
 

 

 

 

Master of Science in Omics Data Analysis 

 

Master Thesis 

 

Machine Learning-Based Gene Expression Signature 

for  Classification of Endocrine Therapy Sensitivity in 

ER+ Breast Cancer Patients 
by 

Gilles Flamen 

 

 

Supervisor: Lara Nonell, Head of Bioinformatic Unit, VHIO 

Academic tutor: Malu Calle Rosingana, Prof. Biostatistics and 

Bioinformatics, UVIC 

 

 

 

 

 

Biosciences Department 

University of Vic – Central University of Catalonia 

10-09-2023 



 

Bioinformatics 

doi: 10.1093/bioinformatics/xxxxx 

Advance Access Publication Date: 10 September 2023 

Manuscript Category 

 

 

 

 

1 Introduction  

 
Breast cancer stands as the most prevalent tumor among women world-

wide, and its incidence continues to rise (Duan, Y., et al., 2023). Approx-

imately 70% of these tumors initially rely on the hormone estrogen for 

their growth and proliferation. The estrogen receptor (ER) plays a critical 

role in this process, triggering the transcription of pro-survival genes and 

cellular signaling, upon binding of estrogen. While estrogen-driven mito-

genic signaling naturally stimulates mammary tissue development, its 

dysregulation can lead to hyperplasia and tumorigenesis, contributing to 

breast cancer formation (Hanker, A. B., et al., 2020).  

Since these tumors heavily rely on estrogen signaling, the development 

of endocrine therapies (ETs) targeting this pathway has become standard 

practice, encompassing selective modulation of the ER (tamoxifen),  

 

 

degradation of the receptor (fulvestrant), or inhibition of the aromatase 

enzyme crucial for converting androgen to estrogen (anastrozole or letro-

zole). All three approaches have been used for the last 20 to 50 years for 

the treatment of ER+ breast cancer patients in adjuvant therapy (Hanker, 

A. B., et al., 2020). Nonetheless, acquired resistance to ET is typical and 

often associated with somatic mutations in the ESR1 gene encoding the 

estrogen receptor alpha (ERα). Among the extensively studied mutations, 

the ligand binding domain (LBD) point mutations lead to ERα proteins 

with ligand-independent activity. Notable examples include mutations 

such as Y537S and D538G (Ma, CX. et al., 2015; Dustin, D. et al., 2019) 

that typically arise after patients undergo long-term endocrine treatment 

and may be present in up to 40% of patients with ERα-positive metastatic 

breast cancer (MBC; Fribbens, C. et al., 2016; Spoerke, JM. et al., 2016).  
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First-line and second-line treatment for ER+ metastatic patients typi-

cally include ET in combination with cyclin-dependent kinase 4/6 inhibi-

tors (CDK4/6i; Turner, N. J. et al., 2018) and most patients will receive 

chemotherapy after progression of the disease following ET plus CDK4/6i 

treatment. However, not all patients need the addition of CDK4/6i in the 

first-line, as some are already responsive to ET alone (Sonke, G. S., 2023). 

Identifying these responsive patients presents a clinical challenge. Achiev-

ing this identification offers several advantages, including avoiding the 

toxicity associated with CDK4/6i treatment, saving costs to the healthcare 

system due to the high cost of these drugs, and delaying chemotherapy as 

long as possible. In the proposed treatment strategy, sensitive patients 

would receive endocrine therapy in monotherapy in the first-line, reserv-

ing the combination with CDK4/6i for those ET-resistant patients, and 

then chemotherapy as a third-line treatment only when needed. This treat-

ment strategy is designed to be more specific to the individual and opti-

mize time, resources, and patient quality of life (Al‐qasem, A. J., et al., 

2021; Sammons, S., et al., 2020).  

Gene expression signatures have become a valuable tool in the breast 

cancer field for clinical use. In essence, it is a concise collection of genes 

that effectively forecast the broader transcriptome alteration in a cell or 

tissue triggered by external stimuli, functioning as a genetic fingerprint of 

the cell's biological state (Sithara, S. et al., 2017). For instance, the 21-

gene Recurrence Score (Oncotype DX) has transformed clinical decision-

making for ER+ breast cancer patients, enabling personalized treatment 

strategies (Qian, Y., et al., 2021). Moreover, it is worth mentioning the 

MOTERA-score, an acronym for Mutant or Translocated Estrogen Recep-

tor Alpha. This 24-gene signature identifies cases with ESR1 gene fusions 

and active ESR1 LBD point mutations, that contribute to endocrine treat-

ment failure in metastatic breast cancer (MBC; Gou, X. et al., 2021).  

