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Abstract 
Structure-preserving image filtering is an image smoothing technique that aims to preserve 
prominent structures while removing unwanted details in natural images. However, relevant 
studies mainly focus on small variances/fluctuations sup- pression and are vulnerable to separate 
pixels connected by some low-contrast edges or cluster pixels which exhibit strong differences 
between neighbors in highly textured region. Inspired by the fact that the human visual system 
significantly outperforms manually designed operators in extracting meaningful structures from 
natural scenes, we present an efficient structure-preserving filtering method which integrates 
similarity, proximity and continuation principles of human perception to accomplish high-contrast 
details (textures/noises) smoothing. Additionally, a Liebig’s law of minimum-based distance 
transform is presented to seamlessly incorporate the three properties for the description of the 
filter kernel. Experiments demonstrate that our distance transform keeps a clustering-like manner 
of separating different image pixels and grouping similar ones with the awareness of structure. 
When integrating this affinity measure into the bilateral-filter-like framework, our method can 
efficiently remove high-contrast textures/noises while preserving major structures.
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1. Introduction 
In natural images, there exist various objects and back- grounds which truly represent rich visual 
information about the scenes of real world. However, noises, clutters and textures that will 
weaken the capability of image processing are also contained in these images. So as to eliminate 
these details without distracting the significant structure in the images, structure-preserving 
filtering method has attracted tremendous attention applied as a pre-processing step for many 
tasks in the field of computer vision and graphics, such as image abstraction/vectorization, image 
segmentation, image enhancement and content-aware image editing. Historically, Gaussian filter 
is the oldest and most commonly used method for filtering details. Nevertheless, it usually leads 
to blurs along sharp edges for only consider- ing the spatial relations between pixels at a constant 
rate in all directions. Bilateral filter [1] is then introduced to improve the blurring edges by 
controlling the kernel direction with the help of the partial image content. That is, the feature 
difference is utilized as a prior edge information to choose nearby similar pixels for averaging. As 
a result, dis- tinct edges are preserved in the filtering process. Bilateral- filter-like approaches, 
such as anisotropic diffusion filter [2], weighted least square filter [3] and L0 smoothing [4], 
commonly employ the contrast determined by the feature difference or gradient as the confidence 
of identifying edges and use this evidence to guide the filtering. However, textures/noises usually 
do not correspond to the low gradients/ contrast. In this case, the contrast-based definition of 
edges might fail to capture high-contrast textures that are related to fine-scale image details. In 
fact, the bilateral filter and its analogous methods cannot fully separate textured regions from the 
main structures as they regard the high-contrast texture as part of structure to be respected in the 
image. 


To address it, the total variation regularization filter and its extending versions [5, 6] are proposed 
on the basis that the total variation of the high-contrast details is distinctly higher than that of the 
structures in the image. This kind of structure-preserving filtering technique can produce 
impressive results for highly textured images, but it is typically slow. Based on the assumption 



that there exists a local linear model between the guidance image and the filtering out- put, He et 
al. [7] propose the guided filter to preserve the structures by taking the content of the guidance 
image into account. In addition, scale measurement [8–11] is introduced to distinguish structures 
from textures by observing that the two image components have showed large disparities within 
scales. However, designing a favorable scale-aware measurement is surprisingly difficult, due to 
the arbitrary scales, uncertain distributions of objects and textured background in natural scenes.

In the human visual system, it shows strong capability to effortlessly and efficiently separate 
meaningful structures blended with or formed by texture elements [12]. Encouraged by this 
mechanism, we believe that a further combination of the middle-level analysis and image filter- ing 
is a practical way to guide the decomposition of high- contrast details and prominent structures. 
Given that various approaches have been investigated for the awareness of visual content in 
recent years, for example, local-distribution-based filters [13–15] take the distribution or statistics 
of neighboring pixels into consideration, however, they may face some deviations from the original 
edges as a result of ignoring the global image geometric structures. Additional similarity metrics 
like geodesic or diffusion distance [2, 16, 17] instead of traditional Euclidean can enhance the 
ability of texture–structure separation to some extent; however, the two kinds of metrics may be 
disturbed in highly textured regions caused by the distances themselves.


In this paper, the Gestalt principles of grouping [18, 19] in human perception are introduced to 
better explore the structural relations for filtering the high-contrast details. Gestalt is a psychology 
term which refers to the principles of visual perception, and the gestalt theory attempts to 
describe how people reconstruct visual elements and organize them into groups or unified wholes 
with the use of certain laws, such as similarity, proximity, continuation, closure, symmetry and 
figure-ground. Specifically, the principle of similarity states that elements which share similar 
properties such as shape, color and orientation will be seen as belonging to each other, the 
principle of proximity means human beings tend to regard visual elements close to each other in 
spatial domain as a whole, and the principle of continuation holds that there is an innate tendency 
to perceive elements that are connected without abrupt changes as a perceptual whole in the 
human visual system. For bilateral-filter-like methods, they usually apply similarity and/or 
proximity principles to weight the filter kernel [1–4], and this may lead to some failures if there 
exist long-range texture regions in the image. The reason is that the kernel functions estimated by 
the similarity and/or proximity principles may miss some visual elements related to the 
continuation principle in the highly textured region for smoothing. Based on this, we propose a 
novel structure-aware method which includes similarity, proximity and continuation principles for 
filtering textures as well as small variations. In order to better explore these properties, we first 
regard the input image as an undirected graph, where the nodes are the pixels of the image, and 
the edges reflect the proximity between locally pairwise pix- els. By following the similarity, 
proximity and continuation principles between nodes on the graph, we perform analysis of the 
clustering path generation and its nonlinear distance transform to estimate the filter kernel. 
Experimental results demonstrate that our distance transform enables a cluster- ing-like-manner 
of minimizing intra-cluster dissimilarities and maximizing inter-cluster ones regardless of scales 
and distributions of the objects. When further integrated into a bilateral-filter-like framework, our 
filtering method is capable of extracting structures from natural scenes with highly textured 
regions.


