
                       

 

 

 

Master of Science in Omics Data Analysis 

 

Master Thesis  

 

Oral/Gut microbiome profiles 

in pancreatic cancer and their 

interactions with dietary 

patterns 

by 

Maria Ester Molina Montes 

Supervisor: Núria Malats, Genetic and Molecular Epidemiology Group, 

Spanish National Cancer Research Center - Centro Nacional de 

Investigaciones Oncológicas (CNIO) 

Academic tutor: Malu Calle, Biosciences Department, Universitat de Vic 

  

Biosciences Department  

University of Vic – Central University of Catalonia 

[10 September 2022] 

 



2 
 

Summary 

Background and aims: Pancreatic cancer (PC) has a high case-fatality rate in Western countries, 

expected to rise in coming years if no immediate actions are taken. Several studies have pointed 

to an association between the human microbiome and PC risk. Diet is known to play a key role in 

the microbiota composition in terms of abundance and diversity, and could therefore interact in 

the microbiome-PC relationship. However, the association between diet and PC is complex. Within 

the PanGenEU and PanGen-MICROBIOME studies, we aimed to identify a gut and/or oral 

microbiome signature to detect PC, and to explore interactions with dietary factors.  

Methods: The MICROBIOME study counts with metagenomic and 16srRNA data of the stool and 

salivary microbiota of over 50 PC cases and 50 matched controls. In addition, there is 16sRNA data 

on the salivary microbiota of more than 500 subjects (~250 cases and controls) from the PanGenEU 

study. After data processing, we compared alpha and beta-diversity measures among cases and 

controls regarding the oral and gut microbiome. Associations between taxa with case-control 

status were examined in univariate (Wilcoxon test) and multivariate analyses (via edgeR). Then, a 

microbiome-based classifier was explored (via LASSO regression) to discriminate between cases 

and controls. To explore interactions between dietary factors and bacterial taxa, we calculated 

several dietary scores (the diabetes risk reduction diet score DRRD and the relative Mediterranean 

Diet score rMED) and microbial risk scores based on the bacterial species conforming the signature. 

The latter comprised an abundance-based microbial risk score (MRS) and two alpha-diversity 

measures (richness score, rS, and Shannon score, SS). The association between dietary factors and 

these scores and with the PC risk was examined using logistic and linear regression models adjusted 

for potential confounders. Ridge Regression and LASSO as feature selection methods were used to 

identify foods, food groups and nutrients related to the microbial risk scores. Microbial species 

related with the dietary scores were also selected using this method. Tuning parameters were 

optimized on training and test sets. At the individual level, associations (e.g. Spearman correlations) 

between taxa of both the gut and oral microbiota with foods, food groups and nutrients were 

explored. Also, hierarchical clustering was applied to identify clusters of taxa and of foods, food 

groups and nutrients among PC cases and controls. P-values less than 0.05 were deemed 

significant; p-values were corrected for multiple testing (Benjamini-Hochberg, BH and applying 

FDR) in association analyses. 

Results: A stool metagenomic signature of 27 microbial species that discriminated between PC and 

controls with an accuracy of up to 0.84 area under the curve (AUC). Its performance improved to 

up to 0.94 AUC when serum levels of CA-19.9, the current diagnostic marker of PC, were 

incorporated into the signature. The microbial risk signature MRS reflected better PC risk (OR per 1SD 

increase in MRS=5.5, p= 3.01E-05) than those based on alpha-diversity measures (rS or SS). Regarding its 

relationship with dietary factors, the most meaningful variables were seafood, some alcoholic 

beverages, and some polyunsaturated fatty acids (PUFAs). None of the dietary scores, the DRRD 

and the rMED scores, were significantly associated with PC risk. However, some features in the gut 

microbiome appeared to be linked to these scores. Also, cluster analyses revealed the existence 

of gut microbial taxa and diet clusters, with groupings of these taxa with plant-based foods, 

seafood and PUFAs, mainly. 

Conclusion: A distinctive gut microbial signature made up of 27 bacterial species allows to 

discriminate between PC cases and controls. Several dietary factors were related to this microbial 

signature in terms of a risk score. Future studies with larger sample size are warranted to confirm 

these findings. 

 

Keywords: Pancreatic cancer, microbiome, dietary patterns, nutrients, biomarkers    

Abbreviations: 
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T2D: Type 2 diabetes 

DRRD: Diabetes risk reduction diet 
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SFA: Saturated fatty acids 

MFA: Monounsatureted fatty acids 

PUFA: Polyunsatured fatty acids 

E: Energy 

OR: Odds ratios 

CI: Confidence Intervals 
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1. Introduction 

Pancreatic cancer (PC) has a high case-fatality rate in Western countries, expected to rise in 

coming years if no immediate actions are taken [1]. This situation is due to two major reasons: i) few 

risk factors of this disease have been established, which prevents the possibility of primary 

prevention; ii) the disease manifests itself at late stages owing to the lack of biomarkers for early 

diagnosis [2]. Specifically, well-established risk factors of PC include chronic pancreatitis (CP), 

diabetes type 2 (T2D) most notably if newly diagnosed, obesity, smoking and heavy alcohol intake, 

whereas there are is still scarce evidence regarding the role of dietary factors in PC aetiology [3].  

Recently, some studies have also revealed that the gut microbiome is key in PC etiopathogenesis. 

Not only it shapes inflammation and immune function in PC disease, but it also seems to determine 

response to treatment [4]. Some studies have even suggested that certain microbial species of the 

gastrointestinal tract, detectable in human faeces by application of next generation sequencing 

technologies (metagenomics and 16S rRNA), could be involved in the development and 

progression of PC [5]. The majority of these studies relied on 16s rRNA gene sequencing data or 

qPCR analyses [6–8]. Bacterial species in tumoral tissue of the pancreas have been also evidenced 

by 16S rRNA sequencing [9], suggesting that pathogenic bacteria are able to migrate to this tissue 

in PC patients. It is also important to highlight that few studies have pointed to an association 

between the oral microbiome and PC risk, which might be driven by oral pathogens associated 

with periodontitis (e.g. Porphyromonas gingivalis) [10,11]. To the best of our knowledge, only two 

recent studies have explored gut microbiome profiles in the gut and oral microbiota using shotgun 

metagenomics sequencing data [12,13]; this technique provides much more sensitive information 

on bacterial species in a sample. In particular, a microbial signature with high accuracy (Area 

under the curve, AUC=0.94 when combined with the marker CA.19-9) to discriminate between PC 

and non-PC was identified among 50 PC cases and matched controls, and validated further within 

an external study sample [13]. Overall, these findings support that alterations in the gut microbiome 

composition could increase risk of PC, and could serve as potential early-diagnostic biomarkers for 

this disease.  

On the other hand, diet is known to play a key role in the microbiota composition in terms of 

abundance and diversity [14–16], and could therefore interact in the microbiome-cancer 

relationship. This interaction can be very complex given that the human microbiome constitutes a 

community of bacterial species that symbiotically interacts together [17]. The complexity of this 

interaction is further compounded by the fact that dietary factors interact synergistically together, 

which makes dietary pattern analyses more appropriate [18]. In fact, instead of looking at 

individual nutrients or foods, dietary patterns derived from index scores (known as a priori patterns), 

factor or cluster analyses (known as a posteriori patterns), have emerged as complementary 

approaches in nutritional epidemiology to explore associations of overall diet on disease risk [18]. 

The effect of diet on the microbiome-cancer association, however, is an hitherto uninvestigated 

subject in PC [4]. This is possibly due to the lack of consistent associations between dietary factors 

with PC risk despite there are numerous studies on the likely impact of diet on this disease at an 

individual [19–22], and at an aggregated level [22–24]. In contrast, the interaction between diet 

and the human microbiome has been explored in other cancer types such as colorectal cancer. 

For instance, Fusobacterium nucleatum was depleted in tumor tissue and the intestinal microbiota 

in cancer patients who had a high adherence to a prudent dietary pattern (rich in whole grains 

and fiber) compared to those who followed a more westernized pattern (rich in red and processed 

meat, refined grains and desserts) [25]. A western-style diet was also stronger in tumors containing 

higher amounts of certain Escherichia coli strains [26]. Also, several bacteria were enriched in stool 

samples of colorectal cancer patients with higher consumption of sugars and sweets, eggs, oils 

and fats, amongst other foods [27]. 

Within the PanGenEU and MICROBIOME studies, we aimed to identify a gut/oral microbiome 

signature to detect PC, and to explore interactions with dietary factors. In particular, the aims of 

this study were: 1) To identify a stool and oral microbiota signature associated with PC using both 

16s rRNA and metagenomics data; 2) To assess the relationship between dietary factors, 

individually and collectively, with the gut/oral microbiota signature and with PC; 3) To evaluate 

how dietary patterns cluster with gut/oral microbiotic profiles, also considering the aforementioned 

signatures, in PC cases and controls. The first aim has been addressed earlier within the 

MICROBIOME study and is part of the aforementioned study by Kartal, Schmidt and Molina-Montes 

et al. (co-first authors) [13]; the other two aims were addressed in the current study (Master thesis) 

and are based on data of both, the PanGenEU and MICROBIOME studies. Regarding the first aim, 

some non-published results derived from the PanGenEU study are also reported in this Master thesis. 
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2. Methods: 

2.1. Study design: Case-control study. 

2.2. Recruitment and data collection: Details on these issues within the MICROBIOME study have 

been described elsewhere [13]. In brief, there were 64 PC cases, 59 controls, and 29 CP patients 

enrolled in the MICROBIOME study with both saliva and stool samples (for 16sRNA and 

metagenome sequencing). Some non-eligible subjects were identified after reviewing the 

pathology reports. Therefore, 57 PC cases, 50 controls and 29 CP patients remained available for 

analyses. In addition, there were 515 subjects (317 PC cases and 198 controls) with saliva samples 

from the PanGenEU study. The latter PanGenEU subjects contributed only to the oral microbiome 

analyses via 16s rRNA sequencing. Study subjects were recruited from two Spanish hospitals for the 

MICROBIOME study (Hospital Ramón y Cajal in Madrid and Hospital Vall d’Hebron in Barcelona), 

whereas additional centers contributed with salivary samples to the PanGenEU study (Hospital del 

Mar, Hospital San Pau and Hospital de Elche in Spain, as well as Hospital TUM from Munich in 

Germany). All controls were matched to PC cases by age (± 10 years), sex and center, and all 

were admitted to hospitals for PC-non-related causes. 

All participants provided information on demographic and medical history and lifestyle factors; 

these variables (smoking status, T2D, periodontitis, alcohol intake, height and weight as a proxy of 

body mass index -BMI, metformin use, dietary habits, etc.) were considered to control in the 

statistical analysis for their influence on the microbiome and PC disease. Within the MICROBIOME 

study, information on periodontal disease and on the use of antibiotics, and probiotic supplements 

was also collected. In the MICROBIOME study the information was collected using the same 

procedures and protocols used in the PanGenEU study to enable unified analyses of both studies. 

Only slight differences were adopted concerning the protocols used for the sampling of the saliva 

samples, which were modified to improve the sequencing efficiency in the MICROBIOME study, 

whereas those of the PanGenEU study were based on oral mouthwashes. In addition, clinical data 

was collected for PC cases, tumor samples were retrieved from same cases, and some clinical 

markers were measured (bilirubin and CA.19-9, the current tumor marker for PC).  

The study counts with approval from independent Ethics Committees (e.g., CEI PI 26 2015- v7) and 

written informed consent were obtained from all study participants. 

2.3. Sample processing and sequencing via 16S rRNA and shotgun metagenomics: 

Oral and stool samples were collected from the participants of this study. Sample processing and 

sequencing, as well as the bioinformatics workflow, was performed by EMBL-Heidelberg. Data 

filtering and normalization was done jointly. Details on all processes are described elsewhere [13]. 

In short, at first, DNA was extracted from the RNALater-preserved samples using the Qiagen allprep 

powerfecal DNA/RNA kit. Secondly, 16S rRNA and shotgun metagenomics sequencing were 

performed: 

- Targeted amplification of the 16S rRNA V4 region was carried out. Salivary samples with enough 

biomass were sequenced. Raw amplicon reads were denoised, filtered for read quality and 

chimeric reads, and matching paired reads were assembled using DADA2 [28]. The resulting 

Amplicon Sequence Variants (ASVs) were then clustered into open-reference Operational 

Taxonomic Units (OTUs) using MAPseq and other methods [29,30]. Thus, two taxa tables were 

generated for the data analyses: the open-OTU table with 2,081 OTUs, and the ASV table with 

20,272 ASVs. To remove additional noise, we applied several other filtering steps to the 16s rRNA 

data including the removal of samples with less than 500 reads and taxa not present in at least 5 

samples. The number of reads in the samples was normalized by rarefying to account for 

differences in sequencing depth across the runs. Across samples, OTU/ASV relative abundance 

was computed as the ratio of an OTU’s/ASV´s absolute abundance to the total number of reads 

for that sample. Among the retained samples there were 18 duplicated saliva samples for quality 

controls. To check the performance of the sequencing we compared the microbiome composition 

between the saliva replicates against all other saliva samples using the Wilcoxon signed-rank test. 

Variation within the replicated saliva samples was smaller than variation between the duplicates 

and all other samples (i.e., p-value=2.109E-09 in ASV data). Thus, replicates were considered 

equivalent and reads of both replicates were pooled. The non-eligible cases were removed from 

the dataset too, leaving finally 573 samples with 3,393 ASV and 580 samples with 852 OTUs within 

the PanGenEU study (Supplementary Table 1). Within the MICROBIOME study, as described before 
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[13], 130 samples remained out of 142 salivary samples after quality control and filtering. Regarding 

stool samples sequenced via 16S rRNA, 118 samples remained out of 120. 