Constructing genetic signatures involves various methods. A straight-

forward approach is regression analysis, where specific genes (predictors) 

are selected, and coefficients are assigned based on their importance. The 

patient's gene expression profile is then entered into the model, and a cut-

off is applied to predict the outcome (Theilhaber, J. et al., 2020; Cantini, 

L. et al., 2018). For example, in the MOTERA study, genes were ranked 

by percentile within each sample, and scores were computed as the mean 

percentile of the signature gene sets, followed by ROC analysis to deter-

mine a cutoff. In cases where complex relationships need to be considered, 

such as in our study, non-linear regression models or machine learning 

algorithms like Random Forest (RF), Neural Networks (NN), and Support 

Vector Machines (SVM) are more appropriate (Chicco, D et al., 2022; Yu, 

C et al., 2021; Xu, Q et al., 2016). In this study the focus will be on ma-

chine learning techniques. These complex algorithms are trained, in a su-

pervised manner, on the outcome-labeled data in order to classify new pa-

tients data (Kalafi, E Y et al., 2019). The specific methods used during this 

signature generation are explained in detail in the Methods section.    

Given the importance of selecting ET-sensitive patients, we attempted 

to identify a gene expression signature capable of classifying responders 

from non-responders. To achieve this, patient-derived xenograft (PDX) 

models were established by implanting fresh biopsies into NOD scid 

gamma (NSG) mice, which are immunodeficient laboratory mice. The re-

sponse to ET was measured by monitoring tumor growth in mice upon 

ovaries removal to simulate hormone deprivation (Monserrat, L., 2022).  

Eventually, according to the RECIST 1.1 guidelines samples were classi-

fied as resistant or sensitive (Eisenhauer, E. A. 2009). Concurrently, RNA 

sequencing (RNAseq) was performed for transcriptomic profiling, gener-

ating a data pool that will be combined with external data from ER+ breast 

cancer patients in whom estrogen response was also measured (Gou, X. et 

al., 2021). Out of this data pool biomarkers were identified through 

differential expression analysis (DEA), filtered them for relevance and 

used to construct predictive models using machine learning techniques. 

2 Methods 

Data description 

A total of four datasets were used. Two datasets were combined for 

biomarker discovery, training, and testing of the machine-learning mod-

els. The other two were used for the external validation of the final model.  

The first dataset was generated internally and consisted of RNAseq 

RSEM quantified counts obtained through the nf-core/rnaseq pipeline 

(v3.4; Harshil, P. et al., 2021). The samples were from ER+ PDX models 

made with fresh biopsies from breast cancer patients (Monserrat, L., 

2022). In total, they comprised 6 sensitive and 29 resistant samples. For 

simplicity, we refer to this as the Internal data. 

The second dataset was from the study by Gou, X. et al. (Gou, X. et al., 

2021). The raw data was available on request, but preprocessed data can 

be found on GEO (GSE191158). It consisted of RNAseq data from ER+ 

PDX models, in the form of RSEM expected counts. In total, the set con-

sisted of 6 sensitive and 15 resistant samples. This set will be referred to 

later as the Gou data.   

The third dataset consisted of single-nucleus RNAseq (snRNAseq) data 

from 41 ER+ breast cancer patients receiving neoadjuvant ET (letrozole; 

Griffiths, J. I., 2021). Nuclei were isolated and snRNAseq was performed 

using 10X Genomics technology. After filtering for relevant cells (nucle-

ated cells) from patients receiving ET alone, around 21k tumoral cells re-

mained from 6 sensitive and 5 resistant samples. The data is available on 

GEO (GSE158724). 

The fourth and final dataset originated from a study conducted by 

Youli, X. et al. (Youli, X et al., 2022), encompassing RNAseq data ob-

tained from ER+ breast cancer patients prior to undergoing neoadjuvant 

therapy. Among these patients, three displayed intrinsic resistance, 19 de-

veloped acquired resistance, and 13 retained sensitivity post-treatment. 

Patients 18 and 21 were excluded from analysis since no expression data 

was present before receiving any therapy. This dataset is accessible via the 

EMBL-EBI ArrayExpress database under accession number E-MTAB-

9917. For the sake of convenience, we will refer to this dataset as the Xia 

data. 

 

Data preprocessing  

Prior to combining the two bulk RNAseq datasets into the training da-

taset, we performed a series of preprocessing steps to ensure data quality. 

These steps included checking gene expression distributions across sam-

ples, hierarchical clustering of samples using the ward.D2 method, and 

conducting principal component analysis (PCA). 