In conclusion, the main contributions of our method are summarized as follows: (1) based on the 
similarity, proximity and continuation of the Gestalt principles of group- ing in human perception, 
we define the bottleneck distance transform based on the clustering path and highlight the visual 
relations between image elements. (2) We propose a structure-preserving filtering method, where 
the proposed minimum bottleneck distance transform is integrated into a bilateral-filter-like 
framework for defining the kernel weight. The experimental results demonstrate the performance 
of applying the proposed filtering method to remove high-contrast textures and noises, and 
preserve major structures in the image.




2. Related Works 
The basic strategy of edge-preserving image decomposition is to perform image smoothing and 
edge detection jointly. The unified formulations, differing in how to define edges and how the edge 
prior guides the filtering, aim to decompose a given image into structure and details. According to 
the definition of the detail, the image filtering approaches can be categorized into low-contrast 
and high-contrast ones. The low-contrast details mainly contain small variations or clutters in the 
image, while the high-contrast ones correspond to textures and noises.


1. Low-contrast details filtering 

Among all edge-preserving filtering methods proposed in recent years, the bilateral filter 
introduced by Tomasi and Manduchi [1] is likely to be the most popular one for its simplicity and 
effectiveness. Bilateral filter introduces both the spatial distance and color difference, respectively, 
estimated by the Gaussian kernel function, to determine the filtering weight. When the kernel is 
large, the brute-force implementation of the bilateral filter is very slow. Thus, various strategies 
[20–24] based on quantization, down-sampling or additional constraints on the spatial or range 
domain are proposed to accelerate the bilateral filter.


Theoretically, the bilateral filter is designed by a kind of filter kernel to measure the distance 
between two pixels in a local region, and this distance is then converted to the confidence of the 
edge awareness. Some studies attempt to improve this confidence by using better similarity 
metrics, such as geodesic [16] or diffusion [2, 17] distances instead of traditional Euclidean 
distances. More methods tend to pro- pose or introduce all kinds of theories to extract edges 
from the image, including anisotropic diffusion [2], weighted least square filter [3], edge-aware 
wavelets [25], guided image filter [7], non-local means filter [26], local Laplacian pyramid [27], L0 
smoothing [4] and domain transform filter [28] and so on. Anisotropic diffusion [2] employs the 
partial differential equation (PDE)-based formulation in which pixel- wise diffusivities are estimated 
from image gradients. These diffusivities prevent smoothing at image edges and aid to preserve 
important structures while eliminating noise and fine details. To balance the degree of filtering by 
forcing the image to be filtered except at regions with large gradients, Farbman et al. [3] define an 
edge-preserving objective function using the image gradients and regularize it with the weighted 
least square optimization. Fattal [25] achieves a fast filtering approach by using edge-avoiding 
wavelets, but the results seem noisy in most cases. Paris et al. [27] perform the edge-preserving 
filtering operation based on local Laplacian pyramid and demonstrate that their method can avoid 
artifacts over edges. Xu et al. [4] introduce a global L0-based optimization framework which uses 
the number of image pixels with nonzero gradient magnitudes as a regularization constraint. Since 
these methods derive from image gradients and aim to remove details with small gradients, most 
salient edges can be preserved or even enhanced in images.


Although the filtering responses differ from each other, the aforementioned bilateral-filter-like 
studies can effectively filter out low-contrast details in the image. However, they are very sensitive 
to high-contrast details (noises or textures) since they commonly use feature (color, intensity and 
brightness) differences or gradient magnitudes to distinguish details from structures. For some 
tasks where high-contrast details need to be removed, such kind of operator usually results in 
unsatisfactory image decompositions.


2. High-contrast details filtering 

The existing edge-detection-based filtering methods usually regard image edges signified by high 
image gradients as structures and may lead to the problem of falsely preserving textures or noises 
with large gradients. In order to filter such kind of high-contrast details from images, local-
distribution- based filters [13–15] look into the distribution or statistics (local histogram, second-
order statistics) of neighboring pixels rather than gradients or contrast. Although these filters can 
generally produce more smoothing results with sharp edges, they often face a problem of serious 
deviation from the original edges (especially at corners) since local histogram completely ignores 
image geometric structures.


The total variation model, one popular structure-preserving regularization framework, uses L1-
norm-based regularization constraints to penalize large gradients and demonstrates fairly good 



separation for structures from textures. Some studies extend this standard TV formulation with 
different norms. Buades et al. [5] propose a local total variation method and use a nonlinear low-
pass and high-pass filter pair to decompose an image into structure and oscillatory texture. 
Based on the key observation that the aggregation result of signed gradient values in a local 
window often has a large absolute value for major edges than for textures, Xu et al. [6] propose a 
relative total variation (RTV) measure to better capture the difference between texture and 
structure and then develop an optimization system to extract main structures. Their method can 
produce impressive results for highly textured images (especially for mosaic images or graffiti on 
textured materials), but it may excessively smooth the natural images.


Scale measurement is another way to distinguish the structure from texture/noises. Subr et al. [8] 
explicitly point out that details should be identified with the respect of the spatial scale, not the 
feature contrast. They then separate oscillations from the structure layer by constructing local 
extremal envelopes. However, simply employing the average of the maximal and minimal 
envelops to filter the natural image might suffer from great weakness when the image regions 
contain both textures and meaningful structures. Zhang et al. [9] propose a fast rolling guidance 
filter by designing one unique scale measure to control the level of details during filtering. This 
scale measure is useful when manual adjustment is required. Semantic filtering [10] seamlessly 
combines the recursive filtering and the learning- based edge classification together for fast 
scale-aware filter- ing regardless of the scales of the objects. Bao et al. [11] attempt to use the 
connectedness represented on a minimum spanning tree (MST) to distinguish small connected 
components (details) from large connected ones (major structures).


