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Abstract: In natural images, it remains challenging to estimate dissimilarities between image elements for scene representation
due to gradual variations of illuminations, textures or clutters. To tackle this problem, we utilise a path-based bottleneck analysis
method that captures the semantic information between image elements to measure the dissimilarity. By integrating both the
spatial continuity and feature consistency into the understanding of the semantic information, we detect the bottlenecks on the
proposed double-S path to define the bottleneck distance, which demonstrates a favourable capability of grouping image
elements that follow a similar pattern and separating different ones. In the experiments, the method is proved to be robust to
noises and invariant to changing illumination and arbitrary scales in natural images. Tests on some challenging datasets validate
the advantage of applying the path-based bottleneck distance in image ranking and salient object detection.

1 Introduction
Scene representation is a well-studied problem in computer vision
and has benefited various applications including background
modelling [1], image segmentation [2, 3], image retrieval [4–6],
data clustering [7, 8] and salient region detection [9–12]. The
estimation of dissimilarity between two elements is a fundamental
question to be considered for understanding the middle-level
semantic information in natural scenes and has attracted
tremendous attention in past few decades [6, 8, 13–19]. Although
there have been successes with previous approaches, the
discrimination of the within- and between-class dissimilarities in
scene representation remains a challenge owing to factors
including gradual variations of illumination and clutters.

There has been considerable research on the estimation of the
similarity/dissimilarity between visual elements in the scene. In
computer vision, the distance metric is one of the commonly
applied methods [20]. The pairwise Euclidean distance or
Manhattan distance has been widely adopted to measure the feature
difference between different samples. However, it has been
suggested that they can be noise-sensitive and may not be
appropriate for data analysis since the above two-distance metrics
are based on the assumption that the data distribution is Gaussian
or Exponential from the perspective of the maximum likelihood [4,
21, 22]. Therefore, finding a suitable distance metric remains a
problem when the distribution is irregular or even unknown.

The geodesic distance (GD) has been applied to capture the
intrinsic geometry manifold of the underlying data, which is
computed efficiently by finding shortest paths on a connected
graph with edges connecting neighbouring objects [23].
Nevertheless, when gradual changes caused by the varying
illumination or noises (outliers), the GD metric can be semantically
misleading for separating two classes since small gaps are
accumulated along the path within the same class [24]. Omer and
Werman [18] then applied the bottleneck geodesic metric to
measure the affinity between image elements. By comparing the
robust histogram density differences between feature points to
define the bottleneck value on the shortest path, they achieve better
results than the GD in terms of the segmentation performance.
However, the shortest path it relies on mainly focuses on the
overall connectivity instead of the local smoothness along the path,
which may result in the absent of the meaningful changing when
gradual variation occurs. Fischer et al. [2] proposed a path-based

dissimilarity measure (or similarity in [3]) to emphasise the intra-
cluster connectedness property for data clustering, based on the
observation that two objects which are assigned to the same cluster
are either similar or there exists a chain of mediating objects which
the two consecutive objects in the chain are similar. If two objects
belong to the same cluster, the dissimilarity is defined as the largest
edge cost on the minimal intra-cluster path connecting the two
objects on a full graph. However, simply applying the largest edge
cost to estimate the dissimilarity may miss some important spatial
topological relations and feature variations of objects between and
within clusters. Strand et al. [25] introduced the minimum barrier
distance that constitutes the smallest interval value containing all
nodes along the path, to measure the dissimilarity for a pair of
nodes. In fact, the minimum barrier distance may exaggerate the
small difference in uniformly textured regions since it only uses the
values between the maximum and minimum.

