
MINI REVIEW
published: 04 March 2021

doi: 10.3389/fmed.2021.644327

Frontiers in Medicine | www.frontiersin.org 1 March 2021 | Volume 8 | Article 644327

Edited by:

Je-Ho Mun,

Seoul National University Hospital,

South Korea

Reviewed by:

Luis Puig,

Autonomous University of

Barcelona, Spain

Philippe Lefrançois,

McGill University, Canada

*Correspondence:

Carlo Manzo

carlo.manzo@uvic.cat

Specialty section:

This article was submitted to

Dermatology,

a section of the journal

Frontiers in Medicine

Received: 20 December 2020

Accepted: 10 February 2021

Published: 04 March 2021

Citation:

Cullell-Dalmau M, Noé S,

Otero-Viñas M, Meić I and Manzo C

(2021) Convolutional Neural Network

for Skin Lesion Classification:

Understanding the Fundamentals

Through Hands-On Learning.

Front. Med. 8:644327.

doi: 10.3389/fmed.2021.644327

Convolutional Neural Network for
Skin Lesion Classification:
Understanding the Fundamentals
Through Hands-On Learning

Marta Cullell-Dalmau 1, Sergio Noé 1, Marta Otero-Viñas 2, Ivan Meić 1,3 and Carlo Manzo 1*

1 The QuBI Lab, Facultat de Ciències i Tecnologia, Universitat de Vic – Universitat Central de Catalunya, Vic, Spain, 2 Tissue

Repair and Regeneration Laboratory, Facultat de Ciències i Tecnologia, Universitat de Vic – Universitat Central de Catalunya,

Vic, Spain, 3University of Zagreb, Zagreb, Croatia

Deep learning architectures for the classification of images have shown outstanding

results in a variety of disciplines, including dermatology. The expectations generated by

deep learning for, e.g., image-based diagnosis have created the need for non-experts to

become familiar with the working principles of these algorithms. In our opinion, getting

hands-on experience with these tools through a simplified but accurate model can

facilitate their understanding in an intuitive way. The visualization of the results of the

operations performed by deep learning algorithms on dermatological images can help

students to grasp concepts like convolution, even without an advanced mathematical

background. In addition, the possibility to tune hyperparameters and even to tweak

computer code further empower the reach of an intuitive comprehension of these

processes, without requiring advanced computational and theoretical skills. This is

nowadays possible thanks to recent advances that have helped to lower technical and

technological barriers associated with the use of these tools, making them accessible

to a broader community. Therefore, we propose a hands-on pedagogical activity that

dissects the procedures to train a convolutional neural network on a dataset containing

images of skin lesions associated with different skin cancer categories. The activity is

available open-source and its execution does not require the installation of software. We

further provide a step-by-step description of the algorithm and of its functions, following

the development of the building blocks of the computer code, guiding the reader through

the execution of a realistic example, including the visualization and the evaluation of

the results.

Keywords: convolutional neural networks, skin lesion analysis, classification, melanoma, deep learning

INTRODUCTION: BACKGROUND AND RATIONALE FOR THE
EDUCATIONAL ACTIVITY INNOVATION

Over the last two decades, convolutional neural networks (CNNs) (1) have become established as
an invaluable tool for biomedical image classification and have been proposed as an instrument for
clinical diagnosis in disciplines such as radiology, histology, ophthalmology, and dermatology (2).

The rapid spread of CNNs and other deep learning techniques, has created the need for
non-experts to become familiar with these complex tools and understand their principles of

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2021.644327
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2021.644327&domain=pdf&date_stamp=2021-03-04
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:carlo.manzo@uvic.cat
https://doi.org/10.3389/fmed.2021.644327
https://www.frontiersin.org/articles/10.3389/fmed.2021.644327/full

Cullell-Dalmau et al. Hands-On Learning of CNN

operation. There is a broad literature of introductory articles
offering basic reviews on CNNs principles and applications.
However, on the practical side, tutorials to start working with
CNNs often require a familiarity with terms and concepts
that could discourage readers without a solid background in
mathematics and/or computer programming to obtain a further
understanding of these techniques.