3. Path‑Induced Distance Mapping 

3.1. The Proposed Distance Transform 

Given that distance transform (DT) [29, 30] has been widely used as an effective tool for analyzing 
object geometry and morphology, we introduce this notion to exploit the structural connection of 
the image in this paper.


3.1.1. Graph Construction 

By treating an image I as a standard 4-connected, undirected grid (see Fig. 1b) with nodes being 
all the image pixels and edges between nearest neighboring pixels weighted by feature difference, 
a sparsely weighted graph G = (V, E) is constructed to represent the local relations between pixels 
[31, 32]. Specifically, the principles of proximity and similarity are coded in the graph by the edges 
and corresponding weights.


Fig. 1 (a) The image I, (b) shows its corresponding graph G, and (c) signifies one path on the graph with the end points highlighted by the blue 
and yellow color.




3.1.2. Distance Transform 

In the field of image processing, the distance transforms commonly take the image data into 
consideration. For most methods, the distance between each pair of image elements (pixels, 
superpixels, regions) is usually defined as the minimum cost of all paths connecting them, and the 
path cost functions for the paths are task dependent and have achieved satisfactory 
performances in segmentation and detection related applications.


Let any sequence of vertices denote the path from  to  
when  and  in the graph  (see. Fig. 1c), and for each 

, , . Given a path cost function  associated with 
any path  in the graph, the corresponding distance transform is defined as


 	 	 	 	 	 	 	 	 	 (1)


where  denotes a familiy of all paths in  from seed pixel  to . Usually, the definition of the 

path cost function  satisfies the following three properties.


a. Symmetry f (u → v)= f (v → u) 
b. Nonnegative f (u → v) ≥ 0	
c. Inequality f (u → v) ≤ f (u → t)+ f (t → v) 

where ,  and  are any nodes in the graph . In fact, the path cost function  can be defined 
according to the weights of arcs or vertexes. The geodesic distance [16] accumulates the weights 
of edges for all traversed pairs of nodes on the path. To handle uncertainty caused by sampling 
artifacts, illumination inhomogeneities in the image representation, the distance transform defined 
on fuzzy subsets has gained a lot attention [33, 34]. The fuzzy distance [33] is a measure of 
traversing the graph with minimal “local material density,” and the fuzzy connectedness [34] uses 
the weakest link of the path to define the path strength. The watershed segmentation algorithm 
[35] applies the maximal weight of the node on the path to define the path cost function. For the 
image foresting transform (IFT) [36], Falcao et al. state that the cost of a path in an oriented forest 
with all paths from the seed set to each pixel can be determined by any smooth path cost 
function (additive, max-arc, monotonic-incremental). Strand et al. propose the minimum barrier 
distance and formulate the barrier as the maximum of interval values among all nodes along the 
path [29, 30]. To sum up, different forms of edge or vertex weights have been studied to define 
the path cost functions, that is, 


1. The arc method 

For geodesic distance and IFT, the sum strategy is used, 


 	 	 	 	 	 	 	 	 (2) 

For fuzzy connectedness and IFT, they estimate the maximum weight of the edges, 


 	 	 	 	 	 	 	 	 (3)


π = < π (0), π (1), π (2), . . . , π (k) > s v
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π
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f (π)

∏
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G s v

f (π)

u v t G f (π)

fsum,arc(π) =
k−1

∑
i=0

| I(π (i + 1) − I(π (i ) |

fmax,arc(π) = k−1max
i=0

| I(π (i + 1) − I(π (i ) |



2. The vertex method 

For watershed, the maximum of vertex value is used, 


 	 	 	 	 	 	 	 	 	 	 (4) 

For fuzzy distance, the average of vertex values is applied


 	 	 	 	 	 	 	 (5)


For minimum barrier distance, the maximal interval of vertex values is calculated,


 	 	 	 	 	 	 	 (6)


The aforementioned path cost functions  have achieved varying degrees of success in 
measuring the connection values. However, they are sensitive to noises and textures in natural 
images. Under the geodesic and fuzzy distance frameworks, the path cost will strictly increase as 
the path grows, leading to false accumulation of small variations in cluttered regions. For the 
methods of watershed and the minimum barrier distance, the path cost may remain constant 
during the growth of the path until a new strong barrier is met on that path. Nevertheless, they 
may exaggerate the small difference in smooth but noisy regions since it they use the maximum 
value of vertex or the maximal interval of vertex values along the path. 


3.1.3 The Clustering Path‐Based Distance Measure 


Based on the assumption in data clustering that two objects which are assigned to the same 
cluster are either similar (compactness) or with high probability there exists a path from  to  over 
other mediating objects of this cluster where the dissimilarities of two consecutive objects are 
small (connectedness) [37], we extend this intra-cluster path to explore the Gestalt principle of 
continuation hidden in the image and call it the clustering path (c-path), that is, 





for  	 	 	 	 	 	 	 	 	 	 (7)





Equation (7) formulates that the clustering path is deter- mined by the constrain 
, which indicates that the differences between successive objects of the 

path do not exceed a given threshold value [38]. This idea is equivalent to the single linkage clustering 
method [39] described in pattern recognition and then renamed as the -connected components in 
image partitioning [40] or the quasi-flat zones in mathematical morphology [41]. 