- Metagenomic libraries for stool and salivary samples were prepared using the NEB Ultra II and SPRI 

HD kits, and then sequenced on an Illumina HiSeq 4000 platform (Illumina, San Diego, California, 

USA). For three salivary and one stool samples, technical replicates were merged after confirming 

their low within-sample variation. Stablished protocols were used for quality controls, data filtering 

and mapping. Taxonomic profiles were obtained using the mOTU profiler [31]. Stool shotgun 

metagenomes were obtained for all PC cases, controls and CP (57 PC cases, 50 controls and 29 

CP patients), while salivary metagenomes for 43 PC cases, 45 controls and 12 CP patients. 

For aim 1, all samples were considered, whereas for aims 2 and 3 only metagenomic and 16s rRNA 

data coming from the MICROBIOME study were considered. A summary table of the final study 

samples by aims, site and disease status is shown in Supplementary Table 2. 

2.4. Metadata processing and variables: 

As previously mentioned, PC cases and controls provided information about their lifestyle and 

environmental exposures and medical history in interviews conducted by trained staff, using the 

same structured questionnaire in all participating centers.  

The data collected was recorded, curated and prepared for data analyses. Variables available 

for this study were: age, sex, center, pack-years of smoking in tertiles; BMI; obese vs non-obese; 

early-onset, late-onset T2D vs non-T2D; periodontitis vs non-periodontitis; family history of PC vs non-

history, amongst others. As described elsewhere[13], random forest algorithm (n=100 trees) was 

used to impute the missing values of the metadata (missing rate: 3.1%) using missForest R package 

[32]. The resulting mean out-of-bag error was low (=0.12). 

For the current dietary study (aims 2 and 3) we used information on diet, which was collected by 

means of food frequency questionnaire (FFQ). This tool was a semi-quantitative FFQ of 149-food 

items that was validated before [33], and adapted within the framework of the EPICURO study [34]. 

Within the MICROBIOME study, we added some further items on tea and coffee intake, on the use 

of vitamin and mineral supplements, and on the consumption of prebiotic and probiotic foods. All 

cases and controls were asked about their dietary intake two years before they entered the study. 

The questionnaire was structured by food groups, including some items for cooking methods of 

meat and fish. In the current study, we considered only the 82 food items accounting solely for 

food consumption regardless of cooking methods. 

Firstly, the frequency per day was calculated using conversion factors for intakes on a weekly and 

monthly basis (for example, 3 per week equivalent to 3/7 per day). To convert frequencies of intake 

into grams per day we considered servings of intake according to the Spanish Food Pyramid 

Guidelines [35]. To estimate nutrient intakes (of macro and micronutrients, including vitamins, 

minerals and fatty acids), the Spanish Food Composition table BEDCA was used, which accounts 

for 46 nutrients of over 800 food items per 100 g of food [36]. For this dietary compilation process, a 

matrix of food items in g/day and the BEDCA database were multiplied by each other. In summary, 

the compilation process involved the following steps: frequency of intakes was transformed into 

frequencies/day, and then multiplied by servings/day (grams/day of each serving) to get 

grams/day of each food item. Then, intakes in grams were multiplied by the nutrient content per 

100 g of each food. For food items not present in studies or for those combining various foods, 

average values were assigned for the compilation of these food items (for example: the mean 

values of nutrients contained in eggplant and zucchini were considered to adapt the food item). 

Food groups were created to account for intakes in grams/day. In total, 38 food groups were 

generated (for instance, eggs, nuts, sauces, legumes, citrus fruits, fruits, leafy vegetables, 

vegetables, white fish, fatty fish, white meat, red meat, processed meat, ready-to eat dishes, 

sweetened beverages, artificially sweetened beverages, juices, etc.). 

2.5. Statistical data analysis: 

2.5.1. Objective 1: Diversity measures and identification of the stool and oral microbiome signature 

Description of the data: Characteristics by PC cases and controls were compared by Chi-squared 

tests (for categorical variables) and Student´s t-test (for continuous variables) or nonparametric 

two-sample Wilcoxon (signed-rank) test for data far from normality distribution. To compare the 
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relative abundance within the groups, genus-level summary abundance plots were generated for 

the 500 most abundant taxa.  

Alpha-diversity: To determine microbial species diversity per group (PC cases, controls and 

pancreatitis), we calculated richness (number of species per sample) and two additional alpha-

diversity measures: the Shannon and Simpson indexes based on Hill diversities [37,38]. Differences 

in these alpha diversity measures between groups were assessed by ANOVA and post hoc Tukey 

test to establish which specific groups differed in terms of diversity. 

Community composition: To analyze trends in beta-diversity (community composition) between 

the groups of comparison, we calculated five different dissimilarity indexes: the Bray–Curtis index 

on non-transformed and square root transformed data, the abundance-weighted Jaccard-Chao 

index, and the unweighted and weighted TINA index [39]. Thereby we explored whether there are 

significant community-level compositional shifts between PC cases, controls and chronic 

pancreatitis patients both in the oral cavity and stool samples. To approach this analysis, the 

following steps were performed: 1) calculate pairwise sample compositional dissimilarities 

according to five beta-diversity indexes aforementioned, using custom codes developed at EMBL; 

2) ordination analyses (Principal Coordinate Analysis, PCoA) for exploration and visualization, by 

projecting distance matrices to lower-dimensional Euclidean space; 3) test shifts in community 

composition for statistical significance by using permutational multivariate analysis of variance 

(PERMANOVA in adonis2 package in R) [40]. We accounted for potential confounders in 

PERMANOVA analyses (age, sex, center, smoking, as well as metformin use in stool samples) with 

10,000 permutations. NMDs (non-metric multidimensional scaling) plots were also applied to 

explore variations in microbiome composition by potential confounders. 

Per-taxa analyses: We first removed taxa with low overall abundance and prevalence (trimmed to 

retain ~ 200 taxa). Taxa that were differentially abundant between groups were detected using 

the non-parametric Wilcoxon test and the edgeR package in R to assess differential abundance 

between groups [41], followed by Benjamini-Hochberg (BH) multiple testing correction at an FDR-

controlled p value cutoff of 0.05 [42]. Spearman correlations between gut and oral microbiota 

were also evaluated by characteristics of the study sample.  

Signature, model evaluation and validation: Using the filtered data to retain sufficient overall 

abundance we developed the prediction model for PC. As described earlier [13], relative 

abundance data was normalized by log10 transformation and log-centred. Data were randomly 

split into test and training sets in a 10 times repeated 10- fold cross- validation, i.e., for each test 

fold, the remaining folds were used as training sets. Using the SIAMCAT R package (developed by 

EMBL-Heildelberg), we applied LASSO logistic regression models for feature selection [43]. The 

trained model was then used to predict the left-out test set and finally, all predictions were used to 

calculate the area under the curve (AUC) using the pROC R package. The obtained signature was 

further combined with other makers to test its predictive accuracy. Further details are available in 

Kartal, Schmidt, Molina-Montes, et al [13]. 

2.5.2. Objective 2: Relationship between dietary factors with the signature and with PC risk 

Development of Dietary Scores (a priori patterns):  Two dietary scores were calculated to evaluate 

their impact on PC risk and on the microbiome score, namely the Diabetes Risk Reduction Diet 

Score (DRRD) proposed by Kang et al [44], and the relative Mediterranean Diet score (rMED) 

proposed by Buckland et al [45]. Overall, quantile values were estimated among controls, and 

then applied to cases and controls for scoring. The scores were built on the overall PanGenEU and 

MICROBIOME study population (including 556 PC cases and 511 controls from Spain) to account 

for wider ranges of intakes. 

To calculate the DRRD score, participants received a quintile value between 1 (intake consistent 

with the highest T2D risk) and 5 (for the lowest T2D risk) for the following five dietary factors: cereal 

fiber, nuts, coffee (caffeinated and decaffeinated), whole fruits, and ratio of polyunsaturated to 

saturated fat in ascending order; the scoring was reversed (1 for lowest and 5 for highest T2D risk) 

for other four dietary factors: glycemic index, trans fats, sugar-sweetened beverages, and red and 

processed meats. As in Turati et al, we modified the DRRDS by incorporating data on fruits and fruit 

juices in relation to diabetes. Also, sucrose intake was considered rather than glycemic index since 

this information was not available in our study. The DRRDS (range = 9-45) was the sum of the quintile 

values, whereby higher values relate to lower T2D risks.  
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The rMED score is an 18-point scale that incorporates nine selected components of the 

Mediterranean diet (MD). Each component was adjusted by energy density (g per1000 kcal per 

day), using the nutrient density model [46], and then divided into tertiles of intakes (except for olive 

oil). For the six components conforming the MD; fruits (including nuts), vegetables (excluding 

potatoes), legumes, fish (including seafood), olive oil and cereals (white and nonwhite), a score of 

0-2 points was assigned to the first (0 points), second (1 point) and third (2 points) tertile of intake, 

respectively. For olive oil the scoring consisted of assigning 0 points to non-consumers, 1 point for 

participants below the median of intake and 2 points for levels of intake equal or above this median 

(10 g among controls). For the 2 components that do not conform with the MD, meat (including 

meat products) and dairy products, the scoring was reversed (first, second and third tertile: 2, 1 

and 0 points, respectively). Because alcohol consumption has been potentially associated with PC 

[3],  the alcohol component was removed from the rMED score. Thus, the range of the armed score 

contained eight components and the point scale ranks from 0 to, whereby 0 represents the lowest 

adherence to the MD pattern and the highest adherence.  

Development of Microbial Risk Scores: Based on the signature previously identified in Kartal, 

Schmidt and Molina-Montes et al [13], a risk score was developed by applying several approaches. 

First, the 27 microbial species of the signature (Annex I) were combined in a microbial risk score 

(MRS) by summing up the relative counts of the positive microbial species, i.e., those with higher 

relative abundance among cases, while subtracting the negative ones (one minus the actual 

relative abundance); i.e. those with higher relative abundance among controls. Thus, higher 

scorings of the MRS were presumed to increase PC risk (Supplementary Figure 2). Microbial risk 

scores based on alpha-diversity measures on microbial signatures associated with a certain disease 

have been also proposed by some authors [47]. Therefore, we also calculated alpha-diversity 

measures on this sub-community of 27 microbial species. Specifically, richness and Shannon 

indexes were considered; the richness-Score (rS) and the Shannon-Score (SS), respectively. In this 

case, higher alpha-diversity scores were presumed to decrease PC risk. Thus, three microbial risk 

scores were used in association analyses with dietary factors: the MRS, the rS and the SS. 

Association analyses: Linear regression models adjusted for age, sex, and center (Model 1), were 

used to test for associations between dietary factors (foods and nutrients) and alpha-diversity 

measures (outcome variable, on the log-scale for normalization). Likewise, associations were 

explored with regard to the MRS. Logistic regression models were also applied to test for 

associations between the dietary factors and the diet scores with PC risk (outcome variable), 

adjusting for potential confounders in multivariate models (Model 1 plus smoking status, T2D status 

family history of PC, energy intake and obesity). Results on the association analyses derived from 

logistic regression analyses are presented as Odds Rations (OR) and 95% Confidence Intervals (CI); 

those of the linear regression analyses are presented as beta-coefficients. Either 

two coefficients were calculated per 2-unit increment or per 1-SD (Standard Deviation) of the 

predictor variables. Potential effect modification by other variables were examined in stratified 

analyses and via the Wald test in models including interaction terms. P-values were corrected by 

BH. The study population comprised the overall PanGenEU and MICROBIOME study population (556 

PC cases + 511 controls from Spain) for association analyses with PC risk, and the MICROBIOME 

study (50 PC cases + 50 controls) for association analyses with the microbial signatures. 

Feature selection methods: In order to identify the most relevant dietary factors related to the MRS, 

as well as the most important microbial species (of the signature or the top 50 most prevalent ones) 

related to the dietary scores, several feature selection method (Ridge Regression, LASSO or Elastic 

Net regression-ENET) were examined (Supplementary Table 3). Optimal tuning parameters were 

calculated on a training and test set using a 10-fold cross-validation (and 5 repeats) procedure (R 

packages glment and mlbench). Overall, Ridge Regression for dietary variables (best tune for 

alpha 0 and lambda 1) and LASSO for taxa (best tune for alpha 1) were deemed more suitable 

(lowest root mean square error- RMSE, and highest explained variance - R2). The selected variables 

were ranked according to variable importance. 

2.5.3. Objective 3: Clustering of dietary factors with microbial species and the signature among PC 

cases and controls 

Clustering of dietary factors and bacterial species: Unsupervised hierarchical clustering analysis 

was applied on the dietary factors (foods, food groups and nutrients) and the microbial species of 

the gut and oral microbiota using R package pheatmap. To reduce the input of microbial species, 

we restricted the analyses to the 50 most prevalent bacterial species. Also, the 27 microbial species 

of the previously identified gut signature were used in these analyses. 
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The distance matrix was defined by Euclidean and also by Manhattan distances, and Ward’s 

method was used as linkage criteria to group the clusters. More specifically, based on the distance 

matrix, the clustering algorithm identified the closest observations (i.e., subjects with similar dietary 

and bacteria, in rows) and iteratively merged them within the same cluster until all clusters were 

merged together. Two or three clusters were retained, which were assumed to be the optimum 

number of clusters (2 to 5 clusters were tested) based on the silhouette method (R package 

Nbclust). These analyses were run overall to explore separations of groups of samples, and 

separately among cases and controls. 

Correlations between dietary factors and microbial risk scores: Spearman correlation analyses 

were conducted to explore the strength of the association between dietary factors (foods and 

nutrients) and the microbial risk scores (the MRS, the rS and the SS) among cases and controls. 

All statistics were conducted using software R-project (version 3.4 in the first study, and 4.2 in the 

MICROBIOME-dietary study) [48]. Overall, p-value of 0.05 were considered as statistically significant. 

In addition to some aforementioned R packages, we used specific packages for microbiome data 

analysis, such as Phyloseq [49], Microbiome [50] and Vegan [51]. The codes used for data analysis 

are available at: https://github.com/memmontes/FMP-Master-Omics 

 

3. Results 

Results on aim 1 are shown in Reference 13 (Annex II). Results not reported in this scientific 

publication, mainly regarding the 16S rRNA data, are reported herein. Results on aims 2 and 3 are 

also non-published results. 