In this scenario, we aim to close this gap by offering a
hands-on activity based on the step-by-step execution of a
computer code involving all the procedures carried out when
implementing a CNN classification, along with their description.
Similar educational activities have been recently proposed for
other research fields (3). The activity guides the student through
two complete examples based on images of skin lesions, starting
from the pre-processing of the dataset, and leading through
the steps of data augmentation, the choice of the network
architecture and its fine-tuning, until the final evaluation of
the results.

In our opinion, this hands-on activity can help students to
obtain an intuitive understanding of the operations performed
by the CNN building blocks, e.g., by visualizing the effect
of image convolution with a specific kernel, the feature map
generated at specific network layers, or even by performing
the network training and exploring the effect of different
hyperparameters on the results. The activity can be performed
at different levels of difficulty, depending on the user expertise
in programming. At the basic level of execution, the students
can interactively play with the different sections just by changing
input parameters from simple form fields and can run the
program by pushing the play button, without even visualizing
the code. At the intermediate/advanced levels, students can
unfold cells to show, read and (possibly) modify portions of the
code. In both cases, the use of the Google Colab and GitHub
platforms allows to run the activity in the cloud from any internet
browser, without any software installation, strongly simplifying
configuration requirements and enabling the capability to use
hardware accelerators.

PEDAGOGICAL FRAMEWORK AND
LEARNING ENVIRONMENT

We aimed at developing a hands-on activity mainly directed
to students (medical school, biomedical engineering), but with
the potential of being of interest also for clinicians and other
professionals willing to get acquainted with deep learning and
CNNs. Four major developments make such a learning-by-doing
experience nowadays possible, even for non-experts. First, the
creation of specific software libraries, which have reduced the
complexity and length of the code necessary to implement these
networks, thus allowing their use to operators with a basic
knowledge of computer programming. Secondly, the distribution
of pre-trained classical CNN under license for reuse has enabled
the possibility to perform transfer learning further simplifying
the coding and speeding up the training. Third, the free
availability of cloud computing on virtual machines with graphics
(GPUs) and tensor processing units (TPUs), which has played

an important role in speeding up training procedures. The last
development of note is the accessibility of databases containing
labeled images for training.

Along these lines, for the proposed activity we use Keras
(4), an open-source framework developed by Francois Chollet.
Several open-source frameworks are nowadays available for
deep learning such as PyTorch or Caffe. However, Keras is
recommended for beginners since it is relatively easy to use
and has a high-level API that permits to build complex models
by writing a few lines of code. In addition, Keras has several
models of the best performing architecture (Alexnet, ResNet,
VGGNet, Inception, etc.) pre-trained on large datasets (e.g.,
the one used for the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC, http://image-net.org) containing millions of
photographs from 1,000 categories) that have thus achieved very
general classification capabilities. These trained networks can be
“reconverted” to the classification of different target images in few
simple steps and their learnable parameters (weights and biases)
are fine-tuned to provide high classification accuracy, through a
procedure called transfer learning.

The code for the activity is provided on the Google
Colaboratory platform (Colab, https://colab.research.google.
com/notebooks/intro.ipynb). Colab is a free cloud service that
enable coding in Python and program execution in a web
browser, in a highly interactive fashion. In addition, it requires
a minimum number of configuration steps, offers free access
to GPUs and TPUs, and allows sharing of contents in a
straightforward manner. The notebooks and metadata necessary
for the activity are shared on GitHub (www.github.com), a free
hosting service for software development and version control.

Deep learning requires a massive amount of information
in the form of labeled images. Several repositories contain
high-quality images associated to dermatology, available as
research tools in clinical training and computer science.
For example, the archive of the International Skin Imaging
Collaboration (ISIC, https://isic-archive.com/), or the Edinburgh
Dermofit Library (https://licensing.edinburgh-innovations.ed.ac.
uk/i/software/dermofit-image-library.html) host images of skin
lesions, labeled according to their diagnoses. For the activity, we
use images from the dataset that has been recently made available
for the training ofmethods competing for the ISIC 2019 challenge
(https://challenge2019.isic-archive.com), a competition aimed at
supporting research toward automated melanoma detection. The
full dataset contains 25,331 images of skin lesions associated
to 8 different diagnostic categories (melanoma, melanocytic
nevus, basal cell carcinoma, actinic keratosis, benign keratosis,
dermatofibroma, vascular lesion, and squamous cell carcinoma)
and can be accessed by registering to the ISIC website.