For the Internal dataset, we used DESeq2's (v1.38.2; Love, MI. et al., 

2014) regularized logarithm method (rlog) for normalization and filtered 

genes to include those with at least 15 reads in at least 6 samples, matching 

the group size of the smallest response category (i.e., the sensitive sam-

ples). In the case of the Gou dataset, the data was already log(x+1)-trans-

formed,  so we reversed it with an anti-transformation, followed by TMM 

normalization. 

After these initial preprocessing steps, we combined the raw counts of 

the Internal and Gou bulk RNAseq datasets using the rbind() function in 
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R. This combined data, utilized for training and testing the models, under-

went TMM normalization. Subsequently, we conducted another round of 

quality control (QC) checks, which included hierarchical clustering based 

on ward.D2 method and PCA, to identify and exclude any potential outly-

ing samples. 

The Xia et al. bulk RNAseq data, used for external validation of the 

models, were TMM-normalized and subjected to outlier detection through 

analyses of library sizes, hierarchical clustering using ward.D2 method, 

and PCA. Following the removal of outlying samples and feature selec-

tion, gene expression data were scaled before being input into the models. 

The snRNAseq data was preprocessed and analyzed with the Seurat 

package (v4.3; Hao, Y. et al., 2021). Cells with less than 1500 and more 

than 7500 features and more than 5% mitochondrial DNA were filtered. 

The data were normalized using the default NormalizeData() function, 

which normalizes feature expression by the total expression in each cell 

and multiplies it by a factor of 10000, upon log transformation. The data 

was then scaled by a linear transformation that shifts the expression of 

each gene so that the mean expression and variability are 0 and 1, respec-

tively, across cells.  

As the snRNAseq data will be used for validating the classification 

model trained on bulk RNA data, the creation of a compatible bulk data 

structure is needed. To address this, two distinct approaches were 

undertaken. First, the standard AverageExpression() function was used to 

return a pseudobulk expression set containing the average expression of 

each patient across all cells. Like wise, a second pseudobulk validation set 

was made, via summing up the raw counts of a gene across the cells for 

each patient.  

 

Differential expression analysis & feature selection 

Both Limma (v3.54.0; Ritchie, M.E. et al., 2015) and DESeq2 (v1.38.2; 

Love, MI. et al., 2014) were used for the DEA of the Internal data and a 

comparison was made based on the resulting differentially expressed 

genes (DEGs) between sensitive and resistant samples. Several models 

were tested consisting of unique combinations of clinical variables, but 

ultimately only patient identity (ID) was included in the model, since sev-

eral PDXs originated from the same patient. It was then decided to proceed 

with DESeq2 for the DEA of the combined dataset, as a first step of the 

feature selection procedure. DESeq2 DEA was performed on the raw 

counts and the results were filtered for the FDR-adjusted p-value of 0.05 

and log2 fold change (LFC) of 1.  

Functional analysis was done using the enricher() function from the 

clusterProfiler package (v 4.8.3; Yu, G. et al. 2012). Gene set collections 

Figure 1: Overview of the datasets, methodology, and bioinformatic steps followed to reach the final classifying models: First, the fusion of raw counts 
from the Internal and Gou et al. bulk RNAseq data using the rbind() function was done, resulting in the creation of the "Combined data." QC of the 

combined data allowed us to identify and remove an outlier. DEA was then performed using DESeq2, resulting in the identification of 1072 DEGs. To 

gain biological insights, the set of DEGs underwent Entrez hallmark enrichment analysis through the use of the clusterProfiler package. From this initial 
pool of 1072 DEGs, three different sets of features were selected: genes enriched in hallmark pathways, LASSO-selected genes with lambda.min, and 

LASSO-selected genes filtered for high frequency. Machine learning models were constructed using these feature sets and were trained and tested on the 

combined data. Only the best-performing models were selected for external validation. Additionally, single-nucleus RNAseq data underwent prepro-
cessing using the Seurat package, and pseudobulks were generated using the AverageExpression() function and by summing raw counts across cells. For 

validation purposes, Xia et al. bulk RNAseq data was also preprocessed, with outliers removed. The validation process was carried out using the Caret 

package. 
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from hallmarks were obtained from the msigdbr package (v1.8.0; Subra-

manian, A. et al. 2005).  

The genes composing the signature were curated through distinct strat-

egies. One approach mirrors the methodology outlined in the MOTERA 

study, involving the selection of DEGs linked to enriched hallmarks like 

‘Estrogen response early’, ‘Estrogen response late’, and ‘Epithelial-mes-

enchymal transitions’, aligning with relevant biological contexts. 