In addition, some other metrics have been studied to estimate
the similarity/dissimilarity between image elements in different
applications. Observing the facts in clustering that spectral theory
shows favourable performance in finding clusters of arbitrary
shapes and structures, but fail to handle datasets with cluttered
backgrounds, and the dominant sets can deal with the background
noises well, but tend to favour compact groups, Zemene and Pelillo
[8] propose the path-based dominant-set clustering method which
applies the path-based similarity measure for structure simulation
and dominant-set for noise control. For saliency detection, Guan et
al. [26] consider that the two-stage strategy applied in the graph-
based manifold ranking model ignores the correlation between
background and foreground cues. Instead of it, they propose a one-
stage method to simultaneously optimise the saliency of the
background and foreground regions. Hu et al. [27] propose a deep
level set learning network to achieve compact and uniform saliency
maps with accurate boundaries by modelling the semantic
properties from the deep network. Liu et al. [28] regard the
saliency detection as the two-stage graph optimisation process
from a coarse-to-fine perspective, where the first stage uses a
weighted joint robust sparse representation model to provide a
coarse level map, and the second stage integrates a new regionally
spatial consistency with the traditional adjacently spatial
consistency to refine the coarse saliency map, thus assuring the
uniform saliency assignment in complex scenes. Zhang et al. [12]
efficiently combine the Laplacian sparse subspace clustering and
unified low-rank representation to extract large-size salient objects
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in cluttered images, based on the relations (similar saliency values,
representation coefficients and reconstruction errors) between
spatially adjacent superpixels within the same cluster. In the field
of the scene representation, Wan et al. [29] propose the fully
convolutional representation learning model to use the structural
and visual information (RLSV) in scene graphs via jointly
structural and visual embedding for predicting new relations and
completing scene graphs. Dai et al. [19] introduce an integrated
deep relational network to tackle the problem of reasonably
recognising the relationships among objects, and exploiting the
statistical dependencies between them. Elhoseiny et al. [30] think
that all facts of images such as objects, attributes, actions and
interactions can benefit the uniform and generalisable
understanding of the visual scenes. Based on this, they propose a
structured way to simultaneously learn the visual facts in the
image. In image retrieval, Lu et al. [31] propose a new deep
hashing method for image retrieval, which utilise the deep network
for training the target hash code generated from the relations
between images of different contents. Observing the shortcomings
of the squared Euclidean loss function applied by the vector
quantisation techniques in efficient similarity search, Guo et al. [6]
introduce a novel vector quantisation to enhance both the
robustness and generalisation for similarity search. Wu et al. [32]
propose a self-supervised deep multimodal hashing method for
large-scale cross-media search by learning unified hash codes and
deep hash functions, and in the meantime, a new discrete
optimisation strategy-binary gradient descent to improve the
efficiency of training.

This study proposes a path-based bottleneck analysis method,
which depends on both the data manifold and the feature
consistency, to measure the semantical dissimilarity between image
elements of natural images. The method begins with constructing
an undirected graph to simulate the intrinsic geometric
relationships between different elements, followed by a path
analysis to generate a double-S path between each pair of elements.
The dissimilarity is then determined by the bottlenecks on the path
and is capable of expressing the semantic correlations between
image elements, which shows promising strength in minimising
intra-class dissimilarities and maximising extra-class dissimilarities
regardless of the scales and distributions of image regions.
Different from some clustering-like methods where within-class
dissimilarities are ideally neglected, the proposed approach is able
to preserve certain important semantic information within class.
The experimental results demonstrate the high accuracy and
robustness of the proposed path-based bottleneck analysis in
applications of image ranking and saliency estimation, and,

especially, its capacity to handle images with gradual variations of
illumination and clutters.

In conclusion, the main contributions of our method are
summarised as follows: (1) The path-based bottleneck analysis
method relying on both the data manifold and feature consistency
is proposed to highlight the semantic relations between visual
elements for image representation. (2) The double-S path is
generated for each pair of elements in the image and we then apply
the bottleneck detection approach to accumulate critical edge
weights on the double-S path to provide a reliable distance measure
for estimating the dissimilarities between visual elements. In
addition, the experimental results demonstrate the performance of
utilising the proposed scene representation for image ranking and
salient region detection.

The rest of this paper is organised as follows: Section 2 presents
the path-based bottleneck detection for semantic dissimilarity
estimation. Section 3 exhibits the experiments on natural images
with applications to image ranking and salient region detection.
The conclusions are given in Section 4.

2 Proposed method
The emphasis of this section and the major contribution of this
paper are the path generation and bottleneck detection to establish
the semantic correlations between image elements. The proposed
method extracts superpixels and uses them as the basic elements
for image description and representation. The dissimilarity is then
determined by the detected bottlenecks on the path and utilised for
scene representation.

2.1 Graph construction

As shown in Fig. 1, an undirected weighted graph G = (V, E) is
constructed to describe relationships between image elements,
where V is a set of nodes and E is a set of edges. For computational
efficiency and perceptual representation, the nodes are visually
homogeneous superpixels generated by applying the simple linear
iterative clustering (SLIC) algorithm [33]. The emphasis of the
graph construction is to determine which elements are neighbours
and the weights of connected edges. In the study, each image
element is connected to its k nearest neighbours in the spatial
domain to preserve the local topology. The weight wij of each edge
eij between connected neighbouring nodes is assigned to their
feature difference in the feature space to represent the local
consistency. In fact, the semantic information about spatial
topology and feature difference between image elements is
embedded in this representation and can be extracted by the
proposed path-based bottleneck analysis. 