DESCRIPTION OF THE HANDS-ON
ACTIVITY

The files to perform the activity are stored on the GitHub public
repository https://github.com/qubilab/CNN-for-skin-lesion-
classification. The two links, associated to examples of a binary
(benign/malignant) and a multiclass (melanoma/melanocytic

Frontiers in Medicine | www.frontiersin.org 2 March 2021 | Volume 8 | Article 644327

http://image-net.org
https://colab.research.google.com/notebooks/intro.ipynb
https://colab.research.google.com/notebooks/intro.ipynb
http://www.github.com
https://isic-archive.com/
https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
https://challenge2019.isic-archive.com
https://github.com/qubilab/CNN-for-skin-lesion-classification
https://github.com/qubilab/CNN-for-skin-lesion-classification
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

Cullell-Dalmau et al. Hands-On Learning of CNN

nevus/basal cell carcinoma/actinic keratosis/benign
keratosis/dermatofibroma/vascular lesion/squamous cell
carcinoma) classification of images of skin lesions, automatically
redirect to the respective Colab notebooks.

For the basic use of the notebook, no configuration is needed.
For applications requiring hardware accelerators (e.g., training
or fine-tuning), GPU or TPU can be enabled by picking the
required accelerator from the menu that appears by selecting
Runtime/Change runtime type.

For a better pedagogical support, the notebook is organized
in consecutive sections, each with a brief explanation of the task
performed, that guide the user steps-by-step along the activity.
To execute the code in a cell, it is sufficient to select it with a
click and then either press the play button within the cell box
or use the keyboard shortcut “Command/Ctrl+Enter.” For more
advanced applications, the visualization of input form fields or
code is achieved by unfolding the cell content, by clicking on
the little arrowhead at the left of the cell, thus enabling the
necessary editing.

Image Pre-processing and CNN Basics
The first cell “0. Imports” gives access to the code provided in
other modules and libraries and defines some basic functions.
Once this operation has been performed, we enter into the core
of the activity. In fact, since most of the deep learning approaches
are data-driven, a major focus must be set on the dataset and its
organization. The cell “1. Loading and organizing the dataset”
loads the labeled images on the Colab cloud space and arrange
them into folders (Figure 1A). The first block of this section
requires the input of user credential to login on the ISIC archive
and the selection of the number of images per category. The
photographs will then be organized into folders according to their
category and further randomly split into training, validation, and
test sets. A variable percentage of images (10–30%) can be used
for the final testing, whereas the others are split between training
(70–80%) and validation. The folder tree can be visualized in the
left frame of Colab, by selecting “Files.” In the example, we use
percentages of 65, 20, and 15% of the total number of images for
training, validation and test, respectively. These percentages can
be changed by the user through the form fields of block 1.3.

The cell “2. Understanding images and convolution” allows
the user to visualize an image from a selected folder, together
with its decomposition into layers according to RGB color model
and the representation of the pixel intensity value. To provide
an intuitive understanding of the principle of CNN, the activity
shows different convolution kernels and their pixel values. The
convolution of the image with these kernels is further provided.
An introductory description of the convolution and of the
hyperparameters of a convolutional layer can be found in our
previous article (5).

Often, the limited amount of data available for training might
produce the memorization of specific details of the training
images, leading to overfitting and the inability of the model
to generalize. In this case, it is recommendable to perform
a procedure called data augmentation. The augmentation
generates modified images by applying random transformations,
such as rotation, shift, scaling, and reflection, to existing

data (Figure 1B). Typically, the computer function used for
augmentation also takes care of resizing the images to the input
size required by the network. These steps can be visualized on a
random image by executing the cell “3. Data augmentation.”