        In parallel, an alternative model employed a penalized regression 

technique known as LASSO (Least Absolute Shrinkage and Selection Op-

erator). LASSO automatically identifies significant variables by driving 

the coefficients of less impactful predictors toward zero. To address sto-

chastic variations, the LASSO procedure underwent 1000 iterations, and 

the distribution of gene selection frequencies was visualized. As no out-

comes emerged with lambda.min + 1 standard error (s.e.), we opted for 

lambda.min as the penalty term. Next, a subset of features was generated, 

encompassing only those genes selected frequently in the LASSO itera-

tions. This threshold, frequency > 180, was determined by examining the 

barplot depicting gene selection frequencies, selecting a point where a sig-

nificant drop in frequencies was observed (Figure 3). 

 

 

Classification models 

        Different machine learning methods were used to construct the gene 

expression signature with the goal of correctly classifying patients as sen-

sitive or resistant. Namely, SVMs, NNs, and RFs were employed.  

  The SVM is a powerful tool for classification tasks. It determines op-

timal class boundaries by transforming data into higher-dimensional 

space, aided by kernels. The linear kernel, simplifies this process by em-

phasizing relationships that resemble the product of observations. In addi-

tion, the SVM includes a parameter C that balances classification accuracy 

with model simplicity. By adjusting C, the SVM fine-tunes the classifica-

tion method to avoid overfitting while still capturing the complex relation-

ships within data. (Huang, S. et al., 2018; Hsu, C. et al., 2003). In R, the 

svm() function from the e1071 (v1.7-13; Meyer, D. et al., 2021) package 

was used to train the model on the test data.  

NNs are a type of supervised learning algorithm that aims to find an 

optimal decision boundary between classes by employing nonlinear con-

nections represented by interconnected nodes known as neurons. Each 

layer in the network, encompassing input, hidden, and output layers, pro-

cesses data through weighted connections and activation functions (Trans, 

K. et al., 2021). For our analysis in R, we utilized the nnet() function from 

Figure 2: Heatmap of 1072 DEGs in Combined Data: This heatmap displays the expression profiles of 1072 DEGs across samples, which include both the 

Internal and Gou et al. bulk RNAseq data. Rows represent genes, and columns represent samples. Hierarchical clustering (ward.D2 method) was applied to 

genes, and gene expression was scaled. The color codes indicate batch and response groups. 
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the nnet() package (v7.3-18; Venables, WN. et al., 2002) to fit single-hid-

den-layer NN models to our dataset. 

        RF is another popular supervised learning algorithm that builds mul-

tiple decision trees during training and combines their predictions to make 

more accurate and robust decisions. Each tree is built on a random subset 

of the training data and features, which reduces overfitting and increases 

generalization. By aggregating the results of individual trees, RF achieves 

high accuracy and can effectively handle high-dimensional data (Breiman, 

L. et al. 2001). In R, the randomForest() function from the randomForest 

package (v.7-1.1; Liaw, A. et al., 2002) was used for classification, that 

implemented Breiman's RF algorithm. 

        In essence, our methodology involved fourfold division using the cre-

ateFolds() function sourced from the caret package (v6.0-94; Kuhn, M.; 

2008). Subsequently, various models underwent training and assessment 

via caret's confusionMatrix() function. F-scores (F1-scores) and accura-

cies were calculated using the following formulas: 

 

Accuracy = (True Positives + True Negatives) / Total Predictions 

 
 Reference  

Predicted Sensitive Resistant 

Sensitive A B 

Resistant C D 

 

Recall = A / (A + C) 

Precision = A / (A + B) 

F1-score = 2 × Precision × Recall / (Precision + Recall) 

 

Following the identification of the optimal model, a range of validation 

datasets were employed. These datasets included bulk RNAseq expression 

data from the Xia dataset, as well as snRNAseq data at the single-cell level 

and in the form of averaged and summed-up pseudobulks. 

 

3 Results 

In Figure 1, the process leading to the final model is outlined. It be-

gan with the merging of two raw-counts datasets, TMM normalization, 

and quality control to assess inter-batch sample relationships. During this 

phase, an outlier sample was removed. To facilitate DEA, DESeq2 was 

applied to the count data, resulting in the identification of DEGs between 

sensitive and resistant samples. Functional enrichment analysis of hall-

marks provided biologically significant insights and the initial sets of fea-

tures. Additionally, LASSO was employed to identify biomarkers for the 

models. After training and testing multiple models, the selection was 

based on the best performance achieved. External validation data were 

preprocessed and underwent quality control to eliminate outliers, to even-

tually evaluate the performances of the final models.  

 

The analysis of combined bulk RNAseq data revealed 1072 DEGs dis-

tinguishing between resistant and sensitive samples. 

