lower order effects

signaling through to the higher order models. Correcting for main

effects generally gives rise to lower power estimates than not

correcting for main effects (Table 4 and Figure 3). There are two

reasons for this. First, the epistatic variance s2
epi (targeted by an

analysis with correction for main effects) is generally smaller than

the total two-locus variance s2
loci (which is the focus of an analysis

without correction for main effects). Consequently, larger sample

Figure 2. Probability-probability plots based on 100 replicates under the complete null hypothesis of no association. Data are
generated with no main effects and no two-way interaction effects, with p~0:5 and h2~0:3. Analyses are performed without correction for main
effects. The first three panels show results of FAM-MDR (A), FAM-MDR* (B) and PGMDR (C) for the usual situation study considering 10 SNPs. The final
panel (D) shows PGMDR results when only 2 SNPs are considered. The straight lines indicate the theoretical probability-probability curve (light blue)
and the 5% significance level (dark blue).
doi:10.1371/journal.pone.0010304.g002
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sizes are needed to enable epistasis detection. Second, there is

some efficiency loss because every main effect corrected for

contributes two degrees of freedom (as main effects were coded as

co-dominant effects). That there is a price to pay for estimating

additional parameters can most clearly be deduced from the

results for Model M170 and p~0:5 (pure epistasis), for which we

still observe the reduction in power for the analysis with main

effects corrections over an uncorrected analysis. Another example

is that for Model M27 with p~0:1 the analyses without main

effects corrections g2~0:02 have higher power than the corrected

analyses for g2~0:05, although in the first case s2
loci~0:2 and in

the second case s2
epi~0:0204.

Amish Family Diabetes Study
Table 5 shows the results of epistasis screening with FAM-

MDR and PGMDR on the split pedigree data, and of FAM-

MDR on the multi-generational pedigree data, both with and

without correction for co-dominant main effects of rs1884614 in

HNF4A, rs2275703 and rs617698 in CASQ1 and rs1029629 in

ADIPOR2. Without correction for main effects, FAM-MDR on

the cut-pedigree data finds a significant two-locus model

involving rs2275703 in CASQ1 and rs1501299 in APM1. When

performing a main effects correction, the same best interaction

model is identified. However, the interaction is significant only

at the 10% significance level, suggesting that the two-locus

model is to some extent driven by the main effect of rs2275703.

PGMDR without main effects correction does not lead to a

significant interaction. With correction for main effects,

PGMDR reports a different near-significant two-locus model

involving rs2275703 in CASQ1 and rs1028583 in HNF4A. FAM-

MDR on the original data, with or without correction for main

effects, does not yield any significant two-locus models. Possible

explanations for these contradicting results are reviewed in the

Discussion section.

Discussion

The objectives of this paper were to introduce a new family-

based and flexible epistasis detection analysis method, FAM-

MDR, which is based on multifactor dimensionality reduction of

multi-locus genotypes, and to compare it to the current state-of-the

art MDR methodology for families, PGMDR. Although principles

of the initial MDR approach are adopted in FAM-MDR, there are

some clear differences. These include an alternative way to identify

risk categories associated with multi-locus genotypes, the flexibility

to use any outcome type, the possibility to correct for lower order

effects, covariates or confounding factors, the possibility to assess

significance of multiple higher-order interaction models. Since

model selection is not based on evaluating prediction accuracy but

on testing associations, FAM-MDR does not involve computa-

tionally intensive cross-validation steps.

FAM-MDR consists of two parts. In part I, residuals are derived

from a polygenic model, removing additive polygenic effects and

possibly important lower-order effects or confounding factors.

These residuals are subsequently considered as new traits for the

second part of FAM-MDR. In Part II, the familial correlation-free

residuals are submitted to the MB-MDR algorithm and either the

best model (considered in this manuscript), or multiple epistasis

models are checked for their significance. In contrary to first

implementations of the MB-MDR algorithm, no simulation-based

null distributions are derived to assess significance, but a

permutation-based strategy is adopted. Under the assumption of

familial correlation-free traits in FAM-MDR Part II, permutation-

based p-values for the best model can easily be derived by

randomly permuting the traits. This is in contrast to PGMDR’s

implementation of a permutation strategy in that for PGDMR

families are considered as the permutation units.

The method of removing familial-correlation structure is not new.

