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Deep learning is a branch of artificial intelligence that uses computational networks inspired by the human
brain to extract patterns from raw data. Development and application of deep learning methods for image
analysis, including classification, segmentation, and restoration, have accelerated in the last decade. These tools
have been progressively incorporated into several research fields, opening new avenues in the analysis of
biomedical imaging. Recently, the application of deep learning to dermatological images has shown great
potential. Deep learning algorithms have shown performance comparable with humans in classifying skin
lesion images into different skin cancer categories. The potential relevance of deep learning to the clinical
realm created the need for researchers in disciplines other than computer science to understand its funda-
mentals. In this paper, we introduce the basics of a deep learning architecture for image classification, the
convolutional neural network, in a manner accessible to nonexperts. We explain its fundamental operation, the
convolution, and describe the metrics for the evaluation of its performance. These concepts are important to
interpret and evaluate scientific publications involving these tools. We also present examples of recent ap-
plications for dermatology. We further discuss the capabilities and limitations of these artificial intelligence-
based methods.
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LEARNING
Artificial intelligence (AI) describes a branch of computer
science that uses machines to simulate cognitive functions of
the human mind, such as learning or reasoning (Figure 1). An
increasing number of systems based on AI, such as voice-
powered assistants like Alexa and Siri, are progressively
affecting human habits. Self-driving cars, speech recognition,
and machine vision promise to broadly improve human lives,
with applications to business, education, and healthcare.

Subcategories of AI include machine learning (ML) and
deep learning (DL, Figure 1). ML is based on the acquisition of
knowledge from data and does not provide specific rules for a
given task; the machine undergoes a learning process based
on examples and optimizes its performance on a specific
assignment. ML has been successfully applied to several
tasks, including classifying gene expression patterns associ-
ated with diseases, predicting protein structures from genetic
sequences, or designing chemical scaffolds in drug discovery
(Marx, 2019). Generally speaking, DL is one of the several
computing systems for ML inspired by the biological neural
networks that constitute the human brain. DL utilizes artificial
neural networks (ANNs), which attempt to mimic how the
brain works, especially the connections between neurons. An
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neurons) arranged in layers and connected to transmit signals
(Figure 2). Typically, each signal consists of a number, and
the output of each node is a nonlinear function of the sum of
the inputs. Nodes and connections are characterized by
weights that are adjusted through the learning process to in-
crease or decrease the strength of a given signal. The aggre-
gate signal of an artificial node may pass through an
activation function, such as transmitting only signals above a
threshold (Figure 2a). An ANN may have a single or multiple
hidden layers between the input and the output. The number
of hidden layers and the number of nodes in each layer
constitute the variables controlling the architecture of the
network, called hyperparameters. ANNs with several hidden
layers are generally referred to as deep neural networks, thus
leading to the use of the term deep learning (Figure 2b).
However, there is no clear consensus on the minimum
number of layers for a network to be qualified as deep. One of
the first deep ANNs had only three hidden layers (Hinton
et al., 2006). A high number of layers makes DL more
capable than traditional ML of modeling complex data.
Moreover, DL can automatically discover the features needed
to accomplish its task, whereas ML requires being pro-
grammed with the criteria defining such features. However,
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SUMMARY POINTS
� Inspired by the visual cortex mechanism,
convolutional neural networks exploit the
information contained in image datasets to
automatically learn features and patterns not
always identified by humans.

� Deep learning has demonstrated the capability of
achieving highly accurate classification of images
of skin lesions associated with cancer and other
dermatological conditions.

� Deep learning might be a formidable tool to
potentially assist dermatologists in their
diagnostic decisions.

� Important limitations to the extension of deep
learning methods to care practice include the
lack of clarity of the automated decision-making
process, inherent to convolutional neural
networks and concerns about its accuracy,
related to the use of not fully representative
training datasets or nonstandardized images.

Advantages
� Automated classification of images of skin
lesions associated with different diseases with
high accuracy.

� Short execution time after training.

� Useful to support clinicians in diagnosis

� Cost saving by reducing unnecessary biopsies or
instrumental analysis.

Limitations
� Need for large training datasets including images
from different conditions, ethnicities, and
settings.

� Need for standardized images associated with
precise clinical metadata.

� Obscure decision-making process for
classification.