To limit the computation complexity, we apply the k-regular
graph where each node is connected to a maximum of k
neighbours, and each node is denoted by a feature vector F = {f1,
f2, …, fn}. In this study, F is defined as the average colour of pixels
that belong to the superpixel in the CIE-Lab space, that is F = {L,
a, b}. The corresponding weight wij for each edge eij that connects
nodes i and j in the graph is calculated by the weight function
analogous to the Gaussian kernel [2, 34].

wi j = exp ∥ Fi − F j ∥2/2σ
2 (1)

2.2 Path-based bottleneck detection

In the scene analysis, a dissimilarity measure is required to capture
the semantic relevance between image elements. It is preferable
that it is small if the elements belong to the same class and large if
not. In this study, we are concerned with two aspects about the
semantic dissimilarity: (1) the spatial topology and (2) the feature
consistency. The first aspect is coded in the weighted graph by
connecting the spatially neighbouring objects. The second aspect
specifies whether the appearances of image elements are similar in
the feature space. The dissimilarity is then defined by a path-based
bottleneck distance obtained via path generation and bottleneck
detection to signify spatial continuity and feature consistency in the
image.

Fig. 1  Illustration of constructing the graph representation from the image
(a) Is an input image. (b) The elements are superpixels generated by SLIC
segmentation. (c) The construction of the undirected weighted graph is shown, where
each superpixel is connected to its k nearest neighbours in the spatial domain, and the
weights of connected edges are assigned to the original differences in feature space
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2.2.1 Bottleneck detection: As shown in Fig. 2b, although
having similar features, nodes A and B should be treated as
different objects since they belong to different image regions. Such
a difference can be expressed by the dissimilarity measurement to
preserve important spatial topological relations of image regions.
To capture this semantic information between nodes in a graph, a
dissimilarity measure defined on a path should satisfy (2).

Dis(A → B) ≥ Dis(A → C)

Dis(A → B) ≥ Dis(C → B)
(2)

where node C is a mediating node on the path between nodes A and
B. To estimate the dissimilarity between A and B, the maximum
and sum of weights of path edges are two commonly used methods
to define the path distance. 

(1) The maximum method: In [2], Fischer et al. applied the edge
with the largest weight on a path to measure the path-based

dissimilarity. As demonstrated in Fig. 2c, e1 and e2 have the largest
weights of edges on path A→C and C→B, respectively. If we
assume we1

≥ we2
, the maximum-of-weights is

Dismax(A, B) = max(Dismax(A, C), Dismax(C, B))

= max(we1
, we2

)

= we1

(3)

It is evident that the maximum-of-weights is a special case that
satisfies (2). However, such a distance is not able to provide
detailed information about semantic relevance between image
elements. That is, we cannot in turn infer the relationships between
nodes just according to the distance itself. For instance in Fig. 2,
given the values of Dismax(A, B), Dismax(A, C) and Dismax(C, B), we
cannot tell if B or C is the middle node of the path. The reason is
that we totally ignore the relations between B and C by treating
Dismax(A, B) = Dismax(A, C) = we1

. In addition, as shown in (3),
Dismax is strictly dependent on boundaries between image regions.
As a result, vague boundaries of image regions may provide
confusing information (small distances between clusters) for
computing Dismax.

(2) The sum method: Dissum, the sum of all weights on a path, is
another widely applied method to measure the path distance. For
example, the shortest distance is defined as the sum of all the
weights on the shortest path.

Dissum(p) = ∑
p

w
p h p h + 1 (4)

where p[h] denotes the hth node on the path p. The sum-of-weights
also satisfies (2). However, it is liable to accumulate a large
number of minor weights that are inside a single image region,
resulting in misleading semantic information (large distances
within class). The example of such a problem will be illustrated as
follows.

Fig. 3a shows photos of two people A and B gradually turning
their heads from left to right. Our goal is to rank all these images
like the pattern shown in Fig. 3b. That is, the dissimilarities
between the head photos of the one person should be small even if
the images are taken from different views. So that

∀a, a′ ∈ A, ∀b, b′ ∈ B

Dis(a, a′) ≤ Dis(a, b)

Dis(b, b′) ≤ Dis(a, b)

(5)

(5) indicates that the distance between head images should be
smaller if they are taken from one person and larger otherwise,
preferably for image clustering and segmentation. However, if we
utilise the sum strategy to measure the dissimilarity in this case, it
is probable that it will accumulate the slight variations between
neighbouring images, and lead to incorrectly large dissimilarities
between images taken from the one person.

(3) The bottleneck method: To overcome the aforementioned
problems of the maximum and sum methods, we introduce the
bottleneck distance that accumulates necessary information on a
path to provide a reliable distance measure. Given a path p with N
edges in a weighted graph, its bottlenecks [35] are defined as the
edges that connect adjacent semantically-different image regions.
As a result, we have a bottleneck set BS{b(1), b(2), b(3), …, b(m)}
and a non-bottleneck set NBS{nb(1), nb(2), nb(3), …, nb(n)},
where m + n = N. Thus, the path is partitioned into m + 1 sub-paths
{p1, p2, p3 …pm+1} by the bottlenecks. Each sub-path pi has a
number of ki non-bottlenecks with weights
{wnb(pi, 1), wnb(pi, 2), wnb(pi, 3), …, wnb(pi, ki