 

Regarding the two separate bulk RNAseq datasets, namely Internal 

and Gou, an in-depth analysis was conducted. For the Internal dataset, 

DESeq2 analysis was employed with various models incorporating pre-

dictors derived from clinical data. However, issues arose due to collinear-

ity between predictors like age, gender, and PAM50 subclass with patient 

identity. Consequently, only patient identity was integrated into the design 

formula, given its importance in accounting for inter-patient variability. In 

parallel, a Limma analysis was carried out, albeit without yielding genes 

surpassing the significance threshold (FDR of 0.05). Nevertheless, the top 

genes identified were consistent with those obtained through DESeq2, vis-

ualized in the volcano plots in Supplementary Figure 1. Ultimately, the 

DESeq2 approach was favored and applied to the Combined dataset, con-

sequently unveiling contextually relevant DEGs.  

Following the merging of the Internal and Gou bulk RNAseq da-

tasets, a comprehensive analysis involving clustering and principal com-

ponent analysis (PCA) of the TMM-normalized merged data unveiled an 

outlier among the resistant samples, namely 'PDX346_1187-

21_CNTL_1R' from the Internal dataset, observed after plotting the first 

two PCs (Supplementary Figure 3). Subsequently, DESeq2 analysis was 

executed on the Combined data, exclusively considering the response var-

iable (resistant or sensitive sample) and patient identity. By applying a 

filter of |logFC| > 1 and adjusted p-value < 0.05, a total of 1072 DEGs 

were identified. The expression patterns of these 1072 genes are visualized 

in the heatmap (Figure 2), revealing no distinct separation based on re-

sponse or batch categories. Notably, based on the expression of the DEGs, 

sensitive sample ‘HCI-011_plusE2’ from the Gou data, was clustered sep-

arately from the others, but not excluded of further analysis. Remarkably, 

hallmark enrichment analysis performed on this DEG list yielded terms 

highly pertinent to context, including 'Estrogen Response Late', 'Estrogen 

Response Early', and 'Epithelial Mesenchymal Transition' (Supplementary 

Figure 2). These 1072 DEGs served as the foundation for subsequent fea-

ture selection.  

 

Neural network models with LASSO-selected features demonstrated 

the highest levels of accuracy and best F1-scores. 

 

In line with the methodology employed in the MOTERA paper, we 

initially adopted a similar approach, focusing on genes associated with 

hallmark terms related to estrogen response (early & late) and epithelial-

mesenchymal transition (Supplementary Figure 2). Out of the initially 

identified 112 genes, reduced to 88 due to redundancy, only four genes 

(RASGRP1, TFF1, VCAN, and TGM2) were mutual with the 24-gene sig-

nature of the MOTERA paper, depicted in the Venn diagram in 

Figure 3: Barplot of the LASSO-selected gene frequencies: Based on 

1000 LASSO iterations (lambda.min) applied to the 1072 DEGs, this plot 

displays the frequencies of selected genes. The frequency represents the 
number of times a gene was not shrunken to zero after 1000 iterations. The 

dotted line (Y = 180) indicates the threshold for the 'Filtered-Relaxed' fea-

ture set. 
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Supplementary Figure 6. The raw counts of these genes were extracted, 

TMM-normalized and scaled expression data from the merged dataset 

were chosen for training machine learning models, including NN, RF, and 

SVM. Initially, each NN was configured with a single neuron and a max-

imum of 2000 iterations. A decay rate of 5e-4 and a rang of 0.1 were ap-

plied. The parameters for SVM models were left undefined, allowing the 

function to optimize them automatically. As for the RF model, it was ini-

tialized with 20 trees, as this configuration yielded the best performances 

after experimenting with different values. Additionally, the square root of 

the number of columns (features) was selected as the number of randomly 

chosen features during each split. Subsequent parameter optimization oc-

curred after the initial selection process, but it did not lead to significant 

differences in performance. Consequently, the decision was made to con-

tinue using these parameters. 

Although an epsilon-regulated radial SVM achieved the highest ac-

curacy of 78.16%, its F-score was zero, rendering it unsuitable for our 

primary goal of accurately classifying sensitive patients. Therefore, the 

NN emerged as the second most accurate model, displaying an accuracy 

of 72.80% and a F-score of 0.545. The RF model achieved a similar accu-

racy of 62.52% but also had a F-score of zero. The suboptimal perfor-

mance of these models raised concerns about the efficacy of the feature 

selection approach, and were no longer validated.  

To address this issue, we turned to LASSO for feature selection. 