The GRAMMAR approach of Aulchenko et al. [39] and Amin et al.

Table 3. Type I error rates of FAM-MDR under the null hypothesis of no epistasis.

M27 M170

p = 0.1 p = 0.25 p = 0.5 p = 0.1 p = 0.25

g2 h2 Corr. No C. Corr. No C. Corr. No C. Corr. No C. Corr. No C.

0.01 0.3 0.05 0.09 0.02 0.07 0.01 0.21 0.03 0.16 0.01 0.01

0.5 0.00 0.01 0.01 0.03 0.03 0.16 0.00 0.03 0.00 0.03

0.8 0.03 0.04 0.01 0.05 0.02 0.06 0.01 0.02 0.00 0.01

0.02 0.3 0.01 0.10 0.03 0.23 0.03 0.40 0.03 0.22 0.07 0.07

0.5 0.02 0.06 0.00 0.17 0.03 0.35 0.03 0.19 0.03 0.03

0.8 0.00 0.03 0.01 0.12 0.03 0.35 0.01 0.20 0.01 0.00

0.03 0.3 0.03 0.21 0.01 0.41 0.01 0.66 0.01 0.40 0.05 0.08

0.5 0.02 0.16 0.02 0.38 0.01 0.68 0.02 0.33 0.00 0.04

0.8 0.01 0.09 0.01 0.40 0.02 0.72 0.01 0.32 0.02 0.03

0.05 0.3 0.03 0.42 0.02 0.75 0.02 0.94 0.01 0.79 0.06 0.11

0.5 0.02 0.26 0.01 0.82 0.02 0.96 0.00 0.82 0.02 0.13

0.8 0.01 0.18 0.02 0.72 0.01 0.96 0.01 0.63 0.01 0.09

0.1 0.3 0.03 0.96 0.02 1.00 0.02 1.00 0.00 1.00 0.01 0.29

0.5 0.03 0.84 0.01 0.99 0.01 1.00 0.03 0.99 0.01 0.34

0.8 0.00 0.67 0.02 0.99 0.00 1.00 0.03 1.00 0.01 0.37

Results are based on 100 simulated datasets for each setting. As an aid to interpretation the type I error rates §0:1 are indicated in bold. Abbreviations: Corr. = with
main effects correction, No C. = without main effects correction.
doi:10.1371/journal.pone.0010304.t003
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Figure 3. Power of FAM-MDR and PGMDR based on 100 replicates, with h2~0:3. The different panels show results for M27 (A) and M170 (B).
Abbreviations: Corr. = with main effects correction, No Corr. = without main effects correction.
doi:10.1371/journal.pone.0010304.g003
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Table 4. Power of FAM-MDR, FAM-MDR* and PGMDR.

M27 M170

Corr. No C. Corr. No C.