CNN Selection
Once the data have been obtained and properly organized, the
following step entails the choice of the classification network. In
principle, users could build their own network by assembling
it layer-by-layer. Application program interfaces allow one to
create a CNN from scratch relatively easily. However, this is
generally not recommended for beginners, since it requires some
background knowledge, a good dose of intuition, and some trial
and error. Moreover, unless one is facing a new and very specific
image classification task, a personalized CNN is often not needed:
many popular deep learning architectures are released under a
permissive license for reuse. Even in the case that it is essential
to build a custom model, classic networks might still serve as an
inspiration, a scaffold, or as a block of the new model. Nowadays,
several networks offering outstanding performance for image
classification are available, therefore choosing the most suitable
CNN for one’s application is not straightforward. Since these
CNNs have been originally built for applications on different
datasets, the selection should be based on their performance
on the target dataset and thus requires their evaluation and
comparison (6).

ResNet-50
We use the CNN ResNet-50 (7). ResNet architectures were
developed by the Microsoft Research team (7) and are
available in several versions with different number of layers,
such as 50, 101, 152 (https://github.com/KaimingHe/deep-
residual-networks). Notably, the ResNet-152 won the 1st
places in all the sections of the ILSVRC and COCO (http://
cocodataset.org/#detection-2015) competitions in 2015. Pre-
trained ResNet architectures have been frequently used for the
classification of skin lesions, even by several participants to ISIC
challenges (8–12).

A schematic representation of the architecture and functions
of ResNet-50 is shown in Figure 2. Figure 2A shows examples of
feature maps obtained at specific layers. Moreover, the code of
the hands-on activity displays the feature map for any selected
layer of the CNN (cell “8.5 Visualize features generated at a
specific layer”). Figure 2B contains a scheme of the layers and
the connections of the network. Figure 2C shows the effect
of the application of specific operations (convolution, batch
normalization, activation and maxpooling) on an image.

As shown in Figure 2A and in cell “2. Understanding
images and convolution,” an image is a collection of two-
dimensional matrices (channels) which elements (pixels) have
numeric values representing the brightness in each channel.
Color images are composed of multiple channels (e.g., 3 for the
RGB representation) whereas grayscale images only have one.
The application of the network over an input image, produces its
progressive transformation into a larger number of features with
smaller lateral dimensions. Eventually, the features are combined
to obtain a set of scalar values with the same dimension of the

Frontiers in Medicine | www.frontiersin.org 3 March 2021 | Volume 8 | Article 644327

https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks
http://cocodataset.org/#detection-2015
http://cocodataset.org/#detection-2015
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

Cullell-Dalmau et al. Hands-On Learning of CNN

FIGURE 1 | Data pre-processing and augmentation. (A) Example of the organization of the training dataset ISIC 2019. Images are first divided into folders associated

to the different categories. A specific function split them randomly into training, validation and test datasets. (B) An original image from the training dataset ISIC 2019

(class NV) and possible outputs of the application of the augmentation procedure, consisting in combinations of random shift, rotation, and reflection. The data

augmentation function resizes the images to fit the input size of the network (224 × 224 × 3).

output categories. This is achieved through the repetition of
mathematical operations performed by the layers and depending
on a large number of learnable parameters.

The input is first processed by a convolutional layer.
Convolution is a mathematical operation involving the input
image and a kernel, typically a matrix with smaller lateral
dimensions with respect to the input. During CNN training,
kernels are randomly generated and each kernel produces a
different feature. Convolution is performed by sequentially
shifting the kernel along the input image by a fixed number of
pixels, called stride. At each step, the sum of the element-by-
element multiplication between overlapping pixels returns the
pixel value of the convolutional feature. In cell “2. Understanding
images and convolution” the output provided by different kernels
can be interactively explored. It must be pointed out that a stride
larger than one can be used to obtain features with reduced lateral
size with respect to the input.

The first convolutional layer of the ResNet-50 uses 64 kernels
of 7 × 7 pixels2 with a stride of 2 pixels and thus produces 64
features with half the lateral size of the input image (Figure 2).
The features are regularized through a batch normalization layer
(Figure 2C), that performs the standardization of the input,
corresponding to the subtraction of the mean of the batch and
the division by the standard deviation. The convolutional and
batch normalization layers are generally followed by an activation
function that performs a non-linear transformation of the feature
map, providing the input for the next convolutional layer. Non-
linear functions (like sigmoid or hyperbolic tangent) are used as
activation functions for their similarity to the behavior of real

neurons, i.e., the transformation of a continuous input into a
digital output. The most widely used function is the rectified
linear unit (ReLU). The ReLU performs a simple calculation:
it returns the same value provided by the input if the input is
positive. However, if the input value is negative or null, it returns
zero. Inputs that are converted to zero constitute non-activated
neurons. In this way, not all neurons are firing simultaneously.
The sparse activation and the simpler mathematical operation
guarantee a higher computational efficiency for ReLU as
compared with other non-linear functions.