)} sorted in a descending order,
where k1 + k2 + k3 + ⋯ + ki = n and 1 ≤ i ≤ m + 1. The Disbottleneck

(bottleneck distance) of the path p is defined as

Fig. 2  A, B and C are three nodes on a path, and node C is in-between A
and B
(a) Original image, (b) A path passing node A to B through node C, (c) The path
between node A and B

 

Fig. 3  Illustration of image ranking
(a) Shows photos of two people A and B, gradually turning their heads from left to
right, (b) The ideal ranking results, (c) The comparisons among the maximum, sum
and bottleneck method with varying K values

 

IET Comput. Vis., 2019, Vol. 13 Iss. 8, pp. 691-699
© The Institution of Engineering and Technology 2019

693

 17519640, 2019, 8, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/iet-cvi.2018.5560 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [26/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Disbottleneck(p) = ∑
i = 1

m

wb(i) + ∑
i = 1

m + 1

( ∑
j = 1

ki

f ( j)*wnb(pi, j))

f ( j) = e( − α/min(K, ki))* j + β

(6)

The first term in (6) is the accumulated weights of the bottleneck
edges we have detected, reflecting the sharp or distinct changes
between image elements along the path. In the second term, we use
the function f ( j) to indicate the limitation of non-bottlenecks in
their contribution to the bottleneck distance, i.e. the effective
number of non-bottlenecks involved in the estimation of the
bottleneck distance cannot exceed a fixed threshold K. If
K = 0, min (K, ki) → ∞, f ( j) → 0, which means that all non-
bottlenecks are neglected. Taking the path in Fig. 2 for example, it
is obvious that e1 and e2 are the two-detected bottlenecks to
partition the path A→B into three sub-paths
(A → A′, M → M′, B′ → B). First, we add the weights of the
bottleneck edges to reflect the sharp variations. Then for the sub-
path M → M′ belonging to the ground region, if we detect there are
small and gradual changes between consecutive edges, the usage of
the f ( j) function can help weight some meaningful non-
bottlenecks for preserving some within-class variations. As shown
in Fig. 3c, the experimental results indicate that the number of non-
bottlenecks involved in the estimation of the bottleneck distance
can benefit representing the relationships between visual elements
when there exist gradual changes.

In this study, the bottleneck detection is achieved based on the
following facts:

(i) Since the bottlenecks of a path are edges that connect
neighbouring semantically-different image segments, their weights
are generally larger than those of non-bottlenecks and can be
regarded as the outliers in robust statistics. Table 1 demonstrates
the designed algorithm for bottleneck detection on a path by
applying the traditional outlier detection method.
(ii) In a path, there are usually fewer bottlenecks than non-
bottlenecks.
(iii) If (C, D) is a detected bottleneck edge on a path between A and
B, the calculation of Disbottleneck(A, B) can be decomposed into
computing Disbottleneck(A, C) of the left sub-path and
Disbottleneck(D, B) of the right sub-path, as indicated in Fig. 4. We
have

Disbottleneck(A, B)

= wC, D + Disbottleneck(A, C) + Disbottleneck(D, B)
(7)

(iv) Specially, the maximum and sum approaches can be regarded
as two-special cases of the bottleneck method if we use the edge
with the largest weight or all edges as the bottlenecks, respectively.

2.2.2 Path generation: For the gradually changing of
illuminations or clutters in natural images, the path generation for
dissimilarity estimation in scene representation should be capable
of imitating this kind of smoothness pattern to optimise the
connection cost that highlights important contextual relevance
between image elements. According to the proximity, similarity
and continuity principles of Gestalt laws of grouping in human
vision, people tend to group elements together if they are close,
similar or connected (or continuous) to each other [36–38]. As a
result, sharp abruption should be avoided in the optimisation
process for path generation.

To capture the smoothness pattern between image elements by
applying the above principles, we propose the smoothest path on
the weighted-neighbouring graph, inspired by the minimal intra-
cluster path [2, 3]. The minimal intra-cluster path emphasises the
intra-cluster connectedness property and is defined in a full graph
where every object is connected with every other objects in the
same cluster. To avoid large steps or sharp abruptions on a path, we
need to minimise the largest step or weight in the path, i.e.

Psmoothest(A, B) = min
p ⊂ PA → B

{max
p h , p h + 1 ∈ p

{w
p h p h + 1

}} (8)

where PA→B denotes the set of all paths connecting nodes A and B
in the graph, p[h] denotes the hth node on the path p from A to B.

