DSpace Repository

Model-Based Multifactor Dimensionality Reduction for detecting epistasis in case–control data in the presence of noise

Show simple item record

dc.contributor Universitat de Vic. Escola Politècnica Superior
dc.contributor Universitat de Vic. Grup de Recerca en Bioinformàtica i Estadística Mèdica
dc.contributor.author Cattaert, Tom
dc.contributor.author Calle, M. Luz
dc.contributor.author Dudek, Scott M.
dc.contributor.author Mahachie John, Jestinah M.
dc.contributor.author Van Lishout, François
dc.contributor.author Urrea Gales, Víctor
dc.contributor.author Ritchie, Marylyn D.
dc.contributor.author Van Steen, Kristel
dc.date.accessioned 2014-05-20T10:21:40Z
dc.date.available 2014-05-20T10:21:40Z
dc.date.created 2011
dc.date.issued 2011
dc.identifier.citation Cattaert, T., Calle Rosingana, M. L., Dudek, S. M., John, J. M. M., Van Lishout, F., Urrea, V., . . . Van Steen, K. (2011). Model-Based Multifactor Dimensionality Reduction for detecting epistasis in case-control data in the presence of noise. Annals of Human Genetics, 75, 78-89. doi:10.1111/j.1469-1809.2010.00604.x . ca_ES
dc.identifier.issn 0003-4800
dc.identifier.uri http://hdl.handle.net/10854/3060
dc.description.abstract Analyzing the combined effects of genes and/or environmental factors on the development of complex diseases is a great challenge from both the statistical and computational perspective, even using a relatively small number of genetic and nongenetic exposures. Several data-mining methods have been proposed for interaction analysis, among them, the Multifactor Dimensionality Reduction Method (MDR) has proven its utility in a variety of theoretical and practical settings. Model-Based Multifactor Dimensionality Reduction (MB-MDR), a relatively new MDR-based technique that is able to unify the best of both nonparametric and parametric worlds, was developed to address some of the remaining concerns that go along with an MDR analysis. These include the restriction to univariate, dichotomous traits, the absence of flexible ways to adjust for lower order effects and important confounders, and the difficulty in highlighting epistatic effects when too many multilocus genotype cells are pooled into two new genotype groups. We investigate the empirical power of MB-MDR to detect gene–gene interactions in the absence of any noise and in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Power is generally higher for MB-MDR than for MDR, in particular in the presence of genetic heterogeneity, phenocopy, or low minor allele frequencies. ca_ES
dc.description.sponsorship T. Cattaert, F. Van Lishout, J. M. Mahachie John and K. Van Steen acknowledge research opportunities offered by the Belgian Network BioMAGNet (Bioinformatics and Modelling: from Genomes to Networks), funded by the Interuniversity Attraction Poles Programme (Phase VI/4), initiated by the Belgian State, Science Policy Office. Their work was also supported in part by the IST Programme of the European Community, under the PASCAL2 Network of Excellence (Pattern Analysis, Statistical Modelling and Computational Learning), IST-2007-216886. In addition, F. Van Lishout acknowledges support by Alma in Silico, funded by the European Commission and Walloon Region through the Interreg IV Program. The work of M. L. Calle and V. Urrea has been supported by Grant MTM2008-06747-C02-02 from the Ministerio de Educacion y Ciencia, Grant 050831 from La Marato de TV3 Foundation, and Grant 2009SGR-581 from AGAUR-Generalitat de Catalunya. S. Dudek and M. D. Ritchie are supported by NIH grants LM010040 and HL065962.
dc.format application/pdf
dc.format.extent 12 p. ca_ES
dc.language.iso eng ca_ES
dc.publisher Blackwell ca_ES
dc.relation MEC/PN2008-2011/MTM2008-06747-C02-00
dc.relation AGAUR/2009-2014/2009SGR-581
dc.rights (c) Wiley [The definitive version is available at www3.interscience.wiley.com]
dc.subject.other Epidemiologia genètica ca_ES
dc.subject.other Bioinformàtica
dc.subject.other Mineria de dades
dc.title Model-Based Multifactor Dimensionality Reduction for detecting epistasis in case–control data in the presence of noise ca_ES
dc.type info:eu-repo/semantics/article ca_ES
dc.identifier.doi https://doi.org/10.1111/j.1469-1809.2010.00604.x
dc.relation.publisherversion http://onlinelibrary.wiley.com/doi/10.1111/j.1469-1809.2010.00604.x/full
dc.rights.accesRights info:eu-repo/semantics/closedAccess ca_ES
dc.type.version info:eu-repo/submittedVersion ca_ES
dc.indexacio Indexat a SCOPUS
dc.indexacio Indexat a WOS/JCR ca_ES
dc.contribution.funder Ministerio de Ciencia e Innovación (España)
dc.contribution.funder Generalitat de Catalunya. Agència de Gestió d'Ajuts Universitaris i de Recerca

Files in this item

Show simple item record

Search RIUVic


Browse

Statistics