The batch normalization and the activation layers preserve the
lateral size of features obtained at the output of the convolution
layer. However, it is often recommendable to create a lower
resolution version (downsampling) of the output image to reduce
the number of parameters and account for variations in the
position of features in the input image. A common approach is
to use a pooling layer, which substitutes adjacent subregions of
specific size with the sum, average or maximum values of the
corresponding pixels. The ResNet-50 uses a maxpooling layer
(Figure 2C) to downsample images by taking the maximum of
the input over 3× 3 regions.

Combinations of these layers are applied along the network,
progressively reducing the lateral size from 224 × 224 to 7 ×

7 and increasing the depth of the feature map from 3 (the RGB
layers of the input image) to 2048. At this point, a group of three
layers flattens the feature map, i.e., transforms it into a score
vector with the same length as the number of categories. The
values of elements of this vector correspond to the probability
that the input image belongs to each category (Figure 2B) and

Frontiers in Medicine | www.frontiersin.org 4 March 2021 | Volume 8 | Article 644327

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

Cullell-Dalmau et al. Hands-On Learning of CNN

FIGURE 2 | Schematic and operations of a ResNet-50. (A) Feature maps obtained at different layers of a trained ResNet-50, from the input RGB image, to the

8-element probability vector predicting the image class. (B) Schematic illustration of representative layers of the network. (C) Effect of convolution, batch

normalization, activation, and maxpooling on 1 of the 64 features produced by the first convolutional layer from the input image.

the maximum of this vector will correspond to the category
assigned to the input image by the CNN. The first layer of
the group performs a downsampling through average pooling, a
pooling operation returning the mean of the region of the image
considered. By using an average pooling over 7× 7 regions, each
of the 2048 features is thus reduced to a single value given by the
average of all the pixels in the 7× 7 map (Figure 2A).

The further reduction of the number of elements of the vector
to a size equal to the number of categories is obtained through
the fully connected layer. Each output value of this layer has a
complete connection with all the 2048 inputs, as it is obtained as
their weighted sum. The very last layer normalizes these values
into the probabilities to belong to each labeled category. Usually,
this task is performed through a softmax function that generalizes
binary logistic regression to the case of a multiclass problem.

Training
Once the dataset is ready and the CNN has been chosen, it
is possible to start the actual training of the network. During

this procedure, values of the learnable parameters are randomly
changed, and the corresponding features are calculated to
provide a tentative classification of the images in the training set.
The performance of the network is evaluated by the calculation
of a metric (loss function) that quantifies the similarity between
the prediction and the ground-truth. Parameters are iteratively
adjusted to optimize the loss function and thus increase
correct predictions.

However, as mentioned earlier, we need to distinguish
between two different situations. The first refers to the case in
which the network needs to be fully trained. In this case, the
values of all the parameters of the network need to be learned
from scratch. This procedure requires very large datasets, often
not available for medical applications. However, the use of a

classical network further enables the possibility of performing

transfer learning: besides using the same architecture as a classical

network, one can also take advantage of parameters learned by
the previous training of the CNN on a different, larger dataset.
In transfer learning, the parameters obtained from the training

Frontiers in Medicine | www.frontiersin.org 5 March 2021 | Volume 8 | Article 644327

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

Cullell-Dalmau et al. Hands-On Learning of CNN

of the model over a large dataset are only fine-tuned to adapt
the network for the classification of a different target dataset. In
this way, one can skip the time-consuming training steps but
still take advantage of the features learned from the training
over many photographs. As reported in (6), the top-performing
methods submitted for ISIC challenges 2016, 2017, and 2018
used CNNs pre-trained on the ImageNet database. In cells 4–6,
we perform these steps using the ResNet-50 pre-trained on the
ImageNet dataset.