LASSO employed internal CV to optimize parameter values. The selec-

tion of the lambda value, which represents the stringency of  LASSO, was 

crucial. Two LASSO iterations were conducted: one with the minimum 

lambda value (lambda.min) post CV, resulting in a more lenient predictor 

selection, and another with lambda.min plus one s.e., leading to a more 

rigorous LASSO. 

The first iterative LASSO-selection with lambda.min yielded 73 

genes (referred as the Relaxed feature set), each with coefficients un-

shrunk with a specific frequency over 1000 LASSO iterations, as seen in 

the barplot in Figure 3. In contrast, during the iterations when using 

lambda.min + 1 s.e., all genes were shrunk to zero. Nevertheless, a second 

gene set was generated by applying a threshold after observing a drop in 

gene frequency in the barplot. This set, referred to as the Filtered-Relaxed 

feature set, comprises a total of 27 genes with a frequency > 180 (dotted 

line in Figure 3). 

Training models with the identified 73 features highlighted NNs as 

the superior choice. Its accuracy of 96.29% surpassed that of both RF 

(65.38%) and SVM (79.95%) models. Additionally, the NN flawlessly 

classified all sensitive samples, in contrast to the RF and SVM models 

with F-scores of 0.154 and 0.286, respectively. When trained on the 27 

selected genes, the SVM model achieved the highest accuracy, reaching 

96.29%, outperforming both NNs (94.51%) and RF (66.81%). In terms of 

F-scores, NNs achieved 0.889, while SVM excelled with a score of 0.909. 

Nevertheless, the NN model classified all 12 sensitive patients correctly 

(recall of 1), compared to SVM that classified 2 sensitive patients as re-

sistant (recall of 0.83). All the results of the training and testing phase of 

the three different machine learning models (SVM, NN, and RF) on the 

three different features sets (hallmark genes, Relaxed genes, and Filtered-

Relaxed genes), are summarized in Table 1.  

 

The 27-gene neural network model showed to the best performances 

across validation with diverse external data sets.  

 

Subsequently, we conducted a comprehensive validation process for 

the NN models using both the Relaxed and Filtered-Relaxed LASSO-

selected gene models. While the SVM model demonstrated slightly higher 

accuracy and F-score when trained on the Filtered-Relaxed 27-gene set, 

we chose to focus on the NN models for comparison of the number genes 

included in the models. Besides, missing values occurred in the validation 

data and would have to be imputed for the validation of the SVM model, 

which preferably is avoided. Additionally, the NN classified all sensitive 

patients correctly. The validation encompassed four distinct datasets: the 

Xia et al. external bulk RNAseq set, the snRNAseq data fed to the model 

cell-by-cell, and two variations of pseudobulk snRNAseq data (averaged 

and summed counts; See column names Table 2). Examination of the Xia 

et al. external bulk RNAseq dataset unveiled an outlying resistant sample 

named '015-1', which exhibited distinct clustering during ward.D2-based 

hierarchical clustering and PCA (Supplementary Figure 4). Next, to en-

sure data quality, the Seurat package was employed for in-depth analysis 

of the snRNAseq data, where cells with inadequate read counts, features, 

or elevated mitochondrial RNA content were filtered out. Moreover, due 

to a low number of cells, patients 15 and 16 were excluded from further 

analysis, as seen in the violin plots in Supplementary Figure 5. As previ-

ously mentioned, our analysis exclusively considered the tumoral fraction 

of cells, obviating the necessity for filtering based on cell type. Despite 

Table 1: Model Accuracies and F1-Scores for SVM, NN, and RF: This table presents the accuracies and F1-scores of SVM, NN, and RF models for three 

predictor sets: Hallmark genes, Relaxed, and Filtered-Relaxed LASSO-selected genes. These models were trained and tested using 4-fold cross-validation 

on a combination of internal and Gou et al. bulk RNAseq data. 
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this, upon performing dimensionality reduction, it is evident from the 

UMAP plot that cells naturally cluster according to the respective patients 

(Supplementary Figure 5). 

In our validation using the Xia dataset, we evaluated two models: the 

Relaxed 73-gene model and the Filtered-Relaxed 27-gene model. The 73-

gene model achieved an accuracy rate of 46.88%, while the 27-gene model 

achieved an accuracy rate of 53.12%. Both models exhibited an equal F-

score of 0.308 (Table 2). These suboptimal results prompted us to conduct 

hierarchical clustering (ward.D2 method) of the Combined data (Internal 

and Gou data, utilized for training) alongside the Xia validation data, aim-

ing to explore whether they exhibit separation based on their study origins. 

Notably, separation is indeed observed (Supplementary Figure 8). 