fmax,vertex(π) = kmax
i=0

I(π (i )

faverage,vertex(π) =
k−1

∑
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I(π (i + 1) + I(π (i ))
2
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k

min
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I(π (i ))

f (π)

s v

∃πcluster = < π (0), π (1), π (2), . . . , π (k) > , ε → 0

∀i ∈ {0,1,...,k − 1}

πcluster ∈ ∏
s,v

∧ | I(π (i + 1) − I(π (i )) | < ε

| I(π (i + 1) − I(π (i )) | < ε

ε



As indicated in [39, 40], Eq. (7) is a less restrictive constraint to represent the connectivity relation 
between two objects and may suffer from the chaining effect. That is, if two distinct objects are 
separated by one or more transitions going in steps with a weight less than or equal to , they may 
falsely appear within the same cluster. Since then, more strong connectivity constraints methods such 
as global range parameter [42], gray-scale blobs [43] and connectivity index [40] have been proposed 
to limit the connection relations from the global perspective in the connected component. If we can limit 
the differences between every pair of nodes on the path to be smaller than a given threshold, Eq. (7) 
becomes 





	 	 	 	 	 	 	 	 	 	 (8)





Equation (8) defines a more restrictive clustering path named rc-path. Inspired by the Liebig’s law of 
minimum [44] in agricultural science that the capacity of a barrel with staves of unequal length is limited 
by the shortest stave, we apply the minimal similarities between the pair of nodes on the path to 
represent Eq. (8). Specifically, if the maximum edge weight of the path that connects two similar nodes 
can be limited to a certain value , we will get a favorable clustering path. In such way, Eq. (8) becomes 





	 	 	 	 	 	 	 	 	 	 

 	 	 	 	 	 	 	 (9)





It is obvious that the minimal clustering path (mc-path) described in Eq. (9) is determined by two 
constraints. The first one means that the differences between 

consecutive objects (the edge weight) cannot exceed a fixed value, and is used to represent the 

connectedness. The second one  indicates that if  is within a 

cluster, the maximal differences between the objects should be lower than the pre-defined value 
. 


From the perspective of the distance transform, Eq. (9) can be rewritten as 


        (10)


 
where  is an operator to compute the cost on each path . We can use multiply, sum or other 
complex operators to define it. In fact, Eq. (10), the distance transform based on the minimal clustering 
path, can be defined as the mc-DT. Usually, the chaining effect [39, 40] occurs when the transitions 
between consecutive objects go in steps toward the same gradient direction along the path. As a result, 
the difference between the endpoints of the path will be larger than all edges’ weight due to the 
accumulation of the transitions between the mediating nodes on the path. To this point, it is with high 
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probability that the nodes with the maximal and minimal values will appear at the end point of the path 
 or . Then, Eq. (10) can be simplified as 


 	                         (11)


We can apply Eq. (11) (simplified mc-DT) to explore the Gestalt principle of connectedness hidden in 
the image for image filtering methods. If image pixels are similar, close and connected to each other, 
they will share low  values. If two neighboring pixels  and  have similar features, the 
corresponding transform value  will be small. If similar pixels  and  belong to disjoint 
regions,  will be large. Given that the bilateral-filter-like framework [1, 11] has regarded 

as an individual factor to measure the similarity between image pixels, so we only 
use the maximum edge strength of each path to define the connectivity in this paper: 


. 	 	 	 	 	            (12)


Due to the usage of the maximum strategy to define the distance, the path cost function in Eq. (12) is 
similar to the  distance between a pair of pixels or the function applied in fuzzy connectedness. For 
the notion of the maximum strength on a path, we redefine it as a bottleneck for describing the 
limitation specified by the Liebig’s law of minimum. Consequently, we call the distance transform 
defined in Eq. (12) the minimum bottleneck distance in the rest of the paper, for representing the gestalt 
principle of connectivity between each pair of nodes in the graph. 


3.2 Analysis  

3.2.1 Computation Analysis  

For generating a clustering path between a pair of nodes, the obvious way is to traverse the whole 
graph to find all paths that connect the two nodes, and then select one with the minimum largest edge 
strength. However, the computation load is high. As proved by J. Gower and G. Ross [39], the path for 
a pair of nodes on the MST is a single linkage clustering path for the two nodes on the graph. Thus, the 
problem of traversing all paths can be solved by extracting the MST for the graph [45]. 


To construct the corresponding MST on the graph, we use the priority queue data structure to efficiently 
conduct the Prim’s algorithm [46], as indicated in [11]. The structure is based on the image with pixels 
changing from 0 to 255 and includes a bitset and 256 doubly linked lists. The bitset has a size of 256 
with bit value 0 or 1 and is used for tracking the minimal edge cost on the graph. Each doubly linked list 
i saves the edges with weight i. By applying the structure, the Prim’s algorithm runs in the linear time 
with O(|E| + |V|). By constraining the image to be 4-connected, undirected graph, the time complexity of 
the Prim’s algorithm runs in O(|V|) and is linear to the number of pixels in the image. 


3.2.2 DistanceAnalysis  

To highlight the results of the proposed distance transform in measuring the topological connectivity 
regardless of noises and textures, we conduct the comparisons of different path cost functions on the 
MST instead of the weighted graph, due to the only one path between each pair of nodes on the MST. 
In this section, Prim’s algorithm [46] is applied to construct the tree from the graph. 