Fig. 5 demonstrates an example of identifying the smoothest
path. Given the high-computation load, it is impossible to traverse
the whole graph for finding the smoothest path that connects each
pair of pixels in the image. In this case, how to fast and accurately
generate these smoothest paths remains a big challenge [39]. We
have proved that the path on a minimum spanning tree (MST) of
the graph is a smoothest path in Theorem 1, thus, the problem of
traversing all paths to get the smoothest path can be solved by
extracting the MST for the graph. The time complexity of the
fastest implementation of Prim's algorithm by using a Fibonacci
heap is O E + V log V .

 
Theorem 1: A path in a MST of a weighted graph is a smoothest

path.
 

Table 1 Algorithm for bottleneck detection
Input: a path p on the weighted graph

(1) Sort the edges on the path p in descending order, then compute
the maximum weight max-w(p) and median weight med-w(p) from

all weights wiof the edges on p.
(2) ave-w(p) = average(wi): for all wi < λ*med-w(p).

(3) If max-w(p) > δ*ave-w(p), then a bottleneck is detected, go to (4);
else there is no bottleneck on p, end.

(4) Use the detected bottleneck to split p into the left and right sub-
paths. Go to (1) to detect bottlenecks for these sub-paths.

Output: bottlenecks
Note: λ and δ are set to 3.0 and 2.5, respectively, in this study.

 

Fig. 4  Recursive algorithm of the bottleneck detection on a path
 

Fig. 5  There exist three possible paths between node A and B, and
signified by blue, red and green, respectively
(a) Edges that have the largest weight for each path are highlighted by bold lines, (b)
The red path is selected to be the smoothest path because it has the minimal weight
among three highlighted edges

 

Fig. 6  T is a MST of graph G where P(A…1…E…3…K…4…B) is the path
for nodes A and B in T. We assume that there exists another smoothest path
P’(A…2…e(E–K)…5…B) for nodes A and B, e(E–K) is an edge in P’ but
does not belong to T
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Proof: If e(E–K) is added into T, the path (e(E–K)…3…E)
forms a loop in T (Fig 6).

(i) Since e(E–K) does not belong to T, e(E–K) has the largest
weight in loop. Otherwise, a new MST T׳ for graph G can be
obtained by deleting the edge with the largest weight in path 3 and
the weight of T׳ is smaller than that of T. It contradicts the fact that
T is a MST for graph G.
(ii) Since e(E–K) is the largest weight edge in loop, path P׳ is not
smoother than path (A…2…E…3…K…5…B).
(iii) Repeat (2) to replace all edges which do not belong to T in
path P׳ until the path P for node A and node B in T is obtained.
According to (2), path P׳ is not smoother than path P.□

For illustration, we take the mountain climbing for example to
show the generation of the smoothest path between A and B by (8).
In addition, the shortest path is adopted here for comparison.
However, unlike the smoothest path, identifying the shortest path
between two objects A and B is the problem of minimising the sum
of the weights of edges regardless how large each step or weight is,
leading large image gradients along the path, as shown in Fig. 7b. 

Since the smoothest path seems to show satisfactory strength in
simulating the phenomena of gradual changes in natural images.
However, it can be excessively long by following the pattern of
smoothness immoderately. In this case, the shortest path could take
short cuts by passing through necessary boundaries of image
regions, resulting in valuable information for the aforementioned
bottleneck detection. As shown in Fig. 8, due to the small colour
variations inside the flower region, the generated smoothest path
between A and B is too long inside the region, while the shortest
path is more meaningful. 

To overcome the problem of the excessive long path
demonstrated in Fig. 8, we need to control the length of the
smoothest path. In this study, we integrate the shortest path into the
smoothest path to reduce the path length, and generate a double-S
path (smooth and short path), that is

Dissum(Pdouble − S) ≤ (1 + α)Dissum(Pshortest), α > 0 (9)

Accordingly, the double-S path between A and B is achieved via an
optimisation process, i.e.

Pdouble − S(A, B) = min
p
{max

p h , p h + 1 ∈ p
{w

p h p h + 1
}}

for all p ⊂ PA → B ∧ Dissum(p) ≤ (1 + α)Dissum(Pshortest), α > 0
(10)

Since the computational cost of applying (10) to generate a double-
S path is extremely high, it is necessary to design a quick
approximation method. In this study, the double-S path is generated
by an iteration to replace the sub-paths of the smoothest path with
their corresponding shortest sub-paths until (10) is satisfied, which
is illustrated in Fig. 9. Table 2 presents the pseudo code of the
designed algorithm. It first generates the smoothest and shortest
paths for the two nodes, respectively, followed by an iteration to
replace the sub-paths if the smoothest path is longer than a
threshold. In fact, the experiments demonstrate that the smoothest
path and the shortest path for every pair of nodes in a graph are
mostly the same. As a result, only a small number of sub-paths
require to be replaced. 

3 Experiments
In the experiments, we apply the bottleneck analysis on the
proposed double-S path to estimate the dissimilarities for scene
representation. To demonstrate the power for visual scene analysis,
the applications of image ranking and salient object detection are
introduced in this section.