� Limited accuracy and generalizability when
trained on datasets with underrepresented
conditions.

Figure 1. The evolution of artificial intelligence, machine learning, and deep
learning. Schematic representation of the timeline and relationship between
the three fields, together with a few representative key milestones. CNN,
convolutional neural network; SVM, support-vector machine.

Figure 2. Artificial neurons and neural networks. (a) Structure of a node or
artificial neuron. The neuron receives inputs from one or more sources,
multiplies each of these inputs by a weight, and adds the resulting products.
The resulting sum is passed to an activation function and it provides a single
output. (b) Schematic representation of a basic fully connected network. For
illustrative purpose, we show a simple network composed of an input layer,
three hidden layers, and an output layer. Each hidden layer is composed of
four nodes. The training process creates a model by assigning values to all the
weights of the network.

RESEARCH TECHNIQUES MADE SIMPLE

508
as a consequence of the higher number of weights to be
determined, the training of DL networks requires large
quantities of data.

CONVOLUTIONAL NEURAL NETWORK
Study and application of DL has rapidly accelerated in aca-
demic research, business, and popular interest. These ad-
vances have been based mainly on the use of the
convolutional neural network (CNN), an algorithmic archi-
tecture inspired by the human visual cortex (Schmidhuber,
2015). Although CNNs were invented in the 1980s
(Fukushima, 1980), it was not until the early 2010s that
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massive amounts of labeled data became available for
training (Wehner et al., 2017). The growth of computer power
deriving from graphics-processing units have fueled massive
application of CNNs, in particular as a tool for image classi-
fication. As an example of their versatility and power, a CNN
constitutes the core of AlphaGo, the computer system that
defeated the world’s best human player at the game Go (Silver
et al., 2016).

As implied by their name, CNNs are mainly based on
convolutional layers. Convolution is a mathematical opera-
tion between two mathematical functions, which consists in
taking element-wise multiplications followed by a sum while
shifting one function along the other. CNNs are very well-
suited to work with images because of their similarity with



Figure 3. The basics of a CNN: the convolution operation. (a) Example of the convolution (*) of a 5 � 5 pixels2 grayscale image with a 3 � 3 pixels2 kernel.
Grayscale images correspond to numeric matrices, where each pixel is associated with a numeric value. The convolutional feature is obtained by shifting the
kernel over the image. At each position, the value of a pixel of the convolutional feature is obtained by multiplying each pixel of the input image by the
corresponding pixel of the kernel and then taking the sum. (b) Symmetrically padding the input with zeros allows the kernel to operate at the edges of the image
and thus preserve the size. Downsampled images can be obtained by changing the stride, the step length at which the kernel is shifted along the input. (c)
Examples of different features obtained by applying different convolutional kernels to the same input image. CNN, convolutional neural network.
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the animal visual cortex, which is composed by neurons that
individually respond to small regions of the visual field. An
image can be simply viewed as a collection of planes (cor-
responding to different colors, e.g., 3 for RGB or 1 for gray-
scale), where each plane is a two-dimensional matrix of
numbers (the pixel values).

The convolution of an image plane implies the use of a
second matrix, called a kernel, which is shifted along the first
one. At each shift position, every pixel of the region of the
input image overlapping with the kernel is multiplied by the
corresponding pixel of the kernel. The sum of these products
produces the value of a pixel of the convolutional feature
(Figure 3a). Thus, the pixels of the kernel act like the weights
of an artificial neuron over an input corresponding to a region
of the input image. The kernel size defines the receptive field
of the neuron, that is, the region of the input that is codified
into a single value of the output. To make it possible for the
kernel to operate at the edges of the input image and preserve
the size, convolutional layers generally use zero-padding, the
insertion of zero elements around the input image (Figure 3b).
Moreover, the convolved image can be obtained by shifting
the kernel in steps of one or more pixels. The length of these
steps is called stride and, if larger than one, provides an
output with smaller lateral size with respect to the original
image (Figure 3b). In this way, the convolution can allow for
the downsampling of the image while retaining information
contained in adjacent pixels.

An important characteristic of convolution is that it can
perform different operations on the original image by
changing the kernel (Figure 3c). Examples of these operations
include blurring, sharpening, denoising, and edge detection.
Therefore, a clever combination of randomly selected kernels
can lead to the refinement of the computer vision model and,
thus, lead to the discovery of new properties.