The ResNet-50 is designed for the ImageNet challenge and
thus its output is composed of 1,000 categories. To use the
ResNet-50 to classify skin lesion images among a different
number of classes, it is first necessary to replace the last layers
by ones providing an output over the desired number (2 or 8)
of categories (Figure 2B). This procedure is performed in the
section “4. The CNN: ResNet-50.”

Hyperparameters
The CNN will learn weights and biases by minimizing the loss
function over the training set using a method called stochastic
gradient descent. However, due to the large size of the dataset
and the limited memory, it is not possible to feed all the
images simultaneously to the CNN. Therefore, training images
are generally passed to the CNN in smaller groups called batches
(cell 4.1). The optimum batch size must be set by trial and error
in order to provide the fastest convergence. As a rule of thumb,
small but not too small batch sizes (e.g., 32, 64, 128) are preferred,
since they show higher accuracy than very large batches (13). The
number of iterations necessary for the network to “see” the entire
training dataset constitutes an epoch.

Another relevant hyperparameter is the global learning rate
(cell 5.1), a number between 0 and 1 determining the step size
used to update the weights at each iteration. The learning rate
sets the speed at which the model is adjusted to the data. A low
learning rate applies small changes to the weights at each update,
thus requires more epochs of training. Although a high learning
rate produces faster changes, if too high it might not converge to
an optimal model. The correct learning rate should be empirically
chosen to obtain convergence in a reasonable amount of time.
Typically, the learning rate is not fixed but is progressively
reduced during the optimization. Large rates are first used to
quickly obtain values of the weights corresponding to a loss
function close to its minimum. At that point, smaller rates further
adjust the weights to better approximate the exact minimum of
the loss function (cell 5.2). In addition, since in CNN the features
provided by the early layers are more generic, whereas those
belonging to the last layers are dataset specific, one can introduce
non-uniform learning rates and either “freeze” the early layers
or train the new layers at a faster rate with respect to the others
(cell 5.1 and 5.3). Besides, several other hyperparameters need to
be set in relation to the optimization procedure. In the activity,
we adopt a procedure and use hyperparameters similar as those
described in (11).

Optimization
The algorithm is now ready to start the optimization process,
a procedure involving the minimization of a loss function that

FIGURE 3 | Learning curves. Accuracy (A) and loss function (B) as a function

of the number of iterations for the training batch (blue line for raw data, black

line for filtered data) and validation sets (red symbols), as obtained through the

optimization procedure. The white and gray areas delimit different epochs. The

slightly higher accuracy and lower loss values obtained for the training dataset

respect to the validation one reveals a slight overfitting.

measure the distance between the predicted and the ground-truth
classification. For classification tasks, the cross-entropy function
is the usual choice (cell 5.4). The optimization will run until some
convergence condition is met. This condition is set by the user
based either on the value of accuracy/error calculated on the
validation set, or on a maximum number of validations without
improving the loss value (cell 5.2).

The actual training is performed in section “6. Fine-tuning
the model.” The learning process can be visually monitored
by displaying the trend of learning curves calculated from
both the training and validation datasets as a function of
algorithm iterations, to have an idea about how well the model
is, respectively, learning and generalizing (defined in cell 5.5).
Typically, plots of learning curves associated to optimization
(e.g., cross-entropy loss) and performance (e.g., accuracy)
are simultaneously created for both datasets (Figures 3A,B).
The comparison of learning curves obtained for training and
validation datasets is a valuable diagnostic method for the model
behavior. A training loss showing a continuous decrease with a
validation loss showing a minimum, in general correspond to an
overfitting model. A good fit is usually associated with training
and validation losses decreasing simultaneously toward closely
spaced horizontal asymptotes (4). However, a higher accuracy
(lower loss) of the training set with respect to the validation
can still indicate some degree of overfitting, as obtained for the
example shown in Figures 3A,B.

Since the training can sometimes run for quite a long time, in
section “7. Load a trained network” we also provide a previously-
trained model with weights. By loading this model, the user can
perform the remaining part of the activity without having to wait
for the completion of the training procedure.