Characteristics of the study populations are presented in Supplementary Table 4. 

3.1. Descriptives on microbiome data and diversity measures 

Figure 1 shows the prevalence of the most common bacterial species among PC cases and 

controls derived from 16S rRNA data. There were appreciable differences in the prevalence of 

several genera among groups. For instance, Veillonella spp. genera were enriched among PC 

patients in both saliva and stool samples. Similar findings were observed for the open-OTU and 

shotgun metagenomics data (data not shown). 

 
Figure 1. Summed genus-level abundances of 500 most common taxa by disease status in saliva 

(left) and stool samples (right) at genus-level (ASV data). 16s rRNA data 

 
Differences in alpha diversity measures in 16S rRNA data between groups were the following (Figure 

2). In saliva, we found that PC cases had a significantly decreased microbial richness in comparison 

with controls (p-value=0.01 in ASV and p-value=0.05 in open-OTU). Significant differences were also 

noted for the other two alpha-diversity measures (e.g., p-value=0.01 and 0.02 in ASV data for 

Shannon and Simpson index, respectively). Similarly, CP patients had significantly reduced species 

richness, relative to controls (p-value=0.03 in ASV data only). In stool samples, there were statistically 

significant differences in diversity measures between PC and both controls and chronic 

pancreatitis patients (e.g., p-value=0.02 for richness in ASV data), though not so when comparing 

controls to CP patients. In shotgun data (Reference 13: Figure S2), the trends were in line with those 

reported for the 16S data, although in this case, diversity measures were significantly lower (p<0.05) 

in PC cases than in controls. 

https://github.com/memmontes
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Figure 2. Alpha-diversity measures (richness, Shannon and Simpson) in PC cases, controls and CP 

patients in saliva (left) and stool (right) samples (ASV data). 16S rRNA data. 

 
Figure 3 shows PCoA plots for Bray Curtis index, as the main beta-diversity measure derived from 

16s rRNA data, for salivary and stool samples. Centroids for PC cases, controls and CP patients were 

far apart from each other in stool samples, pointing to different community compositions between 

the groups, while in saliva samples these centroids were closer, except for CP. Other beta-diversity 

measures showed similar results (Supplementary Figure 2). Regarding the metagenomic data, 

similar results were obtained (Reference 13: Figure 1B and Figure S3). 

 

Figure 3. PCoA plots of saliva (left) and stool (right) samples for PDAC cases, controls and chronic 

pancreatitis patients. Bray Curtis index. 16s rRNA data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Beta-diversity indexes derived from 16S rRNA data were also used to test shifts in oral or gut 

microbiome composition according to disease status, controlling for potential confounders in 

PERMANOVA analyses (age, sex, saliva sampling method, and smoking, as well as metformin use 

in stool samples) with 10,000 permutations. In metagenomics data, confounders were diabetes 

and jaundice status in stool samples, and aspirin/paracetamol use in saliva samples (Reference 

13). As shown in Supplementary Table 5 for 16S rRNA data, microbiome composition differed 

significantly between PC cases and controls in gut microbiome (Bray Curtis for ASV: p=0.0002) 

samples. Differences were also noted in oral samples between PC and CP patients (Bray Curtis for 

ASV: p=0.03). Interestingly, the statistically significant differences in community composition 

between CP and the controls were lost after controlling for confounders. Again, similar trends were 

observed for the open-OTU data (data not shown). Results for the metagenomic data are 

described in detail in Reference 13. In brief, disease status was significantly associated with 

community composition in stool (R2=0.02, p=0.001), but not in saliva (R2=0.01, p=0.5). 

 

The potential confounding effect of variables was established with regard to alpha-diversity 

(Reference 13: Table S4) and beta-diversity measures (Reference 13: Table S5) in metagenomics 

and in 16S rRNA data (Suplementary Figure 3, and data not shown).  
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3.2. Per-taxa analyses and development of the microbial signature for PC 

Several differentially abundant species (N=220) were found in stool (Figure 4A and 4B), and to a 

much lesser extent in saliva (data not shown). Both, 16s rRNA ASV and OPEN data retrieved similar 

results. As described in Reference 13 (Figure 1C), in shotgun data, species such as Veillonella 

atypica and Fusobacterium nucleatum were more abundant in stool samples of PC patients, 

whereas others (e.g., Bifidobacterium bifidum) were depleted. There was no significantly 

differential abundance in the oral microbiome (Reference 13, Figure S5). 

 
Figure 4. Differentially abundant genus (per-taxa associations) in stool samples between PC cancer 

and control samples. 16S rRNA data 

A 

 
 

B                                                                        C 

 

A) Wilcoxon test results of 16S rRNA stool on differentially abundant taxa between PC and control cases. X- axis is log10(FDR 

corrected p values). B) Edge R results, adjusted for age, sex and center. Y- axis is fold change, and dot size represents the 

relative abundance of a given species. C) Volcano plot of EdgeR results showing differentially abundant taxa between PC 

cases and controls. Blue dots represent significantly differentially abundant species in either group, while red dots show non- 

significant species after FDR correction. FDR, false discovery rate.  
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As described in Reference 13, the LASSO regression model (with 10-fold cross-validation) selected 

27 faecal bacterial species as predictive features of PC, while any other metadata variable was 

selected by this model. This bacterial classifier of PC was therefore considered as independent of 

potential confounders. The AUC of this signature to predict PC reached 0.84. Some of these markers 

were enriched among PC cases (Veillonella atypica, Fusobacterium nucleatum/hwasookii, 

Alloscardovia omnicolens, etc) whereas others were less abundant (Romboutsia timonensis, 

Faecalibacterium prausnitzii, Bacteroides coprocola, Bifidobacterium bifidum, etc). In contrast, 

there was no robust signature derived from the salivary samples. As a consequence, the signature 

emerged from the shotgun metagenomics data only. The predictive accuracy did not improve 

after combining oral and gut microbiota samples. Importantly, it improved to a high extent 

(AUC=0.94) when the stool metagenomic signature was combined with the marker CA-19.9. 

More details on the robustness of each feature (bacterial marker), its relative abundance among 

PC cases and controls and the overall predictive accuracy (AUC and ROC curves) are available 

in Reference 13, Figure 2, as well as in the supplementary material of this article (Figure S11). Results 

of the external validation study are also reported in this article (see Methods section in Reference 

13). 

3.3. Relationship between dietary factors, individually and collectively in diet scores, with PC risk 

Table 1 shows results on the association analyses between dietary factors (nutrients and food 

groups) with PC risk. OR and 95%CI are given per 1 SD increase in intake. Results for foods on an 

individual basis are shown in Supplementary Table 6. In multivariate adjusted models for age, sex, 

center, T2D status, smoking in pack-years, family history of PC, and total energy intake in kcal, the 

most prominently associated dietary factors with PC risk were: Energy intake (in models without 

adjustment for this variable) (ORper1SD=1.2), coffee intake (ORper1SD=1.3) and consumption of 

canned fish (ORper1SD=0.8). Other potential associations were lost after multiple testing correction. 

Energy intake influenced these associations the most (data not shown). In models without 

adjustment for energy intake, it was observed that energy intake, carbs, Vitamin E and coffee 

intake were positively associated with PC risk. Indeed, PC risk increased on overage by 10-30% 

(OR=1.1 to 1.3) per 1 SD increase in the intake of these dietary factors. Regarding other dietary 

factors, no other associations remained after multiple testing correction (p-values corrected by BH, 

p.bh>0.05). 

Figure 5 shows results in the association between dietary factors when combined in diet scores with 

PC risk. OR and 95%CI are given per 2-units increase in adherence to these scores. Details on the 

distribution of these components in the study population are shown in Supplementary Table 7. While 

the DRRD score was expected to decrease the risk of developing PC given its potential inverse 

association with T2D, we observed a trend towards a positive association between adherence to 

this dietary score with PC risk in crude and multivariate adjusted models, even after removing 

recently diagnosed patients (<2 years) with T2D (Figure 5A). Interestingly, the association got non-

significant when adjusting for T2D status in the models, which supports the potential confounding 

effect of this variable on this association. In addition, it was observed that the DRRD score increased 

the risk of PC significantly among T2D subjects (ORper2units=1.25), but not so among non-T2D subjects 

(p>0.05). Thus, the DRRD does not have any potential prevention effect of PC risk if T2D is present. 

Moreover, interaction by T2D status tended to be statistically significant (p-value for 

interaction=0.05). These results reinforce that the DRRD score is likely to have an indirect impact on 

PC risk and on T2D, its main risk factor. There was no significant interaction by obesity (obesity and 

non-obesity) between the DRRD score and PC risk (p>0.05), as also shown in subgroup analyses. 

The same was true in subgroup analyses by sex (p for interaction by sex=0.09) despite a positive 

and significant association between adherence to the DRRD score and PC risk was apparent in 

women (ORper2units=1.13; p<0.05), though not in men (ORper2units=0.98; p>0.05). Adjustment for T2D 

status has almost no impact on these associations by subgroups. By adjusting for every component 

at once, it was seen that the DRRD score remained significantly associated with PC risk (Figure 5B).  
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Table 1: Association between dietary factors (nutrients and food groups) and PC cancer risk within 

the PanGenEU study.  

Multivariate adjusted logistic regression models adjusted for age in years (continuous), sex (men, women), center (all five 

Spanish hospitals), diabetes status (no diabetes, diabetes: diagnosed less than 2 years, or since more than 2 years), pack-years 

of smoking (non-smokers, tertiles of pack-years), obese (no, yes: BMI>30 kg/m2), and family history of PC (no, yes), as well as 

energy intake in Kcal. OR and 95% CI are derived from these models, and are related to PC risk per 1 SD increase in the intake 

of the dietary variable. P-values were corrected for multiple comparison testing by the Benjamini-Hochberg BH method (p.bh). 

For foods groups, the main group is indicated with “g” along with the corresponding subgroups “sg” before the food group´s 

name. 
 

The apparent positive association between the DRRD score and PC risk seemed to diminish when 

removing the effect of nuts and coffee from the score. Among dietary factors, energy intake, 

again, had the biggest influence on this association. Regarding the rMED score (Figure 5C), we did 

not observe any significant association between this score with PC risk, neither in crude models, nor 

in multivariate adjusted models or by subgroups (all p-values>0.05).

Nutrients OR LCI HCI P.value p.bh Food groups OR LCI HCI P.value p.bh 

kcal 1.21 1.06 1.38 <0.001 <0.001 galldairy 1.01 0.87 1.16 0.920 0.985 

Lipids.g 0.95 0.72 1.25 0.700 0.770 -sgmilkyogurt 1 0.87 1.16 0.960 0.985 

Proteins.g 0.71 0.56 0.91 0.010 0.220 -sgcheesse 0.99 0.86 1.14 0.880 0.978 

Humidity.g 0.89 0.72 1.11 0.310 0.546 -sgdairydessert 1.05 0.91 1.2 0.510 0.756 

Carbs.g 1.29 0.94 1.77 0.110 0.403 gallmeat 0.84 0.72 0.98 0.030 0.280 

Sucrose.g 0.93 0.79 1.09 0.390 0.636 -sgwhitemeat 0.85 0.74 0.98 0.030 0.280 

Fiber.g 1.01 0.81 1.25 0.960 0.982 -sgredmeat 0.91 0.78 1.05 0.180 0.525 

Starch.g 1.06 0.9 1.26 0.490 0.653 -sgorganmeat 0.98 0.86 1.12 0.780 0.918 

Sugar.g 1.1 0.93 1.31 0.250 0.458 -sgcuredmeat 1.03 0.9 1.18 0.650 0.839 

Cholesterol.mg 0.86 0.73 1.01 0.060 0.264 sgprocessedmeat 0.91 0.79 1.05 0.210 0.525 