CNN workflow and model evaluation
To better understand how a CNN works, we will discuss a
schematic example from dermatology. Although several types
of algorithms have been developed, because of space limi-
tations, we will focus on a supervised learning algorithm for
skin lesion classification (Figure 4a). The task of the algorithm
is to determine from a digital photograph (input) whether a
skin lesion is associated with a malignant cancer or is a
benign lesion (output). Because the possible outputs are
limited to a finite set of values (only two in this case), this is a
(binary) classification problem.

In a typical CNN architecture for classification, the input
image is progressively downsampled while increasing the
number of kernels and thus obtaining more convolutional
features. The last layers have the role of transforming the
feature map into a vector, the values of which represent the
probability that the image belongs to each class (Figure 4a). In
addition to convolutional layers, other layers contribute to
perform the mathematical operations necessary to transform
the input image and to associate it to the output class.
However, their description goes beyond the scope of this
article.

In a supervised approach, the algorithm is trained using a
labeled dataset, a set of images for which the gold standard
output label has been obtained with alternative methods,
such as a biopsy. As further detailed in Torres and Judson-
Torres (2019), the data are usually split in the following
three cohorts: the training set, which is used to determine the
weights characterizing the model; the validation set, which is
used to assess the model performance during training; and the
test set, which is used to evaluate how well the model per-
forms on an unknown input. A CNN iteratively updates the
kernel weights of its layers in a random fashion to automati-
cally calculate features from the images and combine them to
optimize the connection between the input and the output on
the training dataset.

Once the training is complete, the test set is used to
quantify the model performance. The simplest quality mea-
sure is the classification accuracy, which reports the per-
centage of correct predictions over the total. However, a high
accuracy alone does not guarantee the goodness of a model.
www.jidonline.org 509
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Figure 4. CNN applied to skin cancer classification. (a) Scheme of the ResNet-152 CNN used by Han et al. (2018a). Input images with a size of 224 � 224
pixels2 are analyzed through 152 convolutional layers and classified among 12 different skin diseases. At each block of layers, the CNN progressively
downsamples the images while increasing the number of kernels and thus obtaining more convolutional features. The last layers transform the feature map into a
vector, the values of which represent the probability that the image belongs to each class. (b) ROC curves for the prediction of malignancy in the Edinburgh
dataset cases (220 images) reported in Han et al. (2018a). The gray curve corresponds to the results obtained by the ResNet-152 CNN in comparison with 16
dermatologists (red and blue dots). The other curves display the global specificity (black) and the specificity for benign (blue) and malignant conditions (red).
CNN, convolutional neural network; ROC, receiver operating characteristic.
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For example, a naïve model that always classifies skin lesions
as benign will score 96% accuracy on an unbalanced dataset
containing 100 images of skin lesions of which only 4
correspond to cancer. The same model will only reach 50%
accuracy on a balanced dataset in which the images are
equally split between the categories. This ambiguity can be
removed by using the confusion matrix, a table reporting the
number of correct and incorrect predictions with respect to
the actual class. These metrics provide a complete overview
of the performance of a model, and its off diagonal elements
characterize the level of misclassification.

The typical output of a binary classifier is a numerical value
associated with the probability that a given image belongs to
the cancer or benign class. A threshold must thus be set to
assign an input to one of these two classes based on this
probability value. This property allows for the definition of
another useful metric for model performance, the area under
the curve (AUC) of the receiver operating characteristic (ROC)
curve (Figure 4b). The ROC curve is the plot of the sensitivity
against the false positive rate (i.e., one minus the specificity)
obtained by varying the discrimination threshold used to
assign the input to either of the two classes (Figure 4b). It is
important to note that the ROC is insensitive to the proportion
of the elements contained in each class (Fawcett, 2006). The
Journal of Investigative Dermatology (2020), Volume 140
ROC curve will go from the origin of the axes (0, 0) to (100%,
100%) with a trend that depends on the model behavior. An
ROC curve steeply increasing toward high sensitivity at small
false positive rates indicates a model that achieves high recall
without significantly losing precision. In contrast, an ROC
curve increasing with a 45� slope indicates a model with no
predictive power. The AUC of the ROC curve can thus be
used as a metric to summarize the ROC behavior, because a
larger AUC is obtained for models more capable of correctly
discriminating between classes.