Performance Evaluation
Once the learning phase is complete, the network can be finally
applied to predict the class of the images contained in the test
dataset, that were not used for the training. Since the ground-
truth of these images is known, they can be used to calculate

Frontiers in Medicine | www.frontiersin.org 6 March 2021 | Volume 8 | Article 644327

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

Cullell-Dalmau et al. Hands-On Learning of CNN

FIGURE 4 | Model evaluation over the test dataset. (A) Confusion matrix displaying the number of images of the test dataset associated to each category by the

ResNet-50 network. (B) ROC curves obtained on the same dataset and the corresponding values of the AUC for each class.

metrics to assess the performance of the classifier (section “8.
Performance assessment”). Besides the overall accuracy, the
confusion matrix, reporting the number of correct and incorrect
predictions over all the classes, (Figure 4A) visually summarize
classification and mis-classification performance of the model.
The evaluation of the model performance further includes the
plot of the receiver operating characteristic (ROC) curves and the
calculation of the area under the curve (AUC) for each category
(Figure 4B), obtained as detailed in (5).

DISCUSSION AND CONCLUSIONS

We have developed a hands-on activity based on the interactive
computer code and a detailed description of the steps needed
to implement and fine-tune a CNN to perform the classification
of dermatological images, together with an intuitive explanation,
suitable for non-experts, of the functions performed by the main
blocks of the network. The description is based on two practical
examples, consisting of the fine-tuning of a pre-trained ResNet-
50 network on a public dataset, containing images of skin lesions
corresponding to different diagnoses. The use of ad hoc toolboxes
and libraries largely simplifies the coding and makes it accessible
to beginners.

In our opinion, the hands-on example, together with the
description provided in this article, can act as a tool for
students interested in obtaining a first understanding of the
inner working of a CNN. However, the same activity can also be
offered to provide a tutorial for beginners’ initiation to computer
programming for building and optimizing CNNs. In the first
case, the code can be simply executed with the default parameters
to visualize the output of each cell. The visualization of the
results provides an intuitive understanding of CNN principles.
As an example, plotting the feature maps obtained at consecutive
layers allows comparing the changes introduced on the features
by pooling, batch normalization and activation layers. In the
second case, the user can further explore how modifications
of the dataset and the change of hyperparameters affect the

network’s performance. Examples in this sense might involve the
comparison of performance upon the change of learning rates (or
even the freezing) of specific layers.

The use of an interactive hands-on activity reproducing a
novel approach in its complexity might be a powerful strategy
to approach the development of problem-solving and analytical
skills, possibly through group work in the classroom. In addition,
we believe that making this technology more accessible for non-
expert will contribute to further strengthen the collaboration
between dermatologists and computer scientists, toward the joint
effort of improving image-based medical diagnosis.

AUTHOR CONTRIBUTIONS

CM and MC-D contributed to conception and design of the
study. SN, IM, and CM wrote the code and performed analyses.
MC-D wrote the first draft of the manuscript. CM wrote the
final version of the manuscript. CM and MO-V supervised the
research. All authors contributed to manuscript revision, read,
and approved the submitted version.

FUNDING

CM gratefully acknowledges funding from FEDER/Ministerio
de Ciencia, Innovación y Universidades – Agencia Estatal de
Investigación through the Ramón y Cajal program 2015 (Grant
No. RYC-2015-17896), and the Programa Estatal de I+D+i
Orientada a los Retos de la Sociedad (Grant No. BFU2017-
85693-R); from the Generalitat de Catalunya (AGAUR Grant
No. 2017SGR940). CM also acknowledges the support of
NVIDIA Corporation with the donation of the Titan Xp GPU.
MO-V gratefully acknowledges funding from the PO FEDER
of Catalonia 2014-2020 (project PECT Osona Transformació
Social, Ref. 001-P-000382) and the Spanish Ministry of Science,
Innovation, and Universities through the Instituto de Salud
Carlos III-FEDER program (FIS PI19/01379). IM acknowledges
the support of the Erasmus+ program of the European Union.