VitA.ug 0.9 0.78 1.04 0.160 0.416 sgcuredprocessed 0.95 0.82 1.1 0.510 0.756 

VitD.ug 0.9 0.78 1.04 0.170 0.416 gallsea 0.94 0.82 1.08 0.360 0.696 

VitE.mg 1.12 0.89 1.4 0.330 0.558 -sgfish 0.97 0.85 1.11 0.700 0.848 

VitB8.ug 1.04 0.89 1.2 0.640 0.741 -sgothersea 0.85 0.73 0.98 0.020 0.280 

VitB9.ug 0.82 0.67 1 0.050 0.244 gmeatseafood 0.83 0.71 0.97 0.020 0.280 

VitB3.mg 0.78 0.62 0.97 0.030 0.244 gallreadydishes 0.93 0.81 1.06 0.250 0.556 

VitB5.mg 0.9 0.77 1.05 0.190 0.418 gallvegetables 0.9 0.78 1.05 0.190 0.525 

VitB2.mg 0.89 0.73 1.08 0.230 0.458 -sg1leafyveg 0.88 0.77 1.01 0.060 0.280 

VitB1.mg 0.8 0.62 1.02 0.080 0.320 -sg1starchveg 1 0.86 1.16 0.990 0.990 

VitB12.ug 0.9 0.78 1.04 0.170 0.416 -sg1sgfruitingveg 0.96 0.83 1.1 0.550 0.772 

VitB6.mg 0.91 0.78 1.05 0.180 0.417 -sg1sggrainsveg 0.93 0.81 1.06 0.290 0.611 

VitC.mg 0.94 0.8 1.11 0.460 0.653 -sg2redyellveg 0.94 0.82 1.08 0.400 0.696 

Calcium.mg 0.94 0.77 1.14 0.530 0.666 -sg2greenveg 0.91 0.79 1.05 0.200 0.525 

Iron.mg 0.85 0.66 1.11 0.240 0.458 -sg2whiteveg 0.87 0.75 1 0.050 0.280 

Potasium.mg 0.91 0.71 1.17 0.460 0.653 glegumes 0.97 0.85 1.12 0.680 0.848 

Magnesium.mg 0.78 0.57 1.06 0.120 0.406 gallfruits 1.06 0.91 1.25 0.440 0.733 

Sodium.mg 0.79 0.64 0.99 0.040 0.244 golives 1.06 0.93 1.22 0.400 0.696 

Phosphorus.mg 0.75 0.57 0.99 0.040 0.244 gnuts 1.16 0.99 1.35 0.070 0.280 

Copper.mg 0.99 0.86 1.13 0.850 0.890 gallcereals 1 0.86 1.17 0.950 0.985 

Iodide.ug 0.89 0.74 1.07 0.230 0.458 -sgbread 1.03 0.89 1.2 0.650 0.839 

Selenium.ug 0.81 0.67 1 0.050 0.244 -sgricepasta 0.99 0.86 1.13 0.830 0.949 

Zinc.mg 0.73 0.56 0.95 0.020 0.244 gallfats 1.07 0.92 1.25 0.380 0.696 

Linoleic.g 1.07 0.89 1.29 0.480 0.653 gflour 1.05 0.91 1.21 0.470 0.752 

Linolenic.mg 1.07 0.89 1.29 0.480 0.653 gchocolate 1.12 0.98 1.29 0.110 0.367 

Araquidonic.mg 0.84 0.72 0.98 0.030 0.244 gsugars 1.15 1 1.33 0.050 0.280 

DHA.g 0.9 0.78 1.04 0.170 0.416 gsauces 1.09 0.94 1.27 0.250 0.556 

EPA.g 0.9 0.78 1.04 0.160 0.416 gsweetenedbev 0.89 0.77 1.02 0.100 0.364 

Estearic.g 1 0.83 1.21 0.990 0.990 -sgsugarsweet 0.88 0.76 1.01 0.070 0.280 

Lauric.g 1.03 0.9 1.19 0.660 0.745 -sgartificialsweet 0.96 0.84 1.1 0.560 0.772 

Miristic.g 0.95 0.8 1.11 0.510 0.660 -sgjuices 0.87 0.76 1 0.050 0.280 

PUFA.g 0.97 0.79 1.19 0.750 0.805 gcoffee 1.26 1.09 1.45 <0.001 <0.001 

SFA.g 0.9 0.71 1.15 0.420 0.653 gdecoffee 0.97 0.64 1.47 0.880 0.942 

Trans.g 0.96 0.82 1.12 0.620 0.737 gtea 1.1 0.97 1.25 0.140 0.580 

MFA.g 1.07 0.85 1.35 0.550 0.672       
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Figure 5: Association between dietary scores (the DRRD and the rMED score) and PC cancer risk 

within the PanGenEU study.  

 
Crude and multivariate adjusted logistic regression models as indicated. The latter were adjusted for age in years (continuous), 

sex (men, women), center (all five Spanish hospitals), T2D status (no T2D, T2D: diagnosed ≤ 2 years, or > 2 years), pack-years of 

smoking (non-smokers, tertiles of pack-years), obese (no, yes: BMI>30 kg/m2), family history of PC (no, yes), and energy intake 

in Kcal. OR and 95% CI are derived from these models (dots and horizontal lines, respectively), and are related to PC risk per 2 

units increase in adherence to the Diet score. A) Association between the DRRD score with PC risk overall and by subgroups. 

Recently diagnosed T2D was removed in all analyses. B) Association between the DRRD score with PC risk controlling for each 

component of the score at once. C) Association between the rMED score with PC risk overall and by subgroups 
 

 

3.4. Relationship between dietary factors with the microbial signature (risk scores) 

The risk scores based on the metagenomic signature of PC (Reference 13) was derived from the 

MICROBIOME study. The MRS, which distribution is shown in Supplementary Figure 1, was 

significantly associated with PC risk in age, sex and center-adjusted logistic regression models 

(ORper1SD~5.5, p= 3.01E-05). As shown in Supplementary Table 8, multivariate adjusted linear 

regression models exploring associations between this score (log-transformed MRS) and the dietary 

factors (foods, food groups and nutrients) revealed that: high consumption of canned fish and of 

other seafoods such as squids, octopus and cuttlefish was inversely associated with the MRS 

(βper1SD=-0.001; R2=0.24), and high consumption of hamburgers were positively associated with the 

MRS (βper1SD=0.001; R2=0.25). Indeed, by food groups (Figure 6), the group of seafood emerged as 

inversely associated with the MRS. These associations were statistically significant at the nominal 

level; none of them held after multiple testing correction (p.bh>0.05). Other food groups tended 

to be associated with the MRS (starchy vegetables, and vegetables in general, processed foods 

and sugary foods), but did not reach statistical significance. There was no significant association 

between any nutrient and the MRS (Figure 6).  

Regarding the risk signature in terms of alpha-diversity measures, the rS (richness score) and the SS 

(Shannon score), the following statistically significant results were observed (Supplementary Table 

8 and Figure 6): positive associations with high intake of water and of potassium and some positive 

trends for overall fruits and few vegetables, and negative associations with fortified alcoholic 

beverages. P-values corrected by BH turned all non-significant. It is important to note that both 
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scores were not associated with PC risk in age, sex and center-adjusted regression models. 

Nonetheless, an inverse non-significant association with PC risk was manifest (OR~0.8) given the link 

between a high taxonomic diversity and a healthy microbiota. Despite their weak association with 

PC risk, their association with dietary factors was more prominent if compared to the MRS (lower 

effect sizes) (Figure 6). Overall, further adjustment for use of probiotics had a negligible impact on 

the results, whereas adjustment for energy intake had a relatively high influence on the estimates.  

Besides, there was a nearly significant association between DRRD score and the MRS in age, sex 

and center-adjusted linear regression models (per 1SD increase in MRS, the DRRDS increased on 

average by 0.04 points; p=0.07). This association weakened with other variables in the model 

including T2D. Associations with the rMED score were non-significant (β=-0.03 per 1SD increase in 

rMED, p=0.45). Both diet scores were not associated with the alpha-diversity scores. Also, there were 

no robust associations between dietary factors and alpha-diversity measures of the oral and gut 

microbiome, overall, within the PanGenEU study after multiple testing correction (data not shown).  

 

Figure 6: Association between dietary factors and microbial risk scores (MRS, rS and SS) derived 

from stool samples and metagenomics data within the MICROBIOME study. 

Multivariate adjusted linear regression models adjusted for age in years (continuous), sex (men, women), center (all five Spanish 

hospitals), T2D status (no T2D, T2D: diagnosed ≤ 2 years, or > 2 years)), pack-years of smoking (non-smokers, tertiles of pack-

years), obese (no, yes: BMI>30 kg/m2), family history of PC (no, yes), and energy intake in Kcal. β coefficients and 95% CI are 

derived from these models, per 1 SD increase in intake of the dietary variables. Microbial risk scores (outcome variable) were 

log-transformed to approximate a normal distribution. P-values were corrected for multiple comparisons by BH (p.bh). A and 

B) MRS associations for food groups and nutrients; C) Associations between all scores in a comparative manner. For foods 

groups, the main group is indicated as “g” along with the corresponding subgroups “sg” before the food group´s name. 

 

3.5. Selection of dietary factors (feature selection) 

Given the Correlation between dietary variables (Supplementary Figure 4), appropriate feature 

selection methods were applied. Figure 7 shows results on the features selected by Ridge 

Regression regarding the MRS. The most important features were araquidonic acid (AA), 

Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the case of nutrients, all being 

polyunsatured fatty acids (PUFAs), seafood, and spirits (alcoholic beverages), olives, sugars and 

other less healthy foods. Somewhat similar results were obtained for the other microbial scores, the 
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rS and SS; some saturated fatty acids were also selected including trans-fatty acids (negatively) 

and meristic acid (positively) (Supplementary Figure 5). 

As for the taxa metagenomic features and relative to the diet scores (using LASSO as feature 

selection method), only Clostridiales species was selected with regard to DRRDS (negatively), 

whereas no taxa were selected for the rMED score (data not shown). When considering the most 

prevalent gut taxa (Supplementary Figure 6), it was seen that bacteria such as Bacteroides caccae 

(negatively) and Prevotella sp CAG.279 (positively) were selected for DRRDS, while for rMED some 

selected bacteria were, again, Prevotella sp CAG.279 and Faecalibacterium.prausnitzii r_06110 

(positively). Interestingly, in conventional linear regression analyses, these bacteria were also 

significantly associated with the dietary scores, even after multiple testing correction. 

Figure 7: Feature importance of Nutrients (left) and food groups (right) selected by Ridge 

Regression models for the MRS.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Feature importance plots, where variables were scaled relative to 100 according to scores. Highest coefficients were: spirits 

(1.29E-04), seafood (-7.86E-05), all fats (olive oil) (-1.06E-05), white meat (1.61E-05), olives (-4.56E-05), nuts (1.92E-05), sugar (2.07E-

05), sauces (2.88E-05), araquidonic acid (-3.96E-03), DHA (-1.09E-03), EPA (-8.60E-04). 

3.6. Clustering between dietary factors and taxa from the oral and gut microbiota 

Cluster analyses retrieved two main dietary clusters among controls, a more Westernized dietary 

pattern (richer in consumption of less healthy foods including soft drinks, processed meat, ready 

dishes, etc.) and a prudent dietary pattern (Supplementary Figure 7). By combining dietary factors 

with microbial taxa, in general, two separate dietary clusters were observed among cases and 

controls. Figure 8 shows results on the clustering of dietary factors as food groups and the 27 

microbial taxa of the microbial signature. The obtained clusters showed a group of overwhelmingly 

controls (right side) that featured a lower enrichment of taxa associated with PC disease (for 

example, Alloscardovia omnicolens and Veillonella species), along with a higher enrichment of 

those associated with the controls in Reference 13 (for example, Clostridium sp. CAG:217 and 

Faecalibacterium prausnitzii r06110). This group of subjects also featured a higher consumption 

(above the mean intake) of plant-based foods (all type of vegetables, cereals and legumes). 

Interestingly, seafood consumption was also relatively high in this group. There was also an 

unexpectedly low intake (below the mean) of fruits in this group. The other group of subjects (on 

the left) comprised a higher proportion of PC cases and showed to some extend opposite trends 

with regard to the intake of plant-based foods and the presence of the above mentioned taxa. 

By rows, the first cluster corresponded to all taxa and few food groups clustered within this group 

(mainly those that characterize a Westernized dietary pattern). No consistent clusters were 

obtained when examining foods individually (data not shown). Regarding nutrients, mixed results 

were obtained. For instance, DHA and other fatty acids clustered with taxa of the metagenomic 

signature, but not so when Manhattan distances were considered (Supplementary Figure 8). 

Looking separately at PC cases and controls, it appeared that alcoholic beverages were more 

aggregated among PC with higher enrichment of pathogenic taxa. These patients had an overall 

high consumption pattern of all foods. Among the controls, no clear pattern was seen except the 

two common dietary patterns (Figure 8B and C). Similar findings were observed, with slight 
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differences, when using other clustering distance methods (Supplementary Figure 9). 

Supplementary Figure 10 shows the same but relative to the most prevalent taxa in the gut 

microbiota. Less meaningful results for the oral microbiota (50 most prevalent taxa), were obtained 

for both metagenomics and 16s RNA data (data not shown).  

Figure 8: Clusters of foods groups and the stool microbial signature taxa (27 species) overall and 

separately for PC cases and controls. Manhattan distance. 

  

 
Hierarchical cluster obtained with Manhattan distances applied to taxa and food groups, after scaling all values y rows (value-

mean/SD). For foods groups (all in grams of intake “gra”), the main group is indicated with “g” along with the corresponding 

subgroups “sg” before the food group´s name. A) Among PC cases and controls; B) Among PC cases; C) Among controls. For 

the latter, all taxa enriched among PC cases had to be removed to avoid zero values across rows and columns. 

 

4. Discussion 

This is the first study to elucidate both the within-sample diversity and individual components of the 

gut microbial community in association with dietary features within a Spanish study of PC patients. 

A 

B               C 
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This study has also unraveled a faecal metagenomic signature for PC diagnosis [13], and provides 

novel insights on the effect of the consumption of 82 food items, 38 food groups, 44 nutrients and 

two a-priori derived dietary patterns, on the overall microbial diversity of species richness in the 

salivary and faecal microbiota, and on the gut metagenomic signature.  

Based on the above, a microbial risk signature was defined by considering summation of the 

relative abundance (MRS) or alpha-diversity measures (richness and Shannon, rS and SS, 

respectively). The latter approach was proposed earlier [47], whereas the first is founded on the 

principles of a generic risk score, where values are summed across samples. The current study shows 

that the MRS reflected better PC risk than those based on alpha-diversity measures. Indeed, 

positive association between the MRS and PC risk was expected, whereas negative associations 

with the others (a higher microbial diversity is supposed to be healthier) [47]. Importantly, any of 

these scores were associated with dietary factors (foods, food groups or nutrients) after multiple 

testing correction in linear models. Therefore, feature selection methods accounting for 

multicollinearity effects of dietary variables were used to score and select the best features. Ridge 

Regression was used, this being a common method to deal with dietary variables despite it shrinks 

coefficients towards zero [52]. Predictors of the MRS were some PUFAs (AA, EPA and DHA), which 

are mainly contained in seafood including canned fish, and some alcoholic beverages. The effects 

of omega-3 PUFAs on intestinal immunity and inflammation have been described in several studies 

[53,54]. These studies support that variability in omega-3 PUFA metabolism can be driven by 

cancer. Therefore, PC could influence omega-3 PUFAs-microbiome-immune system interactions. 
 

Also, after multiple comparison adjustments, no significant associations were observed between 

diet consumption (foods, food groups or nutrients) and overall richness of the oral or gut microbiota 

from either 16S rRNA or metagenomics data. However, cluster analyses pointed to the existence 

of groups of subjects, and groups of taxa (of the gut microbial signature) and dietary factors. For 

instance, the group of controls tended to have a higher enrichment of beneficial taxa and a higher 

consumption of plant-based foods, as well as higher intake of PUFAs. To account for diet on a 

holistic way, two a priori dietary patterns were obtained, one for reducing T2D risk (the DRRD score) 

and another one to resemble a plant-based diet (the rMED score). Only the DRRD score was 

significantly associated with PC risk, although confounding and interaction for T2D was manifest. 