When extending the problem to a multiclass classification,
the confusion matrix further allows for simultaneously visu-
alizing the results of all the classes at a glance. The calcula-
tion of the ROC curve becomes a complicated
multidimensional problem. A simplification relies on calcu-
lating an ROC curve for each class against all the others.
However, this approximation removes the insensitivity of the
ROC to class imbalance (Fawcett, 2006). An alternative
metric for multiclass problems is the top-(n) accuracy, which
scores the probability of providing the correct classification
within its (n)th choice. In fact, for a given input, a multiclass
model will provide probability outputs associated with each
class, which will allow ranking of the categories from the
most likely (highest output probability) to the least. The top-(1)
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accuracy, calculated by taking into account only the pre-
diction associated with the highest output probability, pro-
vides the percentage of inputs correctly classified, that is, the
standard accuracy. The top-(n) accuracy relaxes this condi-
tion by quantifying if the correct class is within the top-(n)
outputs provided by the model.

Recent applications to dermatology
Without any prior knowledge about dermatological images,
CNNs extract and combine sets of abstract features and
automatically generate identifying characteristics (such as a
combination of colors, shape, texture, and border geometry)
associated with different data categories. In this way, a CNN
will learn how to achieve a precise classification of images
not included in the training dataset and even find patterns not
identified by humans.

In the last years, researchers have started to extensively use
DL and CNNs for the analysis of medical images from several
disciplines, including dermatology (Esteva et al., 2019; Litjens
et al., 2017). Because skin cancer is one of the most common
malignancies globally, important efforts have been dedicated
to its detection from dermoscopic images only (Codella et al.,
2015) or in combination with regular photographic images
(Esteva et al., 2017).

To support research and development of methods for
automated diagnosis of melanoma, the International Skin
Imaging Collaboration (ISIC) has developed a repository of
dermoscopic images and it yearly organizes a challenge
for the analysis of images of skin lesions (Codella et al.,
2018; Marchetti et al., 2018; Tschandl et al., 2019). All
the teams taking part in the ISBI melanoma detection
challenge in 2016 used DL methods. In 2017, approaches
combining DL with additional data led to the highest
performance in classification tasks. DL is rapidly becoming
the method of choice for image analysis, as testified by the
increasing number of publications, especially in the last
two years (Brinker et al., 2018). Unquestionably, a mile-
stone was set by the work published in Nature by Esteva
et al. (2017), in which a standard CNN architecture
(Google’s Inception v3) was trained on both dermoscopic
and standard photographic images using a dataset of over
100,000 images. The authors proved that the CNN per-
formed similarly to tested experts in classifying malignant
versus benign lesions of both epidermal and melanocytic
origin. Several other studies have been devoted to the
same topic by using other CNN architectures (Fujisawa
et al., 2019; Haenssle et al., 2018; Han et al., 2018a).
As an example, Figure 4 depicts the architecture of the
ResNet-152 CNN used by Han et al. (2018a) and some of
the corresponding results. All of these works have reported
the equivalence between computer and human diagnosis.
Besides skin cancer detection, DL is also being success-
fully applied to other areas of dermatology, such as the
monitoring of wound healing (Shenoy et al., 2018), the
classification of ulcers (Goyal et al., 2018), and onycho-
mycosis (Han et al., 2018b).

In addition to classification tasks, DL-based models for
the segmentation of skin lesions and ulcers have also been
successfully developed (Yap et al., 2019). In particular,
these methods have been shown to provide an accurate
wound area quantification (Lu et al., 2017; Wang et al.,
2015) and promising results on image-based identification
of distinct tissues within dermatological wounds (Blanco
et al., 2020).

LIMITATIONS AND CHALLENGES
Advances in DL have been accompanied by contrasting re-
actions. Enthusiastic claims about the outperformance of
human diagnosis have been dampened by doubts and criti-
cisms about DL being nothing but an overhyped black box.
As always, the truth seems to lie somewhere in between. DL
has undoubtedly achieved notable accomplishments in very
specific tasks and fields, but it is still far from the realization of
a human-equivalent AI.