Taking efficiency and visualization into consideration, we use the superpixels [47] instead of pixels to 
construct the undirected graph for the image. In the graph, each super- pixel is only connected with its 
spatial neighbors, and each edge is weighted by the color difference between the mean values of the 
two superpixels in the CIE-Lab color space. Then, we can achieve distance transforms by applying the 
different path cost functions on the generated MST, and the resulted affinity matrix D represents the 
relations between each pair of superpixels in the image. In order to visualize these distance transforms, 
we introduce the MDS (multidimensional scaling) method to project the D into a three-dimensional 

(π (0) π (k))

DT (s, v) = min
π∈∏x,y

{( k−1max
i=0

| I(π (i + 1)) − I(π (i )) | ) ⊙ ( | I(π (0)) − I(π (k)) |}

DT (s, v) s v
DT (s, v) s v

DT (s, v)
| I(π (0)) − I(π (k)) |

DT (s, v) = minπ∈∏x,y
{( k−1max

i=0
| I(π (i + 1)) − I(π (i )) | )

l∞



feature space (x, y, z), which is normalized into [0, 255]. The normalized coordinates (x, y, z) are then 
used as the RGB values (i.e., R=x,G=y and B=z) to fill each superpixel in the image. The pixels painted 
by similar colors in the image describe the close relations in the feature space. Algorithm 1 
demonstrates the pseudo-code of generating the mapping images. 


Algorithm 1: Pseudo-code for different distance transforms on MST 

In this section, the traditional Euclidean distance is applied as a comparison for estimating the 
dissimilarities between image elements, even though it only considers the similarity law. Figure 2 shows 
the visualization of the mapping results generated from the Euclidean, geodesic, fuzzy, minimum barrier, 
distance [11] and our minimum bottleneck distances on synthetic and natural images. By visual 
assessment, we note that the geodesic distance and fuzzy distance may accumulate the transitions in 
the homogenous image region, resulting in inconsistent description for the same or connected region 
(the synthetic texture image on the first row); the minimum barrier distance may describe disjoint 
regions with similar color (the two blue regions around the nose for the mandrill on the fifth row) due to 
the ignorance of the mediating variations along the path, the tree distance can lead to different 
representation for adjacent image elements with similar features on account of the excessively long tree 
path (the sky region on the eighth row). All in all, it is clear that the proposed distance transform follows 
the Gestalt grouping laws to represent the relationships between image elements regardless of textures 
and noises. That is, the minimum bottleneck distance can achieve consistent description for image 
elements in the same or connected region. Image elements that are similar and adjacent share the 
same representation, and similar image elements that belong to disjoint regions have different 
descriptions.




 

Fig. 2 The mapping results attained from different distance transforms. a is the original image, and b–g, respectively, show the 
description achieved by Euclidean distance, geodesic distance, fuzzy distance, minimum barrier distance, tree distance and our 
minimum bottleneck distance




3.2.3 Leak Problem of MST  

Given the facts that MST can automatically drag away dis- similar pixels that are close in the spatial 
domain, and connect the small isolated region to its surrounding, Bao et al. [11] use the tree distance 
(the length of the path on the MST) to define the weight for perceive the structures from all edges in the 
image. However, this kind of edge-aware metric may face “false edges” (refers to large tree distance for 
pixels belonging to the same region) and “leak problem” (nearby dissimilar pix- els may have short tree 
distance due to the forced connection on the MST) [11, 48, 49]. 


To solve the problem of leak issue, Danda et al. [48] introduce the UMST filter by extracting all MSTs, 
instead of one MST from the graph to define the weight, and prove that the UMST filter is the limit of 
filtering methods based on the shortest path (the geodesic filter [16], morphological amoebas [50]). 
However, the shortest distance for each pair of nodes is based on the accumulation of the weights of 
edges for the two nodes on the shortest path and may lead to inconsistent distance for nodes in the 
same region. 


For illustrating the difference between the tree, the shortest and the minimum bottleneck distances in 
dealing with false edges and leak problem, we apply the ranking map, where the value of each node 
refers to the distance from the root node (the top-left image superpixel). To calculate the shortest 
distances between the root node and other nodes in the graph, we first generate the shortest path 
between them and then accumulate all edge’s weights on the shortest path. For the tree and the 
minimum bottleneck distances, we first extract the corresponding MST from the graph and regard the 
node on the top-left of the image as the root of the tree. For the paths between the root and other 
nodes on the MST, we, respectively, compute the number of edges and the maximum edge weight of 
the path. These values are then normalized into [0, 1] and assigned to each node in the image. 


The ranking values can serve as a good visualization tool for inspecting the difference between tree 
distance, the shortest distance and the minimum bottleneck distance. As shown in Fig. 3, our proposed 
distance transform can deal with the false edges and leak problem caused by the tree distance with- 
out missing the advantages that the tree distance has demonstrated. For each pair of pixels in the same 
cluster with large tree distance, their minimum bottleneck distance is small as we do not accumulate 
the length of the path. For nearby dissimilar pixels connected by short tree distance, we use the feature 
affinity to estimate the distance and the result presents the large difference between them. Compared 
with the shortest distance, the proposed distance transform can produce consistent ranking values for 
regions with changing variations. In conclusion, our minimum bottleneck distance shows promising 
performance in edge-aware than the tree distance.  





Fig. 3 (a) Three images with homogeneous image regions. The gray-scale value of a pixel in (b), (c) and (d) shows its ranking value, a distance 
from the pixel to the top-left corner along a path. b–d are generated by applying the tree distance along the MST path, the geodesic distance 
along the shortest path and the minimum bottleneck distance along the MST path, respectively.


4 Structure‐Preserving Image Filtering  
Bilateral filter typically defines a simple monotonicity of the Euclidean distance between pixels in spatial 
and color spaces to calculate the similarity between low-contrast details and structures. However, this 
commonly used pairwise distance provides only partial information about the manner in which pixels 
should be clustered/ separated (highly textured regions should be clustered together for filtering, not 
separated), and does not work well when high-contrast details need to be smoothed. As demonstrated 
in Sect. 3, our minimum bottleneck distance, which accounts for gestalt grouping laws between the 
data points in the feature space, can serve as an effective structure-aware metric to estimate pixel 
affinity with a valuable global perspective of the clusters present in the feature space. Inspired by this, 
we aim to explore an automatically edge-aware filtering method by further integrating this high-level 
image understanding into the bilateral-filter-like manipulation. In order to reliably incorporate the 
minimum bottleneck distance into the definition of the filter kernel, we introduce the concept of trust 
mechanism in the wireless sensor network, where the behavior of a node is predicted by collecting 
preferences of other nodes with similar behaviors [51]. 