p g2 h2 F F* PG F F* PG F F* PG F F* PG

0.1 0.01 0.3 0.03 0.17 0.03 0.19 0.40 0.01 0.01 0.10 0.01 0.16 0.36 0.06

0.5 0.01 0.12 0.03 0.13 0.47 0.00 0.00 0.06 0.00 0.13 0.41 0.10

0.8 0.02 0.19 0.00 0.09 0.42 0.01 0.01 0.14 0.00 0.08 0.35 0.04

0.02 0.3 0.05 0.30 0.03 0.46 0.67 0.01 0.01 0.20 0.03 0.58 0.79 0.19

0.5 0.05 0.38 0.02 0.43 0.68 0.01 0.03 0.20 0.01 0.49 0.71 0.01

0.8 0.06 0.49 0.01 0.53 0.82 0.01 0.05 0.26 0.02 0.42 0.73 0.23

0.03 0.3 0.12 0.67 0.05 0.83 0.91 0.01 0.05 0.30 0.04 0.78 0.91 0.33

0.5 0.24 0.72 0.04 0.87 0.97 0.00 0.11 0.43 0.00 0.90 0.98 0.31

0.8 0.32 0.73 0.02 0.73 0.94 0.01 0.15 0.48 0.01 0.93 0.99 0.32

0.05 0.3 0.40 0.90 0.11 0.96 0.99 0.02 0.25 0.73 0.05 1.00 1.00 0.53

0.5 0.48 0.93 0.10 0.98 0.99 0.02 0.30 0.75 0.03 1.00 1.00 0.55

0.8 0.67 0.95 0.09 0.98 1.00 0.01 0.53 0.90 0.06 1.00 1.00 0.61

0.1 0.3 0.98 1.00 0.40 0.98 0.98 0.02 0.69 0.94 0.17 1.00 1.00 0.89

0.5 0.96 1.00 0.32 1.00 1.00 0.03 0.80 0.97 0.21 1.00 1.00 0.95

0.8 0.95 1.00 0.28 1.00 1.00 0.00 0.81 0.97 0.13 1.00 1.00 0.94

0.25 0.01 0.3 0.01 0.06 0.02 0.14 0.29 0.04 0.07 0.29 0.11 0.21 0.49 0.13

0.5 0.03 0.10 0.05 0.13 0.32 0.04 0.09 0.25 0.07 0.20 0.46 0.10

0.8 0.00 0.13 0.05 0.08 0.31 0.02 0.15 0.51 0.06 0.23 0.58 0.07

0.02 0.3 0.06 0.22 0.09 0.47 0.70 0.06 0.35 0.74 0.14 0.57 0.82 0.21

0.5 0.04 0.13 0.06 0.32 0.61 0.06 0.40 0.72 0.21 0.60 0.87 0.29

0.8 0.11 0.28 0.08 0.47 0.72 0.07 0.64 0.95 0.16 0.88 0.97 0.21

0.03 0.3 0.14 0.38 0.12 0.80 0.91 0.08 0.65 0.90 0.20 0.86 0.98 0.27

0.5 0.19 0.52 0.12 0.78 0.88 0.10 0.77 0.95 0.27 0.92 0.94 0.35

0.8 0.16 0.45 0.05 0.80 0.91 0.05 0.90 0.97 0.24 0.95 0.99 0.32

0.05 0.3 0.44 0.80 0.22 0.98 0.98 0.22 0.98 1.00 0.55 1.00 1.00 0.71

0.5 0.53 0.77 0.19 0.99 1.00 0.20 1.00 1.00 0.48 1.00 1.00 0.58

0.8 0.55 0.80 0.19 1.00 1.00 0.15 0.98 1.00 0.48 1.00 1.00 0.61

0.1 0.3 0.92 0.97 0.53 1.00 1.00 0.51 1.00 1.00 0.91 1.00 1.00 0.97

0.5 0.97 1.00 0.54 1.00 1.00 0.56 1.00 1.00 0.91 1.00 1.00 0.95

0.8 1.00 1.00 0.47 1.00 1.00 0.51 1.00 1.00 0.89 1.00 1.00 0.97

0.5 0.01 0.3 0.00 0.02 0.00 0.08 0.21 0.07 0.02 0.27 0.04 0.17 0.41 0.06

0.5 0.00 0.00 0.01 0.10 0.22 0.07 0.05 0.27 0.08 0.12 0.47 0.13

0.8 0.00 0.01 0.02 0.05 0.18 0.07 0.27 0.57 0.07 0.36 0.61 0.10

0.02 0.3 0.00 0.02 0.05 0.28 0.44 0.20 0.42 0.69 0.20 0.62 0.83 0.19

0.5 0.00 0.05 0.02 0.29 0.42 0.16 0.44 0.69 0.18 0.60 0.84 0.20

0.8 0.00 0.03 0.01 0.41 0.57 0.14 0.69 0.90 0.18 0.77 0.91 0.14

0.03 0.3 0.02 0.08 0.03 0.57 0.65 0.22 0.78 0.91 0.31 0.84 0.95 0.33

0.5 0.00 0.06 0.02 0.62 0.69 0.25 0.93 0.96 0.35 0.93 0.99 0.32

0.8 0.02 0.10 0.02 0.69 0.75 0.24 0.97 1.00 0.27 0.97 0.98 0.28

0.05 0.3 0.01 0.09 0.00 0.93 0.93 0.39 1.00 1.00 0.52 1.00 1.00 0.49

0.5 0.02 0.11 0.02 0.92 0.92 0.45 0.99 1.00 0.48 1.00 1.00 0.46

0.8 0.02 0.27 0.05 0.97 0.97 0.44 1.00 1.00 0.60 1.00 1.00 0.57

0.1 0.3 0.05 0.46 0.08 1.00 1.00 0.80 1.00 1.00 0.89 1.00 1.00 0.93

0.5 0.10 0.46 0.07 1.00 1.00 0.79 1.00 1.00 0.95 1.00 1.00 0.95

0.8 0.26 0.68 0.05 1.00 1.00 0.85 1.00 1.00 0.92 1.00 1.00 0.92

Results are based on 100 simulated datasets for each setting. As an aid to interpretation the powers §0:7 are indicated in bold. Abbreviations: Corr. = with main effects
correction, No C. = without main effects correction , F = FAM-MDR, F* = FAM-MDR*, PG = PGMDR.
doi:10.1371/journal.pone.0010304.t004
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[42] also used this idea in the context of rapid genomewide main

effects analysis. For multivariate traits and unrelated individuals,

similar principles of first removing trait correlations and then

submitting derived residuals to MB-MDR can be adopted. This is

work in progress and is particularly useful when measurements over

time are available. Exploiting the time-relatedness of phenotypic

measurements may in part compensate for the large sample sizes

needed to detect epistasis in genomic studies.