Therefore, both dietary scores did not appear to have a major impact on PC risk. In linear regression 

and by applying feature selection methods, some relevant gut taxa were selected: 

Faecalibacterium prausnitzii, which is part of the metagenomic signature in the case of rMED score, 

and some Prevotella sp in both dietary scores. Both are common in populations consuming a plant-

rich diet [16]. In addition, F. prausnitzli has been linked to dietary fiber [16]. It is also important to 

note that among the controls, there were two dietary patterns present in the Spanish population: 

a more plant-based and a more Westernized dietary pattern [55]. Previous studies have shown the 

association of plant-based foods, which feature a high intake of bioactive compounds including 

fiber, with a healthy gut microbiota [15]. However, dietary fiber was not a key factor in this study. 

The main limitation of this study is the sample size. Indeed, it is likely that significant results were not 

achieved due to this issue. Also, collection of dietary data is prone to measurement error [46]. Other 

biases that are likely relate to the collection of other variables and biological samples, despite the 

use of standard protocols and questionnaires. Therefore, the effects of these biases on the results 

cannot be rule out. These and others, such as residual confounding, may have driven some 

unexpected results (e.g., coffee). Regarding strengths, this study used high-level data 

(metagenomics) on two sites, gut and oral microbiome, and 16S rRNA to confirm the tendency 

and direction of the results. Both showed differences in the microbiome composition and richness 

between PC cases and controls [13]. However, the metagenomic data led to more focused results 

and allowed the identification of a gut microbial signature for PC diagnosis. Therefore, a major 

strength of this study is the use of this kind of data. 

5. Conclusion 

The gut microbiota hosts bacterial species that constitute a valid biomarker/signature for PC 

detection, thus with high potential for PC screening and monitoring. Indeed, microbial diversity 

differs between and within PC patients in both 16S rRNA and metagenomics data. In contrast, our 

results support that the oral microbiota is less implicated in this disease. Certain dietary factors, such 

as specific seafoods and alcoholic beverages, as well as nutrients involved in the modulating the 

inflammatory and immune response (e.g., PUFAs), could be related to some extent to this microbial 

signature. Diet as a whole, however, does not seem to impact PC risk, but could be key to retain 

some relevant taxa. Future studies with larger sample size are warranted to confirm these findings. 

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
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Supplementary Table 1: Filtering process applied to the 16s rRNA sequenced samples. 

 

ASV table OTU Open table 

779 samples  

20,272 ASVs 

779 samples 

2,081 OTUs 

Remove samples with ≤ 500 reads 

(rowsum across samples) 

Remove samples with ≤ 500 reads 

(rowsum across samples) 

615 samples 

20,272 ASVs 

614 samples 

2,081 OTUs 

Remove taxa if not present in at least 5 samples Remove taxa if not present in at least 5 samples 

615 samples 

3,393 ASVs 

614 samples 

852 OTUs 

Keep samples which have ≥400 reads across the 

retained OTUs 

Keep samples which have ≥400 reads across the 

retained OTUs 

605 samples 

3,393 ASVs 

613 samples 

852 OTUs 

We retain 78.85% of samples, 16.44% of ASVs and 

84.52% of total reads.  

The removed samples contained only 0.37% of total 

reads 

We retain 78.69% of samples, 40.94% of OTUs and 

98.35% of total reads.  

The removed samples contained only 0.37% of total 

reads 

Remove duplicated samples (N=18 samples) after 

pooling (16 salivas) 

Remove duplicated samples (N=19 samples) after 

pooling (17 salivas) 

587 samples 

3,393 ASVs 

594 samples 

852 OTUs 

Remove non-eligible cases (N=14 samples) Remove non-eligible cases (N=14 samples) 

573 samples 

3,393 ASVs 

580 samples 

852 OTUs 
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Supplementary Table 2: Samples used for data analyses by aims, site and disease status. 

 

 16s rRNA Shotgun metagenomics 

Aim 1 Stool: 51 PC cases, 46 controls, 23 C 

Oral: 59 PC cases, 55 controls, 28 CP 

Oral: plus 191 PC cases and 132 controls 

Stool: 57 PC cases, 50 controls, 29 CP 

Oral: 43 PC cases, 45 controls, 12 CP 

Aim 2 Stool: 51 PC cases and 46 controls 

Oral: 59 PC cases and 55 controls 

Oral: plus 191 PC cases and 132 controls 

Stool: 57 PC cases and 50 controls  

Oral: 43 PC cases and 45 controls 

Diet & Stool: 51 PC cases and 48 controls 

Aim 3 Stool: 51 PC cases and 46 controls 

Oral: 59 PC cases and 55 controls 

Oral: plus 191 PC cases and 132 controls 

Stool: 57 PC cases and 50 controls  

Oral: 43 PC cases and 45 controls 

MICROBIOME study (Reference 13) with 58 PC cases and 57 controls that were sequenced. 

Numbers that remained for analyses are shown in the table 

PanGenEU study with diet and lifestyle information: 556 PC cases and 511 controls. 498 PC cases 

and 454 controls were sequenced (16s rRNA data). 191 PC cases and 132 controls remained for 

analyses. 
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Supplementary Table 3: Parameter tuning of feature selection methods for food groups relative to 

the MRS and rS as an example. 

 

MRS       

RMSE Min. 1st Median Mean 3rd Max. 

LinearModel 0.08448413 0.13196141 0.15980575 0.17913991 0.19845087 0.6975618 

Ridge 0.02670246 0.04968456 0.06075801 0.07609767 0.08934668 0.1972448 

LASSO 0.03686794 0.05476516 0.0646346 0.08010137 0.09036256 0.2004859 

ENET 0.03686794 0.05476516 0.0646346 0.08010137 0.09036256 0.2004859 

Rsquared Min. 1st Median Mean 3rd Max. 

LinearModel 2.11E-04 0.03070166 0.08116297 0.1535543 0.2459961 0.7955558 

Ridge 5.03E-05 0.02561784 0.08759615 0.1854319 0.3004101 0.8633095 

LASSO 1.11E-06 0.02213094 0.08214631 0.1691972 0.2512876 0.806744 

ENET 1.11E-06 0.02213094 0.08214631 0.1691972 0.2512876 0.806744 

rS       

RMSE Min. 1st Median Mean 3rd Max. 

LinearModel 0.8307698 2.002407 2.300511 2.775733 3.14038 13.770613 

Ridge 0.6203829 1.087438 1.248703 1.843995 1.439399 31.14373 

LASSO 0.8161898 1.364145 1.663111 1.913209 2.243991 7.152979 

ENET 0.8161898 1.364145 1.663111 1.913209 2.243991 7.152979 

Rsquared Min. 1st Median Mean 3rd Max. 

LinearModel 0.00056928 0.02808508 0.1612766 0.214404 0.3410273 0.8795427 

Ridge 0.0003527 0.08172174 0.2502566 0.3004052 0.4804517 0.9161802 

LASSO 0.00070851 0.03533278 0.1826459 0.256767 0.4588144 0.812833 

ENET 0.00070851 0.03533278 0.1826459 0.256767 0.4588144 0.812833 
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Supplementary Table 4: Characteristics of the study population from the MICROBIOME and 

PanGenEU studies with valid microbiome and dietary data. More details provided in Reference 13 

 

    Cases N=58   Controls N=57   p-value 

center:      0.943 
 2 21 36.20% 22 38.60%  
 8 37 63.80% 35 61.40%  

sex:      0.648 
 0 22 37.90% 25 43.90%  
 1 36 62.10% 32 56.10%  

agec  71.9 10.5 72.2 12.2 0.896 
smokingstatus:     0.825 

 0 29 50.00% 28 49.10%  
 1 1 1.72% 3 5.26%  
 2 19 32.80% 19 33.30%  
 3 9 15.50% 7 12.30%  

cpy1  18.8 30.7 26.6 42.9 0.266 
alcohol_status:     0.239 

 0 20 34.50% 13 22.80%  
 1 38 65.50% 44 77.20%  

alldiab:      0.022 
 0 41 70.70% 51 89.50%  
 1 17 29.30% 6 10.50%  

diabcat:      0.008 
 0 41 70.70% 51 89.50%  
 1 7 12.10% 0 0.00%  
 2 10 17.20% 6 10.50%  

obese:      1 
 0 42 72.40% 42 73.70%  
 1 16 27.60% 15 26.30%  

asthma:      1 
 0 54 93.10% 53 93.00%  
 1 4 6.90% 4 7.02%  

nasal:      1 
 0 49 84.50% 49 86.00%  
 1 9 15.50% 8 14.00%  

allacid:      0.421 
 0 41 70.70% 45 78.90%  
 1 17 29.30% 12 21.10%  

allhburn:      0.536 
 0 43 74.10% 46 80.70%  
 1 15 25.90% 11 19.30%  

allrheum:      0.166 
 0 53 91.40% 46 80.70%  
 1 5 8.62% 11 19.30%  

allhbp:      0.307 
 0 24 41.40% 30 52.60%  
 1 34 58.60% 27 47.40%  

cholesterol:      0.102 
 0 30 51.70% 39 68.40%  
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 1 28 48.30% 18 31.60%  
abmedication:     0.186 

 0 35 60.30% 42 73.70%  
 1 23 39.70% 15 26.30%  

antibiotic:      0.404 
 0 22 37.90% 27 47.40%  
 1 36 62.10% 30 52.60%  

asparmed:      0.912 
 0 33 56.90% 34 59.60%  
 1 25 43.10% 23 40.40%  

salicylic.ever:     0.573 
 0 51 87.90% 47 82.50%  
 1 7 12.10% 10 17.50%  

paracetamol.ever:     0.863 
 0 44 75.90% 45 78.90%  
 1 14 24.10% 12 21.10%  

cholmedication:     0.09 
 0 33 56.90% 42 73.70%  
 1 25 43.10% 15 26.30%  

cortmed:      0.743 
 0 52 89.70% 53 93.00%  
 1 6 10.30% 4 7.02%  

diabdiet:      0.018 
 0 41 70.70% 51 89.50%  
 1 13 22.40% 6 10.50%  
 2 4 6.90% 0 0.00%  

diabin:      0.032 
 0 41 70.70% 51 89.50%  
 1 9 15.50% 2 3.51%  
 2 8 13.80% 4 7.02%  

diabmed:      0.04 
 0 41 70.70% 51 89.50%  
 1 12 20.70% 4 7.02%  
 2 5 8.62% 2 3.51%  

metformin.ever:     0.043 
 0 46 79.30% 53 93.00%  
 1 11 19.00% 3 5.26%  
 2 1 1.72% 1 1.75%  

probiot:      0.438 
 0 56 96.60% 53 93.00%  
 1 2 3.45% 4 7.02%  

periodontitis:     0.433 
 0 40 69.00% 44 77.20%  
 1 18 31.00% 13 22.80%  

recession:      0.131 
 0 34 58.60% 42 73.70%  
 1 24 41.40% 15 26.30%  

FHPDAC:      0.717 
 0 53 91.40% 54 94.70%  
 1 5 8.62% 3 5.26%  
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  Cases   Controls     

  N=498   N=454   p-value 

center:      <0.001 

 0 44 8.84% 46 10.10%  
 1 29 5.82% 24 5.29%  
 2 57 11.40% 41 9.03%  
 3 50 10.00% 5 1.10%  
 6 15 3.01% 13 2.86%  
 7 54 10.80% 71 15.60%  
 8 108 21.70% 118 26.00%  
 9 141 28.30% 136 30.00%  

sex:      0.803 

 0 222 44.60% 207 45.60%  
 1 276 55.40% 247 54.40%  

agec  64 12.3 64.2 12.8 0.834 

smokingstatus:     0.001 

 0 194 39.00% 209 46.00%  
 1 3 0.60% 12 2.64%  
 2 158 31.70% 140 30.80%  
 3 143 28.70% 93 20.50%  

alcohol_status:     0.529 

 0 154 30.90% 150 33.00%  
 1 344 69.10% 304 67.00%  

alldiab:      <0.001 

 0 355 71.30% 389 85.70%  
 1 143 28.70% 65 14.30%  

diabcat:      <0.001 

 0 355 71.30% 389 85.70%  
 1 64 12.90% 16 3.52%  
 2 79 15.90% 49 10.80%  

obese:      0.929 

 0 396 79.50% 359 79.10%  
 1 102 20.50% 95 20.90%  

panctype:      0.041 

 0 477 95.80% 447 98.50%  
 1 18 3.61% 6 1.32%  
 2 3 0.60% 1 0.22%  

asthma:      0.044 

 0 461 92.60% 402 88.50%  
 1 37 7.43% 52 11.50%  

nasal:      0.004 

 0 428 85.90% 357 78.60%  
 1 70 14.10% 97 21.40%  

allacid:      0.013 

 0 351 70.50% 353 77.80%  
 1 147 29.50% 101 22.20%  

allhburn:      0.003 

 0 314 63.10% 328 72.20%  
 1 184 36.90% 126 27.80%  

allrheum:      0.367 
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 0 469 94.20% 420 92.50%  
 1 29 5.82% 34 7.49%  

allhbp:      0.256 

 0 314 63.10% 269 59.30%  
 1 184 36.90% 185 40.70%  

cholesterol:      0.977 

 0 321 64.50% 294 64.80%  
 1 177 35.50% 160 35.20%  

abmedication:     0.852 

 0 377 75.70% 347 76.40%  
 1 121 24.30% 107 23.60%  

asparmed:      0.43 

 0 387 77.70% 342 75.30%  
 1 111 22.30% 112 24.70%  

salicylic.ever:     0.722 

 0 436 87.60% 393 86.60%  
 1 62 12.40% 61 13.40%  

paracetamol.ever:     0.054 

 0 448 90.00% 389 85.70%  
 1 50 10.00% 65 14.30%  

cholmedication:     0.706 

 0 376 75.50% 337 74.20%  
 1 122 24.50% 117 25.80%  

cortmed:      0.011 

 0 482 96.80% 422 93.00%  
 1 16 3.21% 32 7.05%  

nsaidmed:      0.559 

 0 428 85.90% 397 87.40%  
 1 70 14.10% 57 12.60%  

diabdiet:      <0.001 

 0 355 71.30% 389 85.70%  
 1 104 20.90% 43 9.47%  
 2 39 7.83% 22 4.85%  

diabin:      <0.001 

 0 355 71.30% 389 85.70%  
 1 72 14.50% 18 3.96%  
 2 71 14.30% 47 10.40%  

diabmed:      <0.001 

 0 355 71.30% 389 85.70%  
 1 98 19.70% 50 11.00%  
 2 45 9.04% 15 3.30%  

periodontitis:     1 

 0 420 84.30% 382 84.10%  
 1 78 15.70% 72 15.90%  

recession:      0.03 

 0 339 68.10% 339 74.70%  
 1 159 31.90% 115 25.30%  

FHPDAC:      <0.001 

 0 461 92.60% 444 97.80%  
 1 37 7.43% 10 2.20%  
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Supplementary Table 5: PERMANOVA analyses to test differences in community composition by 

case-control status (16S rRNA data) 