4.1 Definition  

For each pixel i in image I, the output Si of the bilateral-filter- like method is calculated by 


 	 	 	 	 	 	 	 	 	 	            (13) 


In this paper,  is the set of all pixels in the whole image and  is the trust weight of pixel  
contributing to , which is defined as 


Si = ∑
j∈Ω

wi( j )Ij

Ω wi( j ) j
i
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where  is the bilateral weight of pixel  estimated from its neighboring pixel ,  is the cluster 
weight of pixel  contributing to the center pixel i, and ,  and  are three Gaussian 
weighting functions in spatial, range (color) and transform (minimum bottleneck distance) spaces, 
respectively. 

 

In addition, it can be proved that sum of all colaborative filtering weights   for each pixel  

equals 1. According to Eqs. (13) and (14), we know that . Since  is 

uncorrelated with ,  can be rewritten as . In Eq. (14), Gaussian 

function is applied to define  and . In other words, we can get  and  

. Therefore, .


4.2 Explanation  

For the filtering weight from each pixel  to center pixel , previous methods directly apply the 
relationship/affinity between the two pixels, and they are sensitive to noises or textures. In this paper, 
we apply a collaborative filtering method which uses as-many-as-possible neighbors of pixel  to jointly 
determine its contribution to the weight of center pixel . Specifically, to compute the contribution from 
pixel  to center pixel , we first choose neighbors of . If j has close relations with its neighboring pixel , 
we then adopt the contribution of  to , and vice versa. Finally, the selected neighboring pixels  are 
joined together for measuring the weight of pixel  to center pixel . The bilateral filtering approach is 
used to select nearby similar pixels, and this bilateral weight  is attenuated with the increase of 
either spatial or range distance. Cluster weight  is used to decide whether the neighbors of pixel  
and the center pixel  follow the same geometric manifold. If they belong to the same cluster, the 
filtering confidence will be strong. As shown in Fig. 4, we note that the contribution from  to i is not 
simply achieved from pixel  itself, but indirectly deduced by combining all the decisions from its similar 
neighbors. The reason is that we will accept the final decision only when the majority of neighbors 
follow the same manifold with the center pixel. 
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Fig. 4 Illustration of the collaborative filtering that pixel j contributes to center pixel i. N(i) is the set of neighbors for pixel j


From the perspective of filtering high-contrast details,  chooses the nearby, similar and 
consecutive pixels generated from the Gestalt principles of grouping to filter the center pixel. Similar to 
the bilateral filter, our method can produce favorable results in filtering noises without blurring edges in 
the image, by taking the similarity between image pixel into consideration. As indicated in Eq. (14), the 
range distance, the spatial distance and the minimum bottleneck distance are integrated for assisting 
the construction of the bilateral-like filter kernel. For example, assuming that pixel  is located on the 
edge, if the difference between i and its neighboring pixel j is large, the filtering weight that  contributes 
to  will be small. By this means, the proposed method can smooth noises while preserving edges. 


In addition, the proposed filter outperforms the tree filter and UMST filter in removing high-contrast 
textures. For pixels in a highly textured region, they usually exhibit strong differences between 
neighbors. As indicated in Eq. (12), the Gestalt-grouping-based minimum bottleneck distance is 
determined by the largest edge weight along the path. That is, it will ignore other smaller edges’ weights 
on the path when estimating the minimum bottleneck distance for pixels in the highly textured region. 
As a result, we can achieve consistent distance description between all pixels inside textured regions. In 
other words, small edge weights are filtering out. As a result, the proposed filter, where minimum 
bottleneck distances play an important role, is able to smooth pixels in textured regions by following the 
Gestalt principles of grouping. However, the tree filter (path length) and UMST filter (geodesic distance) 
will take different pixels inside the same textured region as different, leading to large distances between 
pixels. As described in Sect. 3.2.2, we note that the tree distance and geodesic distance can yield 
inconsistent description for similar image elements in a large homogenous region due to the excessively 
long path on the tree and the accumulation of the transitions in the region. 


4.3 Analysis  

In fact, the calculation of the filtering results can be rewritten as 


. 	 	 	 	            (15)


Set


 	 	 	 	 	 	 	 	 	 	            (16)


Then, 
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Thus, the computation of the filtering outputs can be divided into two phases. First,  is the typical 
bilateral filter technique and has many fast approximation versions. In this paper, we employ one simple 
and fast implementation proposed by [22], where the down-sampling of the convolution computation is 
processed in high-dimensional space to reduce the complexity. As for the estimation of the minimum-
bottleneck-distance-based filtering process in (16), we follow the work [52] by traverses the whole tree 
from leaf nodes to root node and then from root to leaves. The computational complexity of this 
approach is linear to the number of image pixels. Algorithm 2 demonstrates the pseudo-code of 
generating the filtering output. 


Algorithm 2: Pseudo-code for filtering


5. Experimental Results  

5.1 ParametersSetting  

In this paper, there are three parameters: ,  and , required to be predefined, respectively, for 
calculating the filtering kernel. The  determines the selection of neighboring pixels in the spatial 
domain, and the  chooses similar pixels in the feature domain. As stated in the bilateral filter [1],  is 
measured by the pixel number and  is a real number between 0 and 1. The  controls the choice of 
pixels that belong to the same cluster in the manifold space. Similar to the Euclidean distance in feature 
space, the measurement of the minimum bottleneck distance also satisfies the basic principles in the 
transform domain. For this reason, the  is also set between 0 and 1. 