3.1 Analysis

3.1.1 Parameters setting: In this study, there are four parameters
required to be pre-defined, respectively, λ and δ for the bottleneck
detection, K for the bottleneck distance calculation and α for the
double-S path generation. The optimal values of these four

parameters are determined by both the theoretical analysis and
experimental results.

λ and δ are two parameters applied to detect the bottlenecks on
the path. Since the number of bottlenecks are much fewer than the
non-bottlenecks, and the weights of bottlenecks are much larger
than the non-bottlenecks on the path, so we regard the bottlenecks
as the outliers in robust statistics obeying a normal distribution. For
a normal distribution, the probability of data in the range [−2σ, 2σ]
is 95.44%, and in the range [−3σ, 3σ] is 99.74%. Thus, the data
which don't belong to this scope are outliers. To achieve a
confidence interval larger than 95%, we set λ and δ to 3.0 and 2.5,
respectively, in this study.

Fig. 7  Mountain climbing
(a) Smoothest path identified by minimising the largest step, (b) Shortest path with the
shortest distance regardless how large each step is

 

Fig. 8  Illustration of difference between the smoothest and the shortest
paths
(a) Smoothest path, (b) Shortest path
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Parameter K in (6) is a threshold to determine the contributions
of the non-bottlenecks for estimating the bottleneck distance. If
K = 0, it means only the detected bottlenecks are used to measure
the bottleneck distance; If K > 0, it means some non-bottlenecks
are added into the bottleneck distance when there exist gradual
changes between consecutive image elements. The GD is a special
case for incorporating all non-bottlenecks on the path. Fig. 3 shows
the experimental results of setting different values for K. The final
setting of the parameter is determined by the above analysis and
experimental results. In this study, we set K to 5 for accumulating
the weights of non-bottlenecks along a sub-path if there exist
gradual changes between consecutive edges.

Parameter α in (10) is used to decide whether the length of the
path is excessive long for a pair of nodes in the process of the
double-S path generation. In this study, we use the sum of all
edges’ weights instead of the number of edges to approximate the
length of the path. If the sum of all edges’ weights on the path is
much larger than that of the shortest path (the shortest distance has
the minimal weights for all paths between each pair of nodes on the
graph), we consider it is excessive long. Thus, we set α > 1 and
choose the value 3 in the study.

3.1.2 Complexity analysis: Here, we mainly discuss the
complexity time of the bottleneck detection and double-S path
algorithms.

For the reclusive algorithm of detecting all bottlenecks along a
path with n edges, we first sort these edges in a descending order
by the quicksort method with the average time O nlog n . To find
the maximum and median edge values on the path, the time
complexity is O 1 . Finally, the process of detecting the bottleneck
on a sub-path can be calculated in O n  by using the computed-
ranking index. Consequently, the overall computational cost is
O nlog n  (O nlog n + O 1 + O n ).

For the generation of the double-S path between a pair of nodes,
we should build the MST and the shortest path by applying the
Prim and Dijkstra first. With the use of the Fibonacci heap, the
time complexity can be O E + V log V . If the smoothest path
has excessive long path length, it should be replaced by its
corresponding shortest path, and the cost is O 1 . In summary, the

time complexity of generating the double-S path is
O E + V log V  (O E + V log V + O 1 ).

3.2 Applications

3.2.1 Natural scene representation: To validate the
performance of the bottleneck distance metric for scene
representation, we apply some natural images with gradual changes
of illuminations, scales or textures. For comparison, we choose
four distance metrics, Euclidean distance, GD, Disbottleneck on the
smoothest path, and Disbottleneck on the double-S path to verify the
representation. In addition, the multi-dimensional scaling (MDS)
technique is introduced to achieve the visual results. First, we use
the algorithm presented in Section 2 to construct a weighted graph
and estimate the four different dissimilarity matrixes between
nodes on the graph, then the resulted matrixes are projected into a
two-dimensional feature space by applying the MDS method. For
each node (x, y) in the obtained feature space, we first normalise it
into 0–255 and finally, use these normalised coordinates as the
colour vector (i.e. R = x, G = y, and B = 125) to fill each element in
the image. The image elements painted by similar colours mean
close semantic relations estimated in the feature space.