    Model 1       Model 2   

  R-squared p-values   R-squared p-values 

BRAY_CURTIS            

Saliva samples        

global  0.0185 0.0165   0.0106 0.5368 

cases (PC) vs controls (C)  0.0072 0.2763   0.0068 0.2531 

cases (PC) vs pancreatitis (CP)  0.0193 0.0282   0.0055 0.9903 

controls (C) vs pancreatitis (CP)  0.0246 0.0038   0.0117 0.2827 

Stool samples        

global  0.0400 0.0002   0.0363 0.0007 

cases (PC) vs controls (C)  0.0335 0.0001   0.0297 0.0002 

cases (PC) vs pancreatitis (CP)  0.0244 0.1412   0.0245 0.1274 

controls (C) vs pancreatitis (CP)  0.0206 0.3879   0.0181 0.5917 

Model 1: crude      

Model 2: adjusted for age (continuous), sex (female, male), center, smoking (never, former, current), metformin 

(no diabetes, yes metformin, no metformin) in stool samples 
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Supplementary Table 6: Foods associated with PC cancer risk within the PanGenEU study (Spanish 

data sample). 

 OR LCI HCI P.value p.bh 

fat milk 0.96 0.84 1.09 0.500 0.825 

low fat milk 1.07 0.93 1.22 0.330 0.773 

fat yogurt 0.95 0.83 1.08 0.430 0.825 

low fat yogurt 0.99 0.87 1.13 0.900 0.942 

fresh cheese 1 0.87 1.14 0.970 0.970 

curated cheese 0.97 0.85 1.12 0.700 0.853 

pudding 1.05 0.91 1.2 0.510 0.825 

ice cream 0.93 0.81 1.06 0.280 0.773 

eggs 0.93 0.81 1.07 0.320 0.773 

chicken 0.88 0.77 1.01 0.060 0.445 

beef 0.99 0.87 1.12 0.830 0.935 

pork 0.87 0.75 1.02 0.080 0.445 

lam 0.96 0.83 1.11 0.570 0.825 

rabbit 0.91 0.79 1.05 0.190 0.650 

liver 0.97 0.85 1.1 0.610 0.825 

offals 1.01 0.89 1.15 0.860 0.942 

bacon 0.99 0.86 1.14 0.900 0.942 

white fish 0.98 0.86 1.11 0.710 0.854 

blue fish 0.98 0.86 1.12 0.780 0.926 

canned fish 0.81 0.71 0.94 <0.001 <0.001 

salted fish 0.91 0.8 1.04 0.150 0.580 

calamars 0.96 0.84 1.1 0.580 0.825 

sausages 0.82 0.71 0.96 0.010 0.297 

hamburguers 0.96 0.84 1.1 0.570 0.825 

hot dogs 0.99 0.87 1.14 0.940 0.962 

york ham 0.99 0.87 1.13 0.900 0.942 

ham 1.07 0.93 1.22 0.360 0.801 

salami 0.98 0.86 1.13 0.810 0.935 

croquettes 0.96 0.84 1.1 0.560 0.825 

fish fingers 0.97 0.85 1.1 0.600 0.825 

ready dishes 0.97 0.85 1.1 0.610 0.825 

spinach 0.85 0.74 0.98 0.020 0.445 

coliflour 0.87 0.76 1 0.050 0.445 

lettuce 0.94 0.82 1.07 0.330 0.773 

tomato 0.97 0.84 1.11 0.630 0.825 

onion 1.05 0.92 1.2 0.510 0.825 

carrots 0.95 0.83 1.08 0.420 0.825 

beans 0.95 0.83 1.08 0.410 0.825 

peas 0.95 0.83 1.09 0.450 0.825 

eggplant 0.97 0.85 1.11 0.620 0.825 

peppers 1.07 0.94 1.23 0.290 0.773 

artichokes 0.91 0.79 1.05 0.210 0.692 

asparagus 0.86 0.75 0.98 0.030 0.445 

maize 0.95 0.83 1.09 0.470 0.825 

legumes 0.97 0.85 1.12 0.680 0.841 

oranges 0.9 0.78 1.03 0.120 0.562 

banana 0.87 0.76 1 0.050 0.445 

apple 1.08 0.94 1.24 0.280 0.773 

pear 1.05 0.91 1.21 0.540 0.825 

peach 1.12 0.96 1.29 0.140 0.580 

melon 1.01 0.88 1.16 0.840 0.935 

grapes 1.15 0.99 1.34 0.070 0.445 

prunes 1.07 0.94 1.23 0.310 0.773 

kiwi 1.05 0.92 1.21 0.460 0.825 

fruits almibar 0.99 0.87 1.13 0.940 0.962 
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olives 1.06 0.93 1.22 0.400 0.825 

nuts 1.16 0.99 1.35 0.070 0.445 

white bread 1.03 0.9 1.19 0.650 0.838 

whole bread 1 0.87 1.14 0.970 0.970 

breakfast cereals 1.07 0.94 1.23 0.300 0.773 

french fries 0.97 0.84 1.11 0.630 0.825 

boiled potatoes 1.11 0.96 1.28 0.150 0.580 

rice 1.08 0.94 1.23 0.290 0.773 

pasta 0.92 0.8 1.07 0.280 0.773 

pizza 0.85 0.71 1.02 0.080 0.445 

olive oil 1.04 0.91 1.2 0.540 0.825 

other fats 1.01 0.89 1.15 0.830 0.935 

cakes 1.11 0.97 1.28 0.120 0.562 

croissants 0.94 0.82 1.07 0.340 0.776 

chocolate 1.12 0.98 1.29 0.110 0.562 

mermelade 1.16 1.01 1.33 0.040 0.445 

sugar 1.03 0.9 1.18 0.680 0.841 

mayonnaise 1.07 0.87 1.33 0.510 0.825 

tomato sauce 1.11 0.95 1.3 0.190 0.650 

ketchup 0.96 0.83 1.1 0.540 0.825 

garlic 1.05 0.92 1.21 0.470 0.825 

chips 0.91 0.8 1.04 0.170 0.630 

sweet beverages 0.96 0.83 1.1 0.550 0.825 

artificial bev 0.99 0.87 1.12 0.830 0.935 

fresh orange juice 0.95 0.83 1.09 0.460 0.825 

nectar 0.88 0.76 1 0.060 0.445 

cereal beverage 0.97 0.85 1.11 0.670 0.841 

coffee 1.26 1.09 1.45 <0.001   <0.001 

decoffee 0.97 0.64 1.47 0.880 0.942 

tea 1.1 0.97 1.25 0.140 0.580 

beer 1.16 0.99 1.37 0.070 0.445 

wine 1.04 0.9 1.19 0.600 0.825 

sprits 1.16 0.99 1.36 0.070 0.445 

fortified 0.94 0.83 1.06 0.310 0.773 
Multivariate adjusted logistic regression models adjusted for age in years (continuous), sex (men, women), center (all five 

Spanish hospitals), diabetes status (no diabetes, diabetes: diagnosed less than 2 years, or since more than 2 years), pack-years 

of smoking (non-smokers, tertiles of pack-years), obese (no, yes: BMI>30 kg/m2), and family history of PC (no, yes), as well as 

energy intake in Kcal. OR and 95% CI are derived from these models, and are related to PC risk per 1 SD increase in the intake 

of the dietary variable. P-values were corrected for multiple comparison testing by the Benjamini-Hochberg BH method (p.bh). 

For foods groups, the main group is indicated with “g” along with the corresponding subgroups “sg” before the food group´s 

name. 
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Supplementary Table 7: Components and quantiles of the Diet Scores (DRRDS and rMED score) 

  Controls      N=511 Cases  N=560 p.overall 

DRRDSCORE 26.7 4.67 27.5 4.62 0.008 

SC_fiber 2.24 1.85 2.34 1.89 0.426 

SC_nuts 3.14 1.74 3.36 1.76 0.04 

SC_fruits 2.99 1.42 3.16 1.4 0.051 

SC_coffee 2.51 1.62 2.7 1.67 0.05 

SC_ratio 3 1.42 3.06 1.42 0.444 

SC_gi 3 1.42 2.91 1.41 0.291 

SC_trans 3 1.42 3 1.39 0.931 

SC_meats 3 1.42 3.04 1.43 0.685 

SC_juices 3.85 1.53 3.93 1.52 0.419 

meats:     0.196 

Q1 103 20.20% 132 23.60%  

Q2 102 20.00% 90 16.10%  

Q3 102 20.00% 106 18.90%  

Q4 102 20.00% 132 23.60%  

Q5 102 20.00% 100 17.90%  

fruits:     0.18 

Q1 104 20.40% 87 15.50%  

Q2 101 19.80% 110 19.60%  

Q3 102 20.00% 123 22.00%  

Q4 102 20.00% 105 18.80%  

Q5 102 20.00% 135 24.10%  

coffee:     0.135 

Non-consumers 245 47.90% 242 43.20%  

Q1 147 28.80% 159 28.40%  

Q2 119 23.30% 159 28.40%  

fiber:     0.465 

Q1+Q2 352 68.90% 373 66.60%  

Q3 159 31.10% 187 33.40%  

gi:     0.787 

Q1 103 20.20% 98 17.50%  

Q2 102 20.00% 116 20.70%  

Q3 102 20.00% 109 19.50%  

Q4 102 20.00% 113 20.20%  

Q5 102 20.00% 124 22.10%  

juices:     0.454 

Non-consumers 304 59.50% 352 62.90%  

Q1 121 23.70% 116 20.70%  

Q2 86 16.80% 92 16.40%  

nuts:     0.038 

Non-consumers 177 34.60% 175 31.20%  

Q1 121 23.70% 109 19.50%  

Q2 213 41.70% 276 49.30%  

ratio:     0.75 

Q1 103 20.20% 101 18.00%  
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Q2 102 20.00% 121 21.60%  

Q3 102 20.00% 101 18.00%  

Q4 102 20.00% 116 20.70%  

Q5 102 20.00% 121 21.60%  

trans:     0.778 

Q1 103 20.20% 102 18.20%  

Q2 102 20.00% 127 22.70%  

Q3 102 20.00% 106 18.90%  

Q4 102 20.00% 117 20.90%  

Q5 102 20.00% 108 19.30%  

rMEDSCORE 7.86 2.13 8.04 2.21 0.18 

medfru 274 164 289 181 0.14 

medfruits 1 0.82 1.06 0.81 0.283 

medvege 1.01 0.83 1.09 0.83 0.111 

medleg 0.42 0.57 0.43 0.54 0.867 

medcer 0.24 0.55 0.24 0.54 0.897 

medfish 1.27 0.8 1.27 0.78 0.887 

medoil 1.39 0.53 1.48 0.53 0.011 

medmeat 1.34 0.8 1.31 0.8 0.493 

meddai 1.18 0.77 1.16 0.76 0.621 

fruits:     0.478 

Q1 170 33.30% 167 29.80%  

Q2 170 33.30% 195 34.80%  

Q3 171 33.50% 198 35.40%  

vegetables:     0.28 

Q1 173 33.90% 168 30.00%  

Q2 158 30.90% 171 30.50%  

Q3 180 35.20% 221 39.50%  

legumes:     0.259 

Q1 314 61.40% 333 59.50%  

Q2 198 38.60% 227 40.50%  

cereals:     0.741 

Q1 420 82.20% 455 81.20%  

Q2 91 17.80% 105 18.80%  

fish:     0.544 

Q1 170 33.30% 116 20.70%  

Q2 170 33.30% 174 31.10%  

Q3 171 33.50% 270 48.20%  

oil:     0.038 

Non-consumers 12 2.35% 9 1.61%  

Q1 286 56.00% 275 49.10%  

Q2 213 41.70% 276 49.30%  

meat:     0.757 

Q1 279 54.60% 293 52.30%  

Q2 128 25.00% 147 26.20%  

Q3 104 20.40% 120 21.40%  
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Supplementary Table 8: Associations between foods on an individual basis with the microbial risk 

score MRS. 

