DSpace Repository

Improving the Quality of EEG Data in Patients With Alzheimers Disease Using ICA

Show simple item record

dc.contributor Universitat de Vic. Escola Politècnica Superior
dc.contributor Universitat de Vic. Grup de Recerca en Tecnologies Digitals
dc.contributor International Conference on Neural Informations Processing (15è: 2008: Auckland)
dc.contributor ICONIP 2008
dc.contributor.author Vialatte, François B.
dc.contributor.author Solé-Casals, Jordi
dc.contributor.author Maurice, Monique
dc.contributor.author Latchoumane, Charles-François V.
dc.contributor.author Hudson, Niegel
dc.contributor.author Wimalaratna, Sunil R.
dc.contributor.author Jaeseung, Jeonga
dc.contributor.author Cichocki, Andrej
dc.date.accessioned 2014-04-07T11:32:19Z
dc.date.available 2014-04-07T11:32:19Z
dc.date.created 2008
dc.date.issued 2008
dc.identifier.citation Vialatte, F. -., Sole-Casals, J., Maurice, M., Latchoumane, C., Hudson, N., Wimalaratna, S., . . . Cichocki, A. (2009). Improving the quality of EEG data in patients with alzheimer's disease using ICA doi:10.1007/978-3-642-03040-6_119 ca_ES
dc.identifier.isbn 9783642024894
dc.identifier.issn 0302-9743
dc.identifier.uri http://hdl.handle.net/10854/2856
dc.description.abstract Does Independent Component Analysis (ICA) denature EEG signals? We applied ICA to two groups of subjects (mild Alzheimer patients and control subjects). The aim of this study was to examine whether or not the ICA method can reduce both group di®erences and within-subject variability. We found that ICA diminished Leave-One- Out root mean square error (RMSE) of validation (from 0.32 to 0.28), indicative of the reduction of group di®erence. More interestingly, ICA reduced the inter-subject variability within each group (¾ = 2:54 in the ± range before ICA, ¾ = 1:56 after, Bartlett p = 0.046 after Bonfer- roni correction). Additionally, we present a method to limit the impact of human error (' 13:8%, with 75.6% inter-cleaner agreement) during ICA cleaning, and reduce human bias. These ¯ndings suggests the novel usefulness of ICA in clinical EEG in Alzheimer's disease for reduction of subject variability. en
dc.format application/pdf
dc.format.extent 8 p. ca_ES
dc.language.iso eng ca_ES
dc.publisher Springer ca_ES
dc.rights (c) Springer (The original publication is available at www.springerlink.com)
dc.rights Tots els drets reservats ca_ES
dc.subject.other Alzheimer, Malaltia d' ca_ES
dc.title Improving the Quality of EEG Data in Patients With Alzheimers Disease Using ICA en
dc.type info:eu-repo/semantics/conferenceObject ca_ES
dc.identifier.doi https://doi.org/10.1007/978-3-642-03040-6_119
dc.relation.publisherversion http://link.springer.com/chapter/10.1007%2F978-3-642-03040-6_119
dc.rights.accesRights info:eu-repo/semantics/openAccess ca_ES

Files in this item

Show simple item record

Search RIUVic


Browse

Statistics