Figs. 10b–d shows the visual results of using the Euclidean
distance, GD and Disbottleneck distance on the smoothest,
respectively. The results indicate that these distances have a certain
capability to depict the relations between image elements.
However, each of them has its own drawbacks. Fig. 10b describes
the two swans in the fifth row, two buildings in the seventh and
two trees in the last row with similar colours, indicating that the
spatial topological relations between image elements are neglected
by the Euclidean distance. In Fig. 10c, a single image region such
as the grass in the first row and sky in the third and seventh rows
are painted by different colours. The problem arises from the
accumulation of variations in the same image region. Fig. 10d
shows the results of applying Disbottleneck on the smoothest path. By
definition, the smoothest path strictly avoids sharp gradients
between image regions. As a result, if the boundary is not clear,
Disbottleneck can provide misleading information. For example, in
the fourth row of Fig. 10d, the vague boundary of the dog's tail
results in the mis-segmentation of the dog, and in the sixth row, the
same water region is painted by different colours. The proposed
Disbottleneck distance on the double-S path achieves the best results
on the representation of the relation and differences between image
elements, leading to a meaningful representation of images. As
shown in Fig. 10e, two swans have different colours, the grass and
sky regions are painted uniformly in the same colour, the dog and
the diver are correctly segmented, the similar buildings and trees
are painted differently, while the varying sky regions are described
with the same colour. 

3.2.2 Image ranking: Image ranking, aims to automatically rank
all the images based on their relationships hidden in the dataset
without a source image. As shown in Fig. 3, our main goal is to
rank the head photos from two persons effectively. That is, the
semantic relevance between images of one person is much smaller

Fig. 9  Illustration of generating a double-S path
 

Table 2 Algorithm for generating a double-S path
Input: a weighted graph G andα

(1) Calculate the shortest and smoothest paths set, Pshortest and
Psmoothest for a pair of nodes. (2) Calculate the sum-of-distance for

the paths Pshortest and Psmoothest, and get the corresponding
values Sum(Pshortest), Sum(Psmoothest).

(3) Initialise Pdouble-S = Psmoothest, Sum(Pdouble-S) = 
Sum(Psmoothest).

(4) Set R = Sum(Pdouble-S)/Sum(Pshortest).
(5) If R > (α + 1) Replace the smoothest path with the corresponding

shortest path. End
Output: the double-S path Pdouble-S.
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than that of different persons, which should satisfy (5). From the
perspective of ranking, we hope that some necessary dissimilarities
are preserved to differentiate the images of one person as they
change a lot from left to right, so that

∀ x, y, z ∈ A ∪ B ∧ ∃path p , passing from x to z through y

Dis(x, y) ≤ Dis(x, z)

Dis(y, z) ≤ Dis(x, z)

(11)

(11) shows that the differences between images are preserved to a
certain degree, even if they belong to one person.

In this study, the 698 face images of one person with
illumination and pose changes provided by Joshua et al. [23] are
applied to show the performance of our semantic dissimilarity
estimation in image ranking. Furthermore, we rank a new data set
with three clusters by mixing the images from the above two sets
together in the experiments. In addition, we also chose the Extend
Yale B dataset which contains 2414 face images taken from 38
persons and each person owns 64 photos with varying gestures and
illuminations for testing. For visual assessment, we randomly
select 128 face images from two persons and 256 images from four
persons. First, all images are down-sampled as 64*64 pixel-
vectors, and each image is treated as a node to construct the k-
regular graph. For visualisation of the ranking results, the MDS
technique has been applied to construct a low-dimensional
embedding of the given vectors while faithfully preserving the
inter-vector distances in a two-dimensional feature space.

For comparison, we choose Euclidean distance, GD, Disbottleneck

on the smoothest path, and Disbottleneck on the double-S path to
demonstrate the performance of ranking the images within- and
between-clusters. For the Euclidean distance (shown in Fig. 11a), it
is obvious that the patterns of image changes (illumination, head
angles etc.) are revealed clearly for the two-cluster sets. However,
the images of multiple persons are not evidently separated into

different clusters. The GD estimates the dissimilarity between
images by calculating the sum of weights along the shortest path. It
may be unreliable to use such a distance for image clustering since
the accumulated weights or differences in the same cluster can be
larger than that between different clusters, see Fig. 11b. Fig. 11c
indicates that the Disbottleneck on the smoothest path is capable of
clustering, and photos are well grouped into clusters of different
people. However, since images of one person are projected into the
same position, the relations within a cluster are mostly neglected
by this method. Similarly, Fig. 11d shows that the proposed
bottleneck detection on the double-S path also has the capability of
clustering. In addition, the experimental results validate the
description of the patterns of image changes within each cluster,
signifying the capacity of the proposed bottleneck method to
highlight extra-class differences and, in the meantime, preserving
important intra-class dissimilarities to a certain extent. In the
Extend Yale B dataset, for face image ranking by the Euclidean
distance and GD, it is difficult to tell the differences of different
persons as the ranked images of different persons are mixed with
each other. In the proposed method, we note that images with
bright illumination and varying gestures are well separated, and
images with dark illumination of different persons are mixed. The
reason is that these images with dark lights are not able to provide
enough information for differentiation. 