The Current implementation of FAM-MDR is not scalable to

GWAS. An efficient C++ implementation and a code version for

parallel analyses are on their way. First simulations indicate that

these enhancements will make GWAS feasible. For now, when

large-scale genomic screenings are performed with thousands of

markers, since FAM-MDR Part I is preparatory for subsequent

association analysis, FAM-MDR can include a pre-selection step of

good candidates of markers for epistasis analysis. These candidates

may be selected on the basis of information theoretic measures

[57,58] using information about the trait under investigation; or on

the basis of evidence from other data, i.e. using external and

independent information [59], e.g. omics analyses. Depending on

the strategy, an additional correction for data snooping in the pre-

screening step may be required to control type I error rates.

Also, a Part III can be added to a FAM-MDR analysis to

interpret the identified epistasis models. This is an important step

of the analysis and may or may not involve deriving good estimates

of the significant effects. Special care needs to be taken when

carrying out this step, in order not to be the victim of the so-called

‘‘winner’s curse’’ [60,61].

Currently, MB-MDR and FAM-MDR are based on Wald

statistics, whereas GMDR and PGMDR make use of score statistics.

First, the score test is computationally more advantageous because it

only needs parameter estimates under the null whereas the Wald

test needs parameter estimates under the alternative and the

likelihood ratio test needs both. Second, even though the three tests

are asymptotically equivalent, the score test is the most powerful of

the three when the true parameter is close to the null value. In line

with the first release of an MB-MDR R package for unrelated

individuals, Wald statistics were implemented in the first version of

the FAM-MDR software. In the future, score statistics as well as

robust non-parametric statistics will be offered as additional options

in FAM-MDR. One of the major results that our simulation study

highlights is that PGMDR is too liberal in identifying epistasis

models. This is due to the inadequate correction for multiple testing,

implemented in the PGDMR software to date (Figure 2; Panel C).

In contrast, FAM-MDR correctly deals with multiple testing and

consequently leads to appropriate type I error rates (Figure 2; Panel

A). In effect, FAM-MDR is rather conservative, which is a property

inherited from the GRAMMAR approach it is built on. Indeed,

while first removing polygenic effects (FAM-MDR Part I), an over-

correction may take place, resulting in power loss and conservatism

to identify remaining genetic association signals. Improvements to

FAM-MDR that can remove this artifact are on the way. A second

result is that, generally speaking, FAM-MDR has optimal power

over PGMDR in virtual all considered simulation scenarios. In

addition, we have indicated that occasional better achieved

performance of PGMDR in terms of power is probably attributable

to sampling variability. Also note that when computing the

PGMDR power estimates in our simulation study, in case of a tie

we gave advantage to the model with the functional SNP pair.

A third important result is the influence of correcting for lower-

order effects when searching for significant epistatic interactions.

As was also pointed out by Calle et al. [40], MDR-like analysis

that does not account for important marginal effects is prone to

report false higher-order interactions, containing the significant

lower-order effects not accounted for. Although PGMDR

accommodates covariate adjustment, more work is needed to

enhance flexible implementation. FAM-MDR code is currently

available as an R-script, in which covariate adjustments are easily

incorporated in the model statement of the polygenic function.