 coeff SE p.value CILow CIHigh R.squared p.bh 

fat milk -0.0004 5.00E-04 0.471 -0.001 0.001 0.183 0.932 

low fat milk 0.0005 5.00E-04 0.380 -0.001 0.002 0.186 0.932 

fat yogurt -0.0001 6.00E-04 0.922 -0.001 0.001 0.178 0.985 

low fat yogurt 0.0002 5.00E-04 0.699 -0.001 0.001 0.180 0.972 

fresh cheese 0.0002 5.00E-04 0.679 -0.001 0.001 0.180 0.965 

curated cheese 0.0002 6.00E-04 0.727 -0.001 0.001 0.179 0.979 

pudding -0.0004 5.00E-04 0.398 -0.001 0.001 0.185 0.932 

ice cream 0.0002 5.00E-04 0.645 -0.001 0.001 0.180 0.965 

eggs -0.0003 5.00E-04 0.516 -0.001 0.001 0.182 0.953 

chicken 0.0004 5.00E-04 0.484 -0.001 0.001 0.183 0.937 

beef 0.0001 5.00E-04 0.772 -0.001 0.001 0.179 0.985 

pork 0.0003 6.00E-04 0.582 -0.001 0.001 0.181 0.965 

lam 0 5.00E-04 0.985 -0.001 0.001 0.178 0.994 

rabbit -0.0004 5.00E-04 0.466 -0.001 0.001 0.183 0.932 

liver -0.0006 5.00E-04 0.223 -0.002 0.000 0.193 0.932 

offals -0.0006 5.00E-04 0.197 -0.002 0.000 0.194 0.932 

bacon 0.0003 5.00E-04 0.610 -0.001 0.001 0.181 0.965 

white fish -0.0006 5.00E-04 0.287 -0.002 0.001 0.189 0.932 

blue fish 0.0001 5.00E-04 0.785 -0.001 0.001 0.179 0.985 

canned fish -0.0012 6.00E-04 0.032 -0.002 0.000 0.222 0.713 

salted fish -0.0008 5.00E-04 0.112 -0.002 0.000 0.203 0.932 

calamars -0.0011 5.00E-04 0.025 -0.002 0.000 0.226 0.713 

sausages 0.0001 7.00E-04 0.911 -0.001 0.002 0.178 0.985 

hamburgers 0.0014 6.00E-04 0.015 0.000 0.003 0.234 0.713 

hot dogs 0.0001 6.00E-04 0.867 -0.001 0.001 0.178 0.985 

york ham -0.0003 5.00E-04 0.537 -0.001 0.001 0.182 0.955 

ham 0 5.00E-04 0.948 -0.001 0.001 0.178 0.993 

salami 0.0002 5.00E-04 0.631 -0.001 0.001 0.180 0.965 

croquettes 0.0003 1.00E-03 0.790 -0.002 0.002 0.179 0.985 

fish fingers -0.0001 5.00E-04 0.916 -0.001 0.001 0.178 0.985 

readydishes 0.0004 5.00E-04 0.503 -0.001 0.001 0.183 0.952 

spinach -0.0001 5.00E-04 0.864 -0.001 0.001 0.178 0.985 

coliflour -0.0001 5.00E-04 0.861 -0.001 0.001 0.178 0.985 

lettuce 0.0002 5.00E-04 0.631 -0.001 0.001 0.180 0.965 

tomato 0.0001 5.00E-04 0.841 -0.001 0.001 0.179 0.985 

onion -0.0009 5.00E-04 0.112 -0.002 0.000 0.203 0.932 

carrots -0.0005 5.00E-04 0.282 -0.002 0.000 0.189 0.932 

beans -0.0006 5.00E-04 0.287 -0.002 0.001 0.189 0.932 

peas -0.0004 5.00E-04 0.394 -0.001 0.001 0.185 0.932 

eggplant -0.0002 5.00E-04 0.658 -0.001 0.001 0.180 0.965 

peppers -0.0005 5.00E-04 0.384 -0.001 0.001 0.186 0.932 

artichokes 0 5.00E-04 0.981 -0.001 0.001 0.178 0.994 

asparagus -0.0006 5.00E-04 0.265 -0.002 0.000 0.190 0.932 

maize -0.0002 5.00E-04 0.683 -0.001 0.001 0.180 0.965 

legumes -0.0002 6.00E-04 0.724 -0.001 0.001 0.179 0.979 

oranges 0.0006 5.00E-04 0.287 0.000 0.002 0.189 0.932 

banana -0.0007 5.00E-04 0.232 -0.002 0.000 0.192 0.932 

apple 0.0011 5.00E-04 0.051 0.000 0.002 0.223 0.713 

pear -0.0004 6.00E-04 0.471 -0.001 0.001 0.183 0.932 

peach 0.0004 5.00E-04 0.383 -0.001 0.001 0.186 0.932 

melon 0.0003 5.00E-04 0.638 -0.001 0.001 0.180 0.965 

grapes 0.0003 5.00E-04 0.622 -0.001 0.001 0.181 0.965 

prunes 0.0002 5.00E-04 0.737 -0.001 0.001 0.179 0.979 

kiwi 0 5.00E-04 0.972 -0.001 0.001 0.178 0.994 

fruits almibar -0.0004 5.00E-04 0.386 -0.001 0.001 0.185 0.932 
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olives -0.0006 5.00E-04 0.298 -0.002 0.001 0.189 0.932 

nuts -0.0002 5.00E-04 0.666 -0.001 0.001 0.180 0.965 

white bread 0.0001 7.00E-04 0.929 -0.001 0.001 0.178 0.985 

wholebread 0.0005 5.00E-04 0.324 0.000 0.002 0.188 0.932 

breakfast cer 0.0007 5.00E-04 0.174 0.000 0.002 0.196 0.932 

french fries -0.0008 5.00E-04 0.139 -0.002 0.000 0.199 0.932 

boiled potatoes -0.0005 6.00E-04 0.414 -0.002 0.001 0.185 0.932 

rice 0.0004 5.00E-04 0.419 -0.001 0.002 0.185 0.932 

pasta -0.0001 5.00E-04 0.850 -0.001 0.001 0.178 0.985 

pizza 0.0006 6.00E-04 0.332 -0.001 0.002 0.187 0.932 

olive oil -0.0004 6.00E-04 0.567 -0.002 0.001 0.181 0.965 

other fats 0.0007 5.00E-04 0.170 0.000 0.002 0.196 0.932 

cakes 0.0001 6.00E-04 0.879 -0.001 0.001 0.178 0.985 

croissants -0.0003 5.00E-04 0.525 -0.001 0.001 0.182 0.953 

chocolate 0.0006 6.00E-04 0.270 0.000 0.002 0.190 0.932 

mermelade 0.0008 5.00E-04 0.093 0.000 0.002 0.205 0.932 

sugar 0.0002 6.00E-04 0.677 -0.001 0.001 0.180 0.965 

mayonnaise 0.0004 5.00E-04 0.380 -0.001 0.001 0.186 0.932 

tomato sauce 0.0007 5.00E-04 0.133 0.000 0.002 0.200 0.932 

ketchup 0.0004 5.00E-04 0.371 -0.001 0.001 0.186 0.932 

garlic 0.0001 5.00E-04 0.893 -0.001 0.001 0.178 0.985 

chips 0.0004 5.00E-04 0.411 -0.001 0.001 0.185 0.932 

sweet bev -0.0004 5.00E-04 0.448 -0.001 0.001 0.184 0.932 

artificial bev 0.0007 5.00E-04 0.144 0.000 0.002 0.199 0.932 

fresh juice 0.0006 6.00E-04 0.303 -0.001 0.002 0.188 0.932 

nectar -0.0001 6.00E-04 0.792 -0.001 0.001 0.179 0.985 

cereal bev 0.0005 5.00E-04 0.294 0.000 0.002 0.189 0.932 

coffee 0.0006 5.00E-04 0.302 -0.001 0.002 0.189 0.932 

decoffee 0.0004 5.00E-04 0.447 -0.001 0.002 0.184 0.932 

tea -0.0001 5.00E-04 0.846 -0.001 0.001 0.178 0.985 

beer 0.0006 5.00E-04 0.252 0.000 0.002 0.191 0.932 

wine 0 5.00E-04 0.994 -0.001 0.001 0.178 0.994 

sprits 0.0006 5.00E-04 0.208 0.000 0.002 0.194 0.932 

fortified 0.0001 5.00E-04 0.857 -0.001 0.001 0.178 0.985 

 
Multivariate adjusted linear regression models adjusted for age in years (continuous), sex (men, women), center (all five Spanish 

hospitals), diabetes status (no diabetes, diabetes: diagnosed less than 2 years, or since more than 2 years), pack-years of 

smoking (non-smokers, tertiles of pack-years), obese (no, yes: BMI>30 kg/m2), and family history of PC (no, yes), as well as energy 

intake in Kcal. β coefficients and 95% CI are derived from these models, per 1 SD increase in the intake of the dietary variables. 

All microbial risk scores (outcome variable) were log-transformed to approximate a normal distribution. P-values were corrected 

for multiple comparison testing by the Benjamini-Hochberg BH method (p.bh).  
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Supplementary Figure 1: Distribution of the microbial risk score by disease status. 
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Supplementary Figure 2: PCoA plots of saliva (left) and stool (right) samples for PDAC cases, 

controls and chronic pancreatitis patients. Jaccard index. 16s rRNA data. 
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Supplementary Figure 3: Correlation between stool and saliva taxa at genus level among PC 

cases and controls and other subgroups (by diabetes, smoking and obesity status) 

 

Plots derived from Spearman correlation analyses of bacterial taxa at genus level, whereby taxa present in 

both stool and oral samples were considered. Correlations between the taxa from both sites was analyzed by 

different conditions: diabetes status, smoking status, obesity, and disease status (with and without chronic 

pancreatitis). Significance levels: *p<0.05, **p<0.01, ***p<0.001 
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Supplementary Figure 4: Spearman correlation plots between dietary variables, foods and 

nutrients. 
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Supplementary Figure 5: Feature importance of Nutrients (left) and food groups (right) selected 

by Ridge Regression models for the richness score rS.   

 

gra_galldairy 5.32E-05 
gra_sgmilkyogurt 5.96E-05 
gra_sgcheesse 1.07E-04 
gra_sgdairydessert -7.79E-04 
gra_gallmeat 8.62E-05 
gra_sgwhitemeat 8.48E-04 
gra_sgredmeat -4.06E-04 
gra_sgorganmeat -1.36E-03 
gra_sgcuredmeat 2.10E-04 
gra_sgprocessedmeat -8.22E-04 
gra_sgcuredprocessedmeat -3.34E-04 
gra_gallsea 3.20E-04 
gra_sgfish 2.41E-04 
gra_sgothersea 3.36E-03 
gra_meatseafood -6.71E-06 
gra_gallready 4.16E-04 
gra_gallveg 2.45E-05 
gra_sg1leafyveg 6.45E-04 
gra_sg1starchveg 3.88E-06 
gra_sg1sgfruitingveg -6.07E-04 
gra_sg1sggrainsveg 2.26E-04 
gra_sg2redyellveg 1.20E-04 
gra_sg2greenveg 2.59E-05 
gra_sg2whiteveg 5.70E-04 
gra_gleg 5.42E-04 
gra_gallfru 3.62E-04 
gra_golives -3.01E-03 
gra_gnuts 1.33E-03 
gra_gallcer 1.12E-04 
gra_sgbread 1.21E-04 
gra_sgricepasta -2.40E-04 
gra_gallfats 5.92E-03 
gra_gflour 4.36E-04 
gra_gchoc 3.95E-03 
gra_gsugar 1.43E-04 
gra_gsauces 1.06E-03 
gra_gnonalc 4.42E-05 
gra_sgsugbev -3.00E-04 
gra_sgsoftdr 3.45E-04 
gra_sgjuice -1.82E-04 
gra_coffee 8.18E-05 
gra_decoffee 5.80E-04 
gra_tea 2.22E-04 
beer2 -1.65E-04 
wine2 -8.56E-04 
spirits2 -1.15E-02 
fortified2 -3.61E-03 
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Supplementary Figure 6: Feature importance of the most prevalent taxa (N=50) for DRRD score 

selected by LASSO.   

 

Coeficients: 

 (Intercept) 27.0455967 

Bacteroides.rodentium.uniformis..r_00855. 3.8693444 

Blautia.obeum.wexlerae..r_02154. -12.2156586 

Alistipes.putredinis..r_03683. 28.6387544 

Proteobacteria.sp...r_00095. -14.234156 

Roseburia.species...m_12366. -0.1244635 

Akkermansia.muciniphila..r_03591. 8.4996434 

Bacteroides.faecis.thetaiotaomicron..r_01657. 1.1985538 

Faecalibacterium.prausnitzii..r_06109. 9.010479 

Faecalibacterium.prausnitzii..r_06112. 26.6143472 

Bacteroides.sp...r_03475.33.9770696 

Bacteroides.coprocola..r_11279. -6.1956002 

Bacteroides.eggerthii..r_01577. -10.3307721 

Bacteroides.caccae..r_03473. -89.392068 

Prevotella.species...m_12765. -19.662022 

Anaerostipes.hadrus..r_00856. -20.3885194 

Bacteroides.sp...r_02810.0.8033954 

Akkermansia.species...m_12805. -7.7903256 

Succinivibrio.dextrinosolvens..m_12719. -22.4909647 

Prevotella.sp..CAG.279..m_12279. 41.1459168 
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Supplementary Figure 7: Dietary clusters derived from intake for food items within the PanGenEU 

study and among 511 controls. Manhattan distances. 

 

Hierarchical cluster obtained with Manhattan distances applied to taxa and foods in gram (g), after scaling all values (value-

mean/SD).  
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Supplementary Figure 8: Clusters of nutrients and the stool microbial signature taxa (27 species) 

overall for PC cases and controls. Euclidean (A) and Manhattan (B) distance. 

 

 
Hierarchical cluster obtained with Manhattan and Euclidean distances applied to taxa and nutrients, after scaling all values 

(value-mean/SD).  



43 
 

 

Supplementary Figure 9: Clusters of foods groups and the stool microbial signature taxa (27 species) 

overall for PC cases and controls. Euclidean distance. 

 

Hierarchical cluster obtained with Euclidean distances applied to taxa and food groups, after scaling all values (value-

mean/SD). For foods groups (all in grams of intake “gra”), the main group is indicated with “g” along with the corresponding 

subgroups “sg” before the food group´s name. 
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Supplementary Figure 10: Clusters of nutrients and the stool microbial signature taxa (top 50 most 

prevalent taxa) overall for PC cases and controls. Manhattan distance. 