        Subsequently, we performed validation using snRNAseq data cell-

by-cell. In this context, 73-gene model achieved an accuracy of 66.43%, 

and the 27-gene model achieved an accuracy of 68.02%. The correspond-

ing F-scores were 0.356 and 0.345, respectively.  

When validating with summed-up pseudo bulk data, the 73-gene 

model achieved an accuracy of 60.00%, while the 27-gene model achieved 

an accuracy of 63.64%. The F-scores for these models were 0.571 and 

0.750, respectively (Table 2). 

Finally, in the case of validation involving average pseudobulk data, 

the 73-gene model achieved an accuracy of 20.00%, whereas the 27-gene 

model achieved an accuracy of 50.00%. The corresponding F-scores were 

0.000 and 0.571, respectively. A summary of all validation outcomes is 

provided in Table 2. 

4 Discussion 

In this study, we aimed to develop and compare various models for the 

classification of ER+ breast cancer patients based on their sensitivity to 

ET. To achieve this, we merged internally generated data with publicly 

available bulk RNAseq data from patients classified as either ET-sensitive 

or -resistant. Initial DEA identified 1072 genes exhibiting significant ex-

pression differences between these groups, with biological relevance con-

firmed through hallmark enrichment analysis. Our comprehensive analy-

sis encompassed a variety of models, each employing distinct features and 

machine learning algorithms. Ultimately, we arrived at two NN-based 

models: one derived from a 73-gene expression signature and another fea-

turing a refined set of 27 genes, selected through the LASSO method for 

their predictive potential. External validation using four distinct methods, 

including the Xia et al. external bulk RNAseq dataset, snRNAseq data an-

alyzed at the single-cell level, and two variations of pseudobulk snR-

NAseq data (averaged and summed counts), led to the construction of con-

fusion matrices. Despite our efforts, these validation outcomes were less 

favorable than expected.  

        Both Limma and DESeq2 are valid tools for identifying DEGs be-

tween our sensitive and resistant samples. When applied to the Internal 

data, Limma didn't yield any DEGs meeting the stringent FDR threshold 

of 0.05. In contrast, DESeq2 identified several relevant DEGs. Notably, 

the top genes identified by Limma (before significance filtering) resem-

bled those found by DESeq2. This aligns with a study by Tong Y. (2021) 

suggesting that DESeq2 tends to find more DEGs than Limma, but there's 

significant overlap, and Limma is generally considered more reliable, as 

it tends to produce less false positive results (Tong, Y., 2021). Neverthe-

less, our samples didn't cluster distinctly based on ET response in PCA 

plots. This suggests subtle discrepancies that conservative methods like 

Limma may not capture. Hence, we leaned towards using DESeq2 results 

as the foundation for subsequent feature selection, recognizing that, in our 

context, less stringent methods like DESeq2 may better reveal the nuances 

of gene expression patterns linked to ET response (Schurch, N. et al., 

2016; Gauthier, M. et al., 2020). 

        Our choice to explore a feature selection approach akin to the one 

employed in the MOTERA paper stemmed from the shared purpose of 

both signatures. The MOTERA paper sought to differentiate patients with 

Table 2: Confusion Matrices and Performance Metrics of NN-Based Models: This table displays the confusion matrices, accuracies, and F1-scores for 
two sets of predictors, namely, the Relaxed-LASSO selected and Filtered-Relaxed LASSO selected sets. These models were externally validated using 

four distinct datasets: Xia bulk RNAseq, snRNAseq analyzed at the single-cell level, and two pseudobulk datasets derived from the snRNAseq data, 

specifically summed and averaged pseudobulks. 
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activating ESR1 gene fusions, linked to ET failure. This objective bears 

resemblance to our aim of identifying patients who are unlikely to respond 

to ET before initiating any treatment. As a result, it was reasonable to ex-

pect a gene overlap between these two sets, and our analysis confirmed 

the presence of ‘only’ four shared genes. However, the incorporation of 

these genes, and the other 84, into our signature led to suboptimal model 

performances. This outcome prompted us to adopt an alternative ap-

proach: LASSO shrinkage selection, aimed at identifying the most predic-

tive genes aligned with our research objective.  

        While several gene signatures chose there candidate genes from a  

more biological perspective by selecting genes according to their known 

relevance in breast cancer, our choice to employ the LASSO algorithm 

reflects a more statistical and predictive-oriented approach. The key dis-

tinction lies in the emphasis placed on the predictive value of selected 

genes, without an explicit consideration of biological context (Paik, S., et 

al., 2004). However, it is important to note that the gene set on which 

LASSO operates is not devoid of context; it arises from a DEA designed 

to capture relevant genes associated with ET-response. This highlights that 

even within a statistical framework, the gene selection process remains 

inherently context-dependent. Notably, the LASSO approach has demon-

strated its effectiveness in previous studies within the field of biomarker 

discovery and predictive modeling. Research conducted by Wang et al. 