More work is needed though to develop a genuine screening

strategy to search for optimal models, starting from important

main effects and ending with higher-order interaction models

beyond the two-way interactions considered in this work, with the

maximum order pre-defined by the user. This is future research,

since our simulations have shown that it is of utmost importance to

adjust for previous significant findings when moving to the search

space of interactions of the next order. Since the way lower-order

interactions are accounted for is part of a parametric paradigm,

the coding of these effects needs careful reflection. When lower-

order effects are important, a correction is warranted. When

lower-order effects are not important or not adequately coded,

over-adjusting for lower-order effects may lead to there being

virtually no variation left with which to identify higher-order

interactions. Hence, in reality the balance between necessary

corrections for important main effects and avoiding over-

correction needs to be considered to optimize the performance

of any epistasis detection method.

The current FAM-MDR implementation is only valid under the

assumption of no population structure, and our simulations

assume a homogeneous population. By using both between- and

within-family association – in contrast to PGMDR that uses only

within-family association – FAM-MDR gains power but this

comes at the price of sacrificing the built-in protection against

spurious results if population structure is present. A possible

solution to this problem lies in the use of Genomic Control [62].

Although PGMDR is a flexible tool to handle binary or

continuous outcome types, and accommodates covariate adjust-

ment, our application to real-life data has revealed some important

shortcomings that impact the power of a study. These include a

rather inefficient use of available information and the inability to

Table 5. Epistasis analyses of Amish Family Diabetes Study data.

Corr. No C.

Model P-value Model P-value

Orig. F (F*) rs2275703 in CASQ1; rs1501299 in APM1 0.619 (0.008) rs2275703 in CASQ1; rs1501299 in APM1 0.280 (0.005)

Split F (F*) rs2275703 in CASQ1; rs1501299 in APM1 0.070 (0.001) rs2275703 in CASQ1; rs1501299 in APM1 0.014 (,0.001)

Split PG rs2275703 in CASQ1; rs1028583 in HNF4A 0.059 rs1029629 in ADIPOR2; rs2425637 in HNF4A 0.303

Main effects corrections adjust the analyses for rs1884614 in HNF4A, rs2275703 and rs617698 in CASQ1, and rs1029629 in ADIPOR2. Abbreviations: Corr. = with main
effects correction, No C. = without main effects correction, Orig. = original data, Split = split pedigree, F = FAM-MDR, F* = FAM-MDR*, PG = PGMDR.
doi:10.1371/journal.pone.0010304.t005
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analyze complex and extended pedigrees with the present

PGMDR implementation.

Regarding missing genotypes, PGMDR discards families

entirely when data on one SNP are missing. Without minimizing

the need to also improve FAM-MDR’s handling of missing data

(whether at the genotype or phenotype level), not being able to

account for the full complexity of a pedigree is certainly a

drawback of PGMDR. We believe that methods that can

accommodate mixed study designs will become more and more

important due to the increasing practice of combining data from

different groups in consortia collaborations. FAM-MDR flexibly

deals with both unrelated and related individuals in the same

analysis whereas PGMDR excludes unrelated individuals, hereby

reducing the power of the association analysis.

Multi-generational pedigrees may provide more information on

inheritance patterns observed on genotype data, which improves

the quality of family-based tests of association. Due to limitations

of the PGMDR software, only FAM-MDR analysis was applied to

the extended pedigree data as such. With (or without) FAM-MDR

correction for main effects of rs1884614 in HNF4A, rs2275703 and

rs617698 in CASQ1, and rs1029629 in ADIPOR2, no evidence for a

significant interaction (or two-locus model) was found (Table 5).

Weak interactions between variations at these loci in contributing

to the log (GAUC) phenotype may still exist, but if so, FAM-

MDR was not able to identify them. In this context it is important

to note that FAM-MDR – like GRAMMAR – could be rather

conservative, especially for larger extended pedigrees [42]. On the

other hand, the (nearly) significant findings for the simplified

pedigree (Table 5) may potentially be false positive results driven

by both the artificial increase in sample size and by not

appropriately accounting for family structure. Indeed, McArdle

et al. [63] showed that the type I error of detecting SNP main

effects is elevated when family structure is ignored, and more

dramatically with increasing trait heritability, which may naturally

extend to (interactive) two-locus models as well. Lack of

appropriate accounting for multiple testing (PGMDR and FAM-

MDR*) may also increase the likelihood of observing spurious

associations. This is clearly seen for FAM-MDR* and to some

extent also for PGMDR (Table 5).