DL is often considered a black box because its decision-
making process is somehow obscured by the thousands of
training parameters. In practice, weights and features are
often uninterpretable and it is thus difficult for the re-
searchers to fully grasp the working process of a model or
the reason why it provides specific performance. The extent
to which the inner working of a CNN can be explained in
human terms is referred to as explainability. Improving
explainability represents a key point for AI to ultimately
make decisions on behalf of humans in critical areas, such
as in health care. Efforts for gaining insight into why a CNN
made a specific decision involve the development of
methods to visualize what a CNN sees, such as saliency
maps that simplify CNN feature maps into a more mean-
ingful representation.

Because DL approaches are data-driven, their principal
limitations often come from the data themselves. A usual
criticism concerns the need for large labeled datasets. How-
ever, the development of transfer learning has relaxed this
requirement by introducing the ability to reuse a model
developed for a task and trained on a large dataset as the
starting point of a new model with a different task.

Beyond the role of the amount of data, the work of Han
et al. (2018a) triggered an interesting discussion about the
composition of the training dataset. A letter to the editor of
the Journal of Investigative Dermatology (Navarrete-
Dechent et al., 2018) raised concerns about the general-
izability of automated diagnosis when the training dataset
presents limitations in the spectrum of human populations
and/or clinical presentation, as well as variability in image
acquisition settings and limited clinical metadata. Indeed,
the underrepresentation of clinical or demographic cate-
gories is a common and often inherent problem in
healthcare-related data, and it might limit the generaliz-
ability of a model.

The inclusion of metadata containing sociodemographic
information about the patient (sex, skin type, race, and age) is
thus necessary to verify the presence of biases related to
imbalance or underrepresentation (Navarrete-Dechent et al.,
2018). When possible, the obvious solution to this problem
is to broaden the dataset by including images and data of
patients from less represented groups. As an alternative, the
robustness of a model requires further validation, such as
through prospective studies.

An inherent weakness of many of the DL models applied so
far to dermatology resides in the lack of a “none of the above”
www.jidonline.org 511
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MULTIPLE CHOICE QUESTIONS
1. Which of the following statements about

artificial intelligence is FALSE?

A. It is a branch of computer science.

B. It is a synonym of deep learning.

C. It includes machine learning and deep
learning as subcategories.

D. It uses machines for simulating cognitive
functions of the brain.

2. The advantages of convolutional neural
networks do NOT include:

A. Automated image classification with high
accuracy.

B. Once training is done, it achieves fast
classification.

C. It combines abstract features to find patterns.

D. Fast training by using small labeled
databases, publicly available.

3. Which of the following statements about
convolutional neural network datasets is TRUE?

A. They are usually divided into three groups
for training, validation, and test.

B. Relatively large datasets are needed.

C. It needs to be labeled with the correct
output.

D. All of the above.

4. Which of the following quantities are usually
used to evaluate the performance of a classifier?

A. The area under the receiver operating
characteristic curve.

B. The ratio between sensitivity and specificity.

C. The false positive rate at varying thresholds.

D. The Jaccard index.

5. Deep learning is often dubbed “black box”
because:

A. It is commonly used as a flight recorder.

B. It is the name of the company that first used
this technology.

C. Its decision-making process is obscured by
the thousands of training parameters.

D. It is the color of its shipment case.

See online version of this article for a detailed explanation
of correct answers.
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output. If presented with an image not corresponding to any
of the training classes, a model will force it into one of the
other categories. In this case, to deal with this issue and
prevent misclassification, it is thus necessary to use an
approach enabling open set recognition.

The lack of standardization of dermatological images
represents a strong limitation that affects the development
of the research in this field and undermines its integrity
and reproducibility. The variability of dermatological im-
ages is due to several causes, such as the type of device
used to acquire the images, the image acquisition condi-
tions, the amount and type of metadata, and the lack of a
standard terminology. Establishing common criteria for
data collection and management is fundamental for the
creation of large datasets and their sharing between sys-
tems and users. Moreover, the lack of standardization,
together with the opacity of the CNN inner process, poses
a problem for the operation of classifiers. For example, if
images of lesions associated with a specific pathology are
generally taken at a high resolution, a CNN might learn to
detect the high resolution instead of discriminating the
right diagnosis.