Frontiers in Medicine | www.frontiersin.org 7 March 2021 | Volume 8 | Article 644327

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

Cullell-Dalmau et al. Hands-On Learning of CNN

REFERENCES

1. LeCun Y, Haffner P, Bottou L, Bengio Y. Object recognition with gradient-

based learning. In: Shape, Contour and Grouping in Computer Vision Lecture

Notes in Computer Science, vol 1681. Berlin; Heidelberg: Springer (1999).

p. 319–45. doi: 10.1007/3-540-46805-6_19

2. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian

M, et al. A survey on deep learning in medical image analysis.

Med Image Anal. (2017) 42:60–88. doi: 10.1016/j.media.2017.

07.005

3. Erickson BJ. Magician’s corner: how to start learning about deep learning.

Radiol Artif Intell. (2019) 1:e190072. doi: 10.1148/ryai.2019190072

4. Chollet F. Deep Learning with Python. Shelter Island: Manning Publications

Company (2018).

5. Cullell-Dalmau M, Otero-Viñas M, Manzo C. Research techniques

made simple: deep learning for the classification of dermatological

images. J Invest Dermatol. (2020) 140:507–14.e1. doi: 10.1016/j.jid.2019.

12.029

6. Perez F, Avila S, Valle E. Solo or ensemble? Choosing a CNN architecture for

melanoma classification. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops. Long Beach, CA (2019).

7. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.

Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. (2016) 2016-

Decem:770–8. doi: 10.1109/CVPR.2016.90

8. Gutman D, Codella NCF, Celebi E, Helba B, Marchetti M, Mishra N, et al.

Skin lesion analysis toward melanoma detection. In: A Challenge at the

International Symposium on Biomedical Imaging (ISBI) 2016, hosted by the

International Skin Imaging Collaboration (ISIC) (2016). Available online at:

https://arxiv.org/abs/1605.01397

9. Marchetti MA, Codella NCF, Dusza SW, Gutman DA, Helba B, Kalloo

A, et al. Results of the 2016 international skin imaging collaboration

international symposium on biomedical imaging challenge: comparison of

the accuracy of computer algorithms to dermatologists for the diagnosis of

melanoma from dermoscopic images. J Am Acad Dermatol. (2018) 78:270–

7.e1. doi: 10.1016/j.jaad.2017.08.016

10. Codella NCF, Gutman D, Celebi ME, Helba B, Marchetti MA, Dusza SW,

et al. Skin lesion analysis toward melanoma detection: a challenge at the

2017 International symposium on biomedical imaging (ISBI), hosted by

the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th

International Symposium on Biomedical Imaging (ISBI 2018). New York, NY:

IEEE (2018). p. 168–72.

11. Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification

of the clinical images for benign and malignant cutaneous tumors

using a deep learning algorithm. J Invest Dermatol. (2018) 138:1529–38.

doi: 10.1016/j.jid.2018.01.028

12. Codella N, Rotemberg V, Tschandl P, Celebi ME, Dusza S, Gutman D,

et al. Skin lesion analysis toward melanoma detection 2018. In: A Challenge

Hosted by the International Skin Imaging Collaboration (ISIC). Washington,

DC (2019).

13. Mishkin D, Sergievskiy N, Matas J. Systematic evaluation of convolution

neural network advances on the Imagenet. Comput Vis Image Underst. (2017)

161:11–9. doi: 10.1016/j.cviu.2017.05.007

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Cullell-Dalmau, Noé, Otero-Viñas, Meić and Manzo. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Medicine | www.frontiersin.org 8 March 2021 | Volume 8 | Article 644327

https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1148/ryai.2019190072
https://doi.org/10.1016/j.jid.2019.12.029
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1605.01397
https://doi.org/10.1016/j.jaad.2017.08.016
https://doi.org/10.1016/j.jid.2018.01.028
https://doi.org/10.1016/j.cviu.2017.05.007
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles

	Convolutional Neural Network for Skin Lesion Classification: Understanding the Fundamentals Through Hands-On Learning
	Introduction: Background and Rationale for The Educational Activity Innovation
	Pedagogical Framework and Learning Environment
	Description of The Hands-on Activity
	Image Pre-processing and CNN Basics
	CNN Selection
	ResNet-50
	Training
	Hyperparameters
	Optimization
	Performance Evaluation

	Discussion and Conclusions
	Author Contributions
	Funding
	References