However, it is still difficult to simultaneously balance all three parameters for achieving satisfactory 
filtering results. In order to select pixels as similar as possible for collaborative filtering, we fix the range 
parameter  to a small value since a large  may undesirably assign large weight to some dissimilar 
pixels. As a result,  is fixed to 0.05 for producing all the experiments results in this paper. Then, the 
spatial variable  is tuned with the cluster variable  to achieve different degrees of smoothing. 


5.2 Experimental Comparisons  

5.2.1 Results Under Different Parameters  

Figure 5 shows the filtering results of the lamp image achieved by changing the parameters  from 0.01 
to 0.8 and  from 2 to 8. Given a fixed value to the cluster parameter  (the same column from top to 
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down), we note that larger spatial parameter  can produce more smoothing results than smaller ones. 
The reason is that more faraway pixels are allocated to higher weights for smoothing (similar to 
Gaussian filter). However, some prominent edges are overly filtered, resulting in blurry edges. On the 
contrary, if a small  is chosen (less pixels participate in the filtering process), some textured details will 
be retained. In fact, the trade-off of  controls the choice between detail-filtering and structure-
preserving. As described above, higher  means more details filtering, while lower  indicates more 
edges preserving. In this paper,  is set to 3 for the following comparisons. 





Fig. 5 Filtering results generated from varying parameters . and .s 


As indicated in Fig. 5, the larger the cluster parameter ., the smoother the regions are. This is because a 
larger allows more neighbor pixels inside a region to interact with each other for filtering. 
Consequently, the homogeneous region may be falsely filtered by involving more dissimilar pixels 
outside the region. In this case, the cluster information does not work, and largely blurring regions may 
occur in the whole image. However, if  is set too small, insufficient pixels in the cluster will be chosen 
for filtering textured regions. Hence, the selection of  may control the number of pixels required for 
smoothing. As demonstrated above, higher  means large-scale filtering, while lower . indicates more 
structures respecting. In this paper,  is set to 0.1 for all the following experiments. 


5.2.2 Qualitative Comparisons of Different Methods  

As the evaluation of the structure-preserving filtering is subjective, relevant researches are usually 
assessed by the visual evaluation. For comparison, we choose bilateral filter, bilateral-filter-like methods 
(anisotropic diffusion filter [1], L0 smoothing filter [4]), local-histogram-based filter (region covariance 
filter [15], local-extrema-based method [8]), structure-preserving methods (relative total variance [6]) and 
non-local-geometry-based methods (non-local means method [26], tree filter [11]) in this paper. Figure 6 
visually shows the comparisons of the proposed structure-preserving filter with the above state-of-the-
art ones on a baboon image, which is full of high-contrast details that need to be smoothed out. Since 
the bilateral filter and its analogous ones apply the contrast/gradient to distinguish detail from 
structures, the highly textured regions are usually regarded as edges and not removed (see Fig. 6b–d). 
The local-histogram-based filter, which relies on local statistics of an area to separate textures and 
edges, generates smoothing results in textured regions. However, there exist serious deviations near 
the sharp edges (the edge along the red nose in Fig. 6e) since the topology information is totally 
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neglected by this strategy. Instead of using the direct distribution in a local window, the local-extreme-
based method exploits both the maximum and minimum values to smooth the details, also leading to 
distinct deviations across prominent edges (shown in Fig. 6f). In Fig. 6g, we note that highly textured 
regions have been consistently filtered by the relative total variation measure. Nevertheless, the edges 
are excessively flattened, especially at the corners. As for the tree filter, leak problems still happen near 
the sharp edges since the tree distance con- siders nearby dissimilar pixels with hard edges having 
short tree distance on the tree (demonstrated in Fig. 6h, the small region between nose and beard has 
been contaminated by the red color). Figure 6i shows the results produced by the non-local means filter, 
which explores global similar patches for smoothing. Although it presents favorable performance in 
saving important edges, the textured regions cannot be handled effectively. It is clear that our filter not 
only removes the details in textured region, but also successfully avoids the problem of leaking 
distance. 





Fig. 6 Filtering results generated by comparing the proposed filter with the state-of-the-art ones under the default parameter settings 
published by authors. (a) Original image. b Bilateral filter. (c), (d) Bilateral-filter-like methods, anisotropic diffusion filter and L0 smoothing filter. 
(e), (f) Local-distribution-based methods, region covariance filter and local extrema filter. (g) Relative total variance filter. (h), (i) Non-local- 
geometry-based methods, tree filter and non-local means filter. (j) Our approach




Recently, the learning-based filter [10] has been employed as a prior to preserve major structures while 
removing details and achieved high-quality filtering results for textured images. Figure 7 shows more 
comparative results among the bilateral, relative total variance, tree, learning-based and our filters on 
other two images. It is obvious that both the relative total variance and the learning-based filters can 
produce flattened regions in highly textured areas. However, the meaningful edges have been extremely 
filtered too (see Fig. 7c, e). As demonstrated in Fig. 7d, the tree filter fails to uniformly smooth the hair 
region because the tree distances are incorrectly accumulated in a large scale of region caused by the 
false edges problem. We observe that our method not only filters the high-contrast textures but also 
preserves significant edges in the image. 





Fig. 7 Filtering results on two other images. (a) Original image, (b) bilateral filter, (c) relative total variance filter, (d) tree filter, (e) learn-based filter 
and (f) ours


5.2.3 Quantitative Comparisons of Different Methods  

To quantitatively validate the effectiveness of the proposed filtering method in removing textures and 
preserving structures in the image, we apply the Sobel operator to extract the edges from the original 
and filtered images, respectively, as shown in Fig. 8c–h. The bilateral filter, tree filter, relative total 
variance filter and learned- based filter are chosen for filtering the original image. It is clear that the 
textures have been filtered in different degrees. Then, we compare the detected edges with the labeled 
edges from human beings to generate the precision–recall curve, for further evaluating the performance 
of different filters in assisting the boundary detection. As shown in Fig. 8k, we note that the learning-
based filter has achieved the best performance for boundary detection, and the proposed method gets 
the second-best one. One possible reason is that the learning-based method is formulated by applying 
the pre-detected edges.  