An effort toward the establishment of standardized condi-
tions is being carried out by the ISIC to ensure image quality,
privacy, and interoperability. The project includes the crea-
tion of a public archive of images (https://isic-archive.com) to
permit independent assessment of the performance of any
software. According to ISIC guidelines, images should comply
to standards belonging to three categories, technology, tech-
nique, and terminology. Furthermore, the presence of
detailed metadata including device characteristics, photo-
graph settings, and information about both the patient and the
skin lesion is of paramount importance to take full advantage
of the information contained in the images. However, the
large number of images needed for training further imposes
the development of a quality test to automatically assess
whether an image respects such quality standards.

Besides image standardization, another strategy might
involve the use of an algorithm to intrinsically take this vari-
ability into account by introducing an ad hoc augmentation
procedure capable of artificially creating variations of
brightness, camera angle, body geometry, and skin back-
ground, or even introducing rulers, as observed in actual
images. Variability sources associated with technical and
geometrical parameters might either be measured separately
or estimated from the image itself and thus corrected or
accounted for by an image preprocessing step. An effective
contribution in this sense might come from other DL archi-
tectures that are able to infer information such as depth or
shape from regular images.

The importance of clinical metadata deserves to be further
stressed, because it has also been shown that combining lesion
images with sociodemographic data (age and sex), clinical
variables (location of the lesion), and close-up images improved
the performance of a classifier (Haenssle et al., 2018).

In conclusion, DL and CNN have demonstrated the capa-
bility of achieving highly accurate diagnoses in the classifi-
cation of skin cancer and other dermatological conditions. DL
constitutes a formidable tool to potentially assist dermatolo-
gists in their clinical decisions. The computer science and
Journal of Investigative Dermatology (2020), Volume 140
dermatology communities are fruitfully collaborating to
develop novel approaches toward dermatologic diagnosis.
However, the use of DL in healthcare practices still requires
further substantiation by data and prospective studies to
obtain the acceptance of patients and physicians. For this

https://isic-archive.com
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reason, a careful risk evaluation should be assessed before
making publicly available any research tool without a pro-
spective validation (Narla et al., 2018).
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Glossary
Term Description

Activation function A nonlinear function that controls the magnitude of the output signal of a node
Artificial neural network A brain-inspired computing system that learns to perform tasks by considering examples
Connection A link between nodes; it transmits the (modified) output signal of a node as the input of another
Convolution A mathematical operation consisting of the sum of element-wise products between an image and a kernel while

shifting one along the other
Convolutional neural
network

A class of artificial neural network using the mathematical operation called convolution; they are inspired by the function
of the human visual cortex and are well-suited for image analysis

Hidden layer A layer positioned between the input and the output layer of a network
Kernel A matrix, generally small, used to extract features from an image through convolution
Layer A collection of nodes operating simultaneously in the network sequence of tasks
Learnable parameters Parameters, like weights and biases, that are adjusted during the training process to improve a model
Node, or artificial neuron The basic unit of a neural network that performs an operation over one or more input signals to produce

an output
Stride The step length in pixels of the kernel shift along the input image during the convolution
Weight The numerical value associated with a connection that modifies the value of the incoming signal; weights are adjusted during

the learning process to strengthen or inhibit specific signals
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works
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RESEARCH TECHNIQUES MADE SIMPLE
DETAILED ANSWERS

1. Which of the following statements about artificial intel-
ligence is FALSE?
Answ
synon
which

Answ
becau
labele

perfor
er: B. Artificial intelligence and deep learning are not
yms. Deep learning is a subcategory of machine learning,
in turn is a subcategory of artificial intelligence.
Answ
chara
2. The advantages of convolutional neural networks do NOT
include:
betwe
er: D. In general, the training is not a very fast process
se it requires optimization over a large amount of
d data, often difficult to obtain.
Answ
encod
interp
3. Which of the following statements about convolutional
neural network datasets is TRUE?
er: D. Large labeled datasets are needed to train
eat number of parameters of convolutional neural net-
. The data are split into three groups and
for training, validation, and testing the model
mance.
4. Which of the following quantities are usually used to
evaluate the performance of a classifier?
er: A. The area under the curve of the receiver operating
cteristic measures how good a model is in distinguishing
en classes.
5. Deep learning is often dubbed “black box” because:
er: C. The information about the model is
ed inside the values of the weights and is difficult to
ret.
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