Improving the ability to detect gene-gene interactions in family

studies of complex disease may prove critical in identifying the

underlying sources of observed heritability. While it is apparent that

type 2 diabetes mellitus (T2DM) is polygenic, the genetic sources of

the observed heritability have yet to be completely identified [64],

and may include still unobserved gene-gene interactions. Detecting

interactions between genes associated with T2DM has thus far been

very challenging, due to a paucity of powerful statistical methods

and study datasets with adequate sample sizes [65]. Several studies

that have examined interactions between single variants in different

genes have shown mixed evidence of two-way interactions in

T2DM and T2DM-related traits like obesity and insulin resistance.

Using an approach which conditioned on linkage in one region to

identify evidence of linkage elsewhere, a linkage study of T2DM in

Mexican Americans from Starr County, Texas, identified the

interaction of genes on chromosomes 2 (CAPN10 (Calpain 10), then

NIDDM1) and 15 (near CYP19 (Cytochrome P450, family 19, or

Aromatase)) in contributiing to T2DM susceptibility [66]. Associ-

ation studies investigating interactions between variants of the Beta-

3 adrenergic receptor (ADRB3) and Uncoupling protein 1 (UCP1)

genes observed in weak [67] to no [68] effects on weight gain and

insulin resistance in Finnish and Danish populations, respectively. A

study of Type II iodothyronine deiodinase (DIO2) and ADRB3

polymorphisms showed a synergistic effect on an increased BMI,

suggesting an interaction between these two common gene variants

[69], while a study of intestinal fatty acid binding protein 2 (FABP2)

and ADRB3 showed no interaction on levels of fasting plasma

glucose or measures of insulin resistance [70]. In a study of

Mexican-American families participating in the population-based

San Antonio Family Heart Study [71], the combined presence of

common variants of Peroxisome proliferator-activated receptor

gamma (PPARc) and ADRB3 are correlated with significantly

higher BMI, insulin, and leptin levels than the presence of the

PPARc variants alone. Yet another study [72] examined two-locus

interactions among 23 loci in T2DM candidate genes in the risk of

T2DM, and found a significant interaction between variants in the

Uncoupling protein 1 (UCP2) and PPARc genes. Identification of

novel interactions and further confirmation of observed interactions

may be critical in characterizing the genetic risk factors for T2DM

and many other complex disease that remain among the

unidentified components of the heritability of these diseases, and

may have practical application in the identification of individuals

who may belong to groups at high risk of disease who can benefit

from preventive care.

In conclusion, FAM-MDR – unlike PGMDR – is able to handle

complex and large pedigrees with additional unrelated individuals.

In fact, FAM-MDR analysis on split pedigree data should not be

trusted because it might lead to overly optimistic results. On the

other hand, as pedigree size increases, the inherent conservative

nature of FAM-MDR could become more pronounced. Finally,

PGMDR results – and in fact also GMDR results – are too liberal as

no correction for multiple testing is carried out.

Supporting Information

Figure S1 Probability-probability plots for FAM-MDR analyses under

the null hypotheses of no association and no epistasis. The situation

considered is p = 0.5 and h2 = 0.3. Analyses are performed both

with and without correction for main effects. Results are based on

100 replicates. Panels A and B show results for data generated

under the null of no association, whereas panels C and D consider

data generated under the null hypothesis of no epistasis, for model

M27 and with g2 = 0.1. Panels A and C show results for analysis

with correction for main effects, panels B and D without.

Found at: doi:10.1371/journal.pone.0010304.s001 (0.50 MB TIF)

Figure S2 Additional power results for model M27, based on 100

replicates. Panels A and B show results for h2 = 0.5 and h2 = 0.8

respectively. Abbreviations: Corr. = with main effects correction,

No Corr. = without main effects correction.

Found at: doi:10.1371/journal.pone.0010304.s002 (1.54 MB TIF)

Figure S3 Additional power results for model M170, based on 100

replicates. Panels A and B show results for h2 = 0.5 and h2 = 0.8

respectively. Abbreviations: Corr. = with main effects correction,

No Corr. = without main effects correction.

Found at: doi:10.1371/journal.pone.0010304.s003 (1.53 MB TIF)
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