(e)                 (f)                           (g)                                      (h) 




           
                                                 (i) 

Fig. 8 Boundary detection. (a) Original image, (b) ground truth, (c) Sobel, (d) bilateral filter + Sobel, (e) tree filter + Sobel, (f) relative total variance 
filter + Sobel, (g) learn-based filter + Sobel, (h) ours + Sobel and (i) shows the PR curves for different filtered based boundary detection 
methods.


Moreover, we add synthetic structured noise and random noise including Gaussian, salt and pepper, 
Poisson and speckle noises of various scales into the Lenna image (see Fig. 9), and then calculate the 
SSIM values to evaluate the performance of denoising and preserving structures. The experimental 
results are shown in Table 1. For the bilateral filter, it can attain good SSIM values for Gaussian, Pois- 
son and speckle noise, but its performance drops sharply as the variance  of the salt and pepper 
noise and the amplitude A and angular frequency  of periodic noise increase.  

(a) (b) (c) (d)

σ
ω



Table 1 SSIM values for different methods under different noise of various scales  



Compared with the tree filter, the proposed method is capable of improving the performance of 
denoising. In addition, it can achieve favorable results on the random and structured noises at various 
scales. For the structured noise, we note that the learning-based filter can achieve promising results. 
The reason is that the learning-based method applies the pre-detected edges to accomplish the 
structure preserving and noise filtering (Table 1). 





Fig. 9 Different noises added into the Lenna image. (a) Lenna image, (b) Gaussian noise with σ = 0.05, (c) salt and pepper noise with σ = 0.05,
(d) speckle noise with σ = 0.05, (e) Poisson noise and d periodic noise with amplitude A = 60, angular frequency ω = 30 


5.3 Applications  

1. Scene simplification 


According to [12], human beings primarily tend to perceive the overall structural information, not the 
individual details in natural scenes. Stimulated by this, the authors [53] have obtained enhanced results 
of detecting salient regions in images by applying the relative total variance filter to work as pre-
processing step in saliency detection. In fact, the scene simplification can be used as an effective tool 
for many applications in the field of computer vision. For simplicity, we compare the detected saliency 
maps (the saliency detection approach based on discriminative regional feature integration [54] is 
introduced here) generated by utilizing the original image and its filtered version, respectively. Figure 10 
presents the results applying the filter or not. It is clear that the saliency map generated by the filtering 
operation is much more uniform and consistent. The reason is that the main idea of estimating the 
saliency is based on the feature contrast and the filtering assists in removing most of the trivial details 
which will decrease the effectiveness of calculating the contrast. 




Fig. 10 Saliency maps produced by using the filtering process or not. (a) Original image, (b) filtered image, (c) and (d), 
respectively, present the saliency maps generated from (a) and (b). 


2. Texture editing and image composition 


Apart from simplifying the natural images for further process, we can also modify the texture layers to 
create different visual impressions. Two examples of texture editing are included in Fig. 11a. The top 
image shows the result of adding the structure layer and contrast-enhanced texture layer together. The 
bottom one illustrates the result of replacing the original grid texture layer by integrating the new rain 
drops texture into the structure layer. We note that the texture pat- terns are nicely separated from the 
images by our method, and the newly created images can yield favorable visual effects. 


Due to the incompatibility between the source and target textures, paintings, drawings and graffiti 
images sometimes cannot be seamlessly recomposed by directly cloning these source images into the 
target ones in image composition. In this paper, we apply the mixing-gradient Poisson cloning method, 
which locally selects the maximum gradient from the source and target image for fusion [55]. As shown 
in the top row of Fig. 11b, just compositing with the source image does not produce visually reasonable 
effects. The reason is that the two textures are incompatible with different texture patterns. It is evident 
that the results are more natural and favorable if we only merge the structure layer of the source image 
into the target one (see the bottom row in Fig. 11b). 







Fig. 11 The illustrations of the texture editing and image composition results. The left two images in (a) demonstrate the texture enhancement 
and texture replacement, respectively (original image, filtered image and created image). The images in (b) show the image composition 
results. The top two are original image and its composition one, and the bottom two correspond to the filtered image and its composition.


6 Conclusion  
Observing the phenomenon that dissimilar regions may be connected with low-contrast edges and 
nearby pixels with similar pattern show large disparities in highly textured regions, it is particularly 
difficult to devise a favorable structure-aware image filter since there is not a perfect solution for 
obtaining all ideal edges from natural images of high complexity. For this reason, we propose a novel 
cluster kernel which takes the similarity, proximity and continuation principles of human perception into 
consideration for describing the structural relations between pixels. Our filter kernel shows strong 
strength in allowing those pixels with high consistency to be grouped together for averaging without 
simply relying on the feature contrast or gradients. In order to better integrate this cluster prior into the 
traditional bilateral-filter-like framework, we follow the concept of the trust-based mechanism for 
wireless sensor network in this paper. It is a favorable combination method since more decisions from 
similar neighbors are collected and used for filtering. The experimental results demonstrate the 
advantage of applying the collaborative model in preserving the meaningful structures and filtering the 
trivial details. 


Furthermore, we propose the minimum bottleneck distance to quantitatively define the structural 
relations which includes similarity, proximity and continuation principles. It outperforms some existing 
distance transforms in minimizing intra-cluster dissimilarities regardless of noises and textures. Based 
on this, it can be applied in many applications involving affinity definition, such as clustering, image 
segmentation and image representation and so on. 
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