(2022), Yang et al. (2021), and Tang et al. (2022) successfully employed 

the LASSO algorithm to identify robust gene signatures with significant 

predictive value in various contexts, further supporting the suitability of 

this method for our research (Wang, T. et al., 2022; Yang, Z. et al., 2021; 

Tang, Y. et al., 2022). 

        Throughout our model training process, a pattern emerged, revealing 

that RF consistently produced suboptimal results. This prompted us to 

reevaluate the applicability of RF to our dataset. Our dataset presented a 

distinct class imbalance, with only 12 sensitive samples compared to 43 

resistant samples. As supported by previous literature, RF tends to encoun-

ter challenges when dealing with imbalanced datasets. Despite experimen-

tation with various hyperparameters, RF consistently underperformed 

when compared to SVM and NN (Zhu, T., 2020).  

        The SVM model trained on the 27-gene feature set achieved good 

performance, even slightly higher than the ultimately chosen NN. The NN 

demonstrated perfect classification of the 12 sensitive samples with a re-

call of 1. Additionally, since some external validation sets lack expression 

data for certain genes, the SVM would require imputation of expression 

values during validation. Given the NN's similarly good performance and 

the avoidance of imputation, we opted to continue with it. 

        Despite achieving strong performance during the training of the NN 

models and robust results through CV, we encountered suboptimal perfor-

mance during validation with external datasets. Several factors, biological, 

clinical and technical, could account for these discrepancies. From a bio-

logical perspective, breast cancer exhibits significant interpatient hetero-

geneity, and resistance to ET can arise through various pathways. As a 

result, patients classified as clinically resistant may employ diverse mech-

anisms to circumvent estrogen dependency, leading to distinct tran-

scriptomic profiles detected through RNAseq. In addition, the approach 

for measuring estrogen response or ET resistance can differ significantly, 

such as variations in the classification criteria used. This heterogeneity 

becomes particularly pronounced when combining data from different 

studies with a limited number of samples for both model training and ex-

ternal validation (Sjöström, M. et al., 2018). Moreover, during our quality 

control procedure for the validation data, we noticed a separation in the 

PCA plot. This separation was evident between the training data (a com-

bination of internally generated and Gou bulk RNAseq data) and the 

external Xia bulk RNAseq validation data. This divergence in expression 

profiles, as indicated by the PCA plot, likely contributed to misclassifica-

tion by the model during validation. 

        One challenging but innovative aspect of the study is our attempt to 

validate a model originally trained on bulk RNAseq data using snRNA-

seq data. While the results were suboptimal, we were surprised by the fea-

sibility of this approach, despite the questionability of averaging gene ex-

pression across different cells for each patient. To further align our vali-

dation process with the nature of bulk RNAseq data, we took an additional 

step. We aggregated the raw counts of specific genes across all cells for 

each patient, resulting in a single raw count value per gene per patient 

(summed pseudobulk validation set). This approach was guided by our 

hypothesis that it closely resembles the rationale of bulk RNA-seq. Upon 

evaluating the final accuracies and F-scores, we were gratified to observe 

that the summed pseudobulk method proved to be more effective in vali-

dating the model, bringing it closer in line with the characteristics of the 

training data.  

        Our results indicate that the Filtered-Relaxed 27-gene signature con-

sistently outperforms the Filtered 73-gene signature in terms of classifica-

tion performance after validation. This aligns with the fact that achieving 

comparable or better classification performance with a smaller number of 

genes is desirable, especially for clinical practice applications.  

        Notably, our study stands out by incorporating data from four differ-

ent datasets derived from distinct studies, a less common approach in sci-

entific literature. Despite the challenges and potential limitations observed 

during validation, we believe that this model, or similar ones, holds prom-

ise for future applications, provided more suitable validation data can be 

obtained. This pertains to both biological aspects, such as identifying sam-

ples with similar resistant pathways activated, and technical aspects, such 

as aligning with the characteristics of the training data.  

        In conclusion, our study paves the way for the development of a val-

idated model that holds significant promise for clinical practice. Much like 

established signatures such as PAM50 or MOTERA, a successfully vali-

dated model could empower clinicians to make more precise treatment 

decisions. This would not only spare patients the harm and cost of unnec-

essary interventions, but also save the CDK4/6i-combination for those 

who do not respond, and extend the duration before resorting to chemo-

therapy.  
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