3.2.3 Salient object detection: Salient region detection is closely
related to the selective process in human vision [40] and aims to
locate interesting regions or objects in images. Psychological and
perceptual research has demonstrated that image contrast is the
most influential factor in visual saliency [10, 41]. However, most
of the computational models simply use the feature difference to
measure the contrast and ignore the semantic relations between
image elements [9, 11, 34].

Fig. 12 demonstrates the experimental results on six natural
images, which contain round, square, elongated and V-shaped
salient objects with non-linear scales. By visual assessment, the
proposed path-based bottleneck distance segmentation of salient
objects and uniformity inside salient regions, regardless of the

Fig. 10  Comparison of the different distance metrics on natural images by
using MDS
(a) Original images, (b) Euclidean distance, (c) GD on the shortest path, (d)
Disbottleneck on the smoothest path, (e) Disbottleneck on the double-S path with
α = 3

 

Fig. 11  Comparison of the different distance metrics by MDS
(a) Euclidean distance, (b) GD on the shortest path (Isomap [23]), (c) Disbottleneck on
the smoothest path, (d) Disbottleneck on the double-S path with α = 3
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gradual illumination variations and distribution of the salient
regions. 

For a more comprehensive assessment, the receiver operating
characteristic (ROC) curve, precision-recall (PR) curve, mean
absolute error (MAE) and Fβ

w (weighted- Fβ) measures are adopted
for evaluating the performance of saliency detection. In this work,
we introduce the minimum barrier distance based saliency model
[42] (MBD), which is the latest distance-based method that
outperforms all others on the benchmark datasets, to define the
saliency. To demonstrate the effectiveness of our bottleneck
distance in estimating the image contrast, we respectively replace
the minimum barrier distance with our bottleneck distance and the
commonly used GD in the MBD model. The resulted path-based
bottleneck distance (PBD) model and GD are then performed on
the traditional ASD dataset for comparison with the MBD. In the
field of saliency detection, ASD is a widely used dataset that
includes 1000 images with accurate human labelled segmentation
masks, and is chosen for its wide application in testing almost all
saliency models. Fig. 13 shows the comparisons of the three-
distance metrics in terms of ROC and PR curves, MAE and Fβ

w

scores on the ASD dataset. The experimental results show that the
proposed path-based distance achieves the best performance of the
lowest error and the highest weighted- Fβ measure score. 

Since the ASD dataset tends to contain images with distinct
objects surrounding by clean backgrounds, therefore, we choose
the challenging datasets ECCSD and DUT_ORMON, which
respectively contain 1000 and 5000 semantically meaningful and
structurally complex natural images. In addition, some state-of-the-
art approaches (GS_SP [24], GMR [43], RBD [44], MC [45], DSR
[46]) are selected to verify the performance. Figs. 14 and Fig. 15
show the overall ROC curves, PR curves, MAE and Fβ

w values
obtained by using all images in the ECCSD and DUT_ORMON
datasets. The experimental results illustrate the high performance
of the proposed path-based bottleneck analysis for saliency
estimation (PBS). Fig. 12  Saliency maps generated from different distance metrics

(a), (b) Original and ground-truth images, (c), (d), (e) Estimated saliency obtained by
using Euclidean, geodesic and bottleneck distance, respectively

 

Fig. 13  ROC curves, PR curves, MAE values and Fβ
w scores obtained by applying the GD, MBD and PBD, respectively, on the ASD dataset

 

Fig. 14  ROC curves, PR curves, MAE values and Fβ
w scores obtained by applying the GS_SP, GMR, RBD, MC, DSR and PBS on challenging the ECCSD

dataset
 

Fig. 15  ROC curves, PR curves, MAE values and Fβ
w scores obtained by applying the GS_SP, GMR, RBD, MC, DSR and PBS on challenging the

DUT_ORMON dataset
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4 Conclusion
Estimating semantic dissimilarities between image elements for
scene representation remains a challenge due to the high
complexity and uncertainty in natural images and other factors
including noises, image blurs or gradual variations of illumination
and textures. It is preferable that the distance metric is able to
integrate the appearance differences and spatial distribution for
dissimilarity estimation. To solve the problem, we propose the
path-based bottleneck analysis by detecting the bottlenecks on the
double-S path. Our method expresses high performance of
representing semantically-meaningful topological relations
between image elements and, in the meantime, preserving their
important dissimilarities. A recursive algorithm for robust
bottleneck detection and an approximate algorithm for path
generation are designed in this study. The experimental results
demonstrate the strengths of the proposed method for scene
representation in applications such as image ranking and saliency
detection.

The main challenge of this research is to capture the intrinsic
image patterns or relationships between image elements which are
encoded in an undirected graph, and the corresponding decoding
should be robust to the noises, changes of illumination and
uncertainty in natural images. The method proposed in this study
presents an opportunity to tackle these challenges in a systematic
way and can be applied in applications such as background
modelling, image coding and segmentation where grouping
relevant image elements and extracting important topological
information are necessary.
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