 

Hierarchical cluster obtained with Manhattan distances applied to taxa and food groups, after scaling all values (value-

mean/SD).  
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Annex I 

27 species of the faecal metagenimic signature (Reference 13: Kartal, Schmidt, Molina-Montes, et 

al. 2022): 

More enriched among PC cases: "Methanobrevibacter smithii [r_03695]", "Veillonella atypica 

[r_01941]", "Firmicutes sp. [r_03641]", "Clostridium sp. [r_03622]", "Bacteroides finegoldii [r_03474]", 

"Firmicutes sp. [r_03629]", "bacterium LF-3 [r_03628]", "Alloscardovia omnicolens [r_02114]", 

"Prevotella species  [m_12780]", "Veillonella species  [m_13135]", "Butyrivibrio crossotus [r_03686]",  

More enriched among controls: "Clostridiales species  [m_13012]", "Megamonas 

funiformis/rupellensis [r_02318]", "Holdemanella biformis [m_12329]", "Dorea sp. CAG:317 [r_07668]", 

"Bifidobacterium ruminantium [r_02702]", "Bacteroides caecimuris [r_03476]", "Bacteroides sp. 

CAG:144 [m_12596]", "Faecalibacterium species  [m_12403]", "Rikenellaceae sp. [r_03593]", 

"Paraprevotella clara [r_03698]", "Clostridium sp. CAG:217 [m_12270]", "[Eubacterium] rectale 

[r_03657]", "Bacteroides coprocola [r_11279]", "Faecalibacterium prausnitzii [r_06110]", 

"Bifidobacterium bifidum [r_03116]", "Romboutsia timonensis [r_09389]" 

 

Annex II: Reference 13 

A faecal microbiota signature with high specificity for pancreatic cancer. 

Kartal E#, Schmidt TSB#, Molina-Montes E# (co-first authors), Rodríguez-Perales S, Wirbel J, 

Maistrenko OM, Akanni WA, Alashkar Alhamwe B, Alves RJ, Carrato A, Erasmus HP, Estudillo L, 

Finkelmeier F, Fullam A, Glazek AM, Gómez-Rubio P, Hercog R, Jung F, Kandels S, Kersting S, 

Langheinrich M, Márquez M, Molero X, Orakov A, Van Rossum T, Torres-Ruiz R, Telzerow A, Zych K; 

MAGIC Study investigators; PanGenEU Study investigators, Benes V, Zeller G, Trebicka J, Real FX, 

Malats N, Bork P. 

Gut. 2022 Jul;71(7):1359-1372. doi: 10.1136/gutjnl-2021-324755. Epub 2022 Mar 8. 
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ABSTRACT
Background  Recent evidence suggests a role for the 
microbiome in pancreatic ductal adenocarcinoma (PDAC) 
aetiology and progression.
Objective  To explore the faecal and salivary microbiota 
as potential diagnostic biomarkers.
Methods  We applied shotgun metagenomic and 16S rRNA 
amplicon sequencing to samples from a Spanish case–control 
study (n=136), including 57 cases, 50 controls, and 29 
patients with chronic pancreatitis in the discovery phase, and 
from a German case–control study (n=76), in the validation 
phase.
Results  Faecal metagenomic classifiers performed 
much better than saliva-based classifiers and identified 
patients with PDAC with an accuracy of up to 0.84 
area under the receiver operating characteristic curve 
(AUROC) based on a set of 27 microbial species, with 
consistent accuracy across early and late disease stages. 
Performance further improved to up to 0.94 AUROC 
when we combined our microbiome-based predictions 
with serum levels of carbohydrate antigen (CA) 19–9, the 
only current non-invasive, Food and Drug Administration 
approved, low specificity PDAC diagnostic biomarker. 
Furthermore, a microbiota-based classification model 
confined to PDAC-enriched species was highly disease-
specific when validated against 25 publicly available 
metagenomic study populations for various health 
conditions (n=5792). Both microbiome-based models 
had a high prediction accuracy on a German validation 
population (n=76). Several faecal PDAC marker species 
were detectable in pancreatic tumour and non-tumour 
tissue using 16S rRNA sequencing and fluorescence in 
situ hybridisation.
Conclusion  Taken together, our results indicate that 
non-invasive, robust and specific faecal microbiota-based 
screening for the early detection of PDAC is feasible.

Significance of this study

What is already known about this subject?
	► Pancreatic ductal adenocarcinoma (PDAC) is on the 
rise worldwide, posing a high disease burden and 
mortality rate, yet accurate, non-invasive diagnostic 
options remain unavailable.

	► Alterations in the oral, faecal and pancreatic 
microbiome composition have been associated 
with an increased risk of PDAC.

What are the new findings?
	► Stool microbiota-based classifiers are described 
that predict PDAC with high accuracy and 
specificity, independent of disease stage, with 
potential as agents for non-invasive diagnostics.

	► A faecal metagenomic classifier identified 
PDAC with an accuracy of 0.84 area under the 
receiver operating characteristic curve (AUROC) 
in a Spanish cohort, based on 27 species. The 
accuracy improved to up to 0.94 AUROC when 
combined with the less specific carbohydrate 
antigen (CA) 19–9 serum marker.

	► The classifier was validated in an independent 
German PDAC cohort (0.83 AUROC), and PDAC 
disease specificity was confirmed against 25 
publicly available metagenomic study populations 
with various health conditions (n=5792).

	► The presence of marker taxa enriched in 
faecal samples (Veillonella, Streptococcus, 
Akkermansia) and also taxa with differential 
abundance in healthy and tumour pancreatic 
tissues (Bacteroides, Lactobacillus, 
Bifidobacterium) was validated by fluorescence 
in situ hybridisation.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is the most common 
form of pancreatic cancer and a major cause of cancer-related 
deaths despite relatively low incidence rates.1 2 The high lethality 
of PDAC is a consequence of both late diagnosis and limited 
therapeutic options3: symptoms are unspecific and often emerge 
only during late disease stages, at which point tumours can be 
either locally non-resectable or present as metastatic disease. At 
present, PDAC is diagnosed using imaging tests.4 Sensitive and 
affordable tests for an early detection of PDAC could therefore 
improve outcome. PDAC markers have been explored in pancre-
atic tissue,5 urine6 7 and serum.8 9 Yet to date, the sole Food and 
Drug Administration (FDA)-approved PDAC biomarker remains 
serum carbohydrate antigen (CA) 19-9. CA19-9 has limited 
disease specificity as levels can be elevated in several other 
concomitant conditions (eg, biliary obstruction) and is there-
fore mostly used as a marker for PDAC surveillance, rather than 
screening or diagnosis.10–14

PDAC has a complex aetiology, with established risk factors 
that include age, chronic pancreatitis, diabetes mellitus, obesity, 
asthma, blood group and lifestyle (eg, smoking and heavy alcohol 
consumption).15 16 The role of these risk factors in PDAC aeti-
ology may also be complemented—or sometimes indeed medi-
ated—by alterations in the microbiome. For example, poor oral 
hygiene and periodontitis have been associated with an increased 
PDAC risk,17 an observation that also extends to periodontitis- 
and caries-associated microbial species.18 19 Shifts in these species 
are sometimes part of wider compositional changes in the oral 
microbiome20 21 or have been explored as PDAC risk factors 
in their own right.22 Similarly, microbial composition in the 
gut23–25 and duodenum,26 27 quantified via 16S rRNA amplicon 
sequencing, have previously been linked to PDAC risk.

The human pancreas harbours a microbiome that shares 
species with the mouth and the gut,25 28–32 although its exact 
composition has remained elusive owing to the challenges asso-
ciated with contamination control in low bacterial biomass 
samples.33 In murine models, microbes originating from the 
intestine can contribute to carcinogenesis in the pancreatic 
duct,25 30 suggesting a role for the microbiome in PDAC aeti-
ology and progression that was recently extended to fungi.34 
Moreover, the pancreatic tumour microbiome may also be 
associated with disease progression and long-term survival in 
patients with PDAC.31

However, the translation of these advances into PDAC-
specific microbiome signatures for clinical applications has 
so far remained largely unexplored. Here, we present the 
identification of robust, specific microbial PDAC signatures 
based on a metagenomic survey of a Spanish (ES) study popu-
lation of 57 newly diagnosed and treatment-naïve patients 

with PDAC, 29 patients with chronic pancreatitis (CP), and 
50 matched controls. We sampled saliva, faeces, pancreatic 
normal and tumour tissue and assessed microbial composi-
tion using whole-genome shotgun metagenomics, 16S rRNA 
amplicon sequencing, and fluorescence in situ hybridisation 
(FISH) assays. The best discrimination between patients with 
PDAC and non-PDAC subjects was achieved by statistical 
models based on a set of 27 faecal microbial species that could 
be quantified in a targeted manner in a diagnostic setting. 
The prediction accuracy of microbiome-based models was 
confirmed in an independent German (DE) PDAC validation 
population including 44 patients with PDAC and 32 controls 
and was further improved when combined with serum levels of 
CA19-9. We further validated the disease specificity of these 
models against existing data from 25 studies (n=5792) of 
nine diseases.35–59 Several of the PDAC-enriched species were 
also detected in cancer tissue, with possible links to oral and 
intestinal populations, supporting their potential role in PDAC 
pathogenesis, as previously reported.25 30 31 34

METHODS
Subject recruitment and sample collection
A case–control design was applied. Subjects were prospectively 
recruited between 2016 and 2019 from the Hospital Ramón 
y Cajal in Madrid and Hospital Vall d’Hebron in Barcelona, 
Spain, using the same protocols for biological sample collection, 
processing and storage. Subjects with newly diagnosed PDAC 
(n=57), aged >18 years, were identified prior to any cancer treat-
ment. Subjects in whom PDAC was suspected were recruited, and 
sampling was done before any treatment. Patients with chronic 
pancreatitis (CP, n=29) were recruited from the same hospitals. 
Controls matched for age, gender and hospital were selected 
from inpatients with a primary diagnosis for hospital admission 
not related to PDAC risk factors. Participants incapable of partic-
ipating in the study owing to impairment of physical ability were 
excluded. Institutional review board ethical approval (CEI PI 
26 2015-v7) and written informed consent were obtained from 
participating centres and study participants, respectively. Epide-
miological and lifestyle data were collected by trained monitors 
during face-to-face interviews through a structured question-
naire. Clinical data, including stage of the diseases and follow-up 
data, were retrieved from hospital charts by the same monitors, 
likewise using structured questionnaires. Recorded jaundice 
status was additionally confirmed and extended by direct bili-
rubin measurements from blood samples in CNIO, Madrid. All 
data were entered, edited and managed using REDCap. Missing 
lifestyle and medication values in the metadata (missing overall 
in 3.1%) were imputed using a random forest-based algorithm 
for missing data imputation called missForest (n=100 trees).60 
The imputation accuracy was high according to the imputation 
error estimate (mean out-of-bag error=0.12). Serum CA19-9 
levels were analysed by electrochemiluminescence immunoassay 
(ECLIA, Roche Diagnostics, Germany) following the manu-
facturer's instructions in the Institute of Laboratory Medicine 
and Pathobiochemistry, Marburg, Germany. Each sample was 
assayed in duplicate, with positive controls assayed in each plate 
(online supplemental table S1).

Stool and saliva (mouthwash) samples were preserved in 
RNALater and stored at 4°C immediately for 12 hours, then 
transferred to −20°C for another 24 hours, and then stored at 
−80°C until DNA extraction. Tumour and non-affected tissue 
samples were collected during surgery for a subset of individuals, 
immediately flash-frozen in liquid nitrogen after pathological 

Significance of this study

How might it impact on clinical practice in the foreseeable 
future?

	► Faecal microbiome-based detection of PDAC may provide 
a non-invasive, cost-effective and robust approach to early 
PDAC diagnosis.

	► The presented PDAC-specific microbiome signatures, 
including links between microbial populations across tissues, 
provide novel microbiome-related hypotheses regarding 
disease aetiology, prevention and possible therapeutic 
intervention.

https://dx.doi.org/10.1136/gutjnl-2021-324755
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assessment, and preserved at −80°C. All the samples were 
shipped on dry ice.

An independent validation population was recruited at the 
Department of Surgery, University Hospital of Erlangen (32 
PDAC and 32 control samples) and Section for Translational 
Hepatology, Department of Internal Medicine I, Goethe Univer-
sity Clinic, Frankfurt (12 PDAC samples) using the same proto-
cols for biological sample collection, processing and storage. 
Matched controls were selected from inpatients with a primary 
diagnosis for hospital admission not related to PDAC risk 
factors. The study was approved by the local ethics commit-
tees (SGI-3–2019, 451_18 B), and written informed consent 
from study participants was obtained. Clinical data, including 
disease stage and follow-up data, were retrieved from the clinical 
records of the hospital charts of the respective patients (online 
supplemental table S2). Serum CA19-9 levels were analysed by 
a routine immunoassay (Roche Diagnostics, Germany) following 
the manufacturer's instructions. Stool samples were preserved 
in OMNIgene-Gut OM-200 vials (Steinbrenner Laborsysteme 
GmbH, Germany) and stored at −80°C immediately until DNA 
extraction.

Sample processing
Faecal and salivary samples were thawed on ice, aliquoted, 
and genomic DNA was extracted using the Qiagen Allprep 
PowerFecal DNA/RNA kit according to the manufactur-
er’s instructions (Qiagen, Hilden, Germany). Genomic DNA 
from pancreatic tumorous and non-tumoral tissue samples 
was extracted using the Qiagen DNeasy blood and tissue kit 
in a protocol modified from Del Castillo et al26: cells were 
lysed mechanically (with 5 mm stainless steel beads at 25 Hz 
for 150 s), followed by lysozyme treatment (20 mg/mL) and 
protease and RNAse digestion (56°C for 2 h). All samples were 
randomly assigned to extraction batches. To account for poten-
tial bacterial contamination of extraction, polymerase chain 
reaction (PCR) and sequencing kits, we included negative 
controls (extraction blanks) with each tissue DNA extraction 
batch (online supplemental figure 1).

16S rRNA amplicon sequencing
Pancreatic tissue DNA was enriched for 16S rRNA in a preampli-
fication PCR using primers 331F (5’-TCCTACGGGAGGCAG-
CAGT-3’)61 and 979R (5’-GGTTCTKCGCGTTGCWTC-3’).62 
The cycling conditions consisted of an initial template denatur-
ation at 98°C for 2 min, followed by 30 cycles of denaturation at 
98°C for 10 s, annealing at 65°C for 20 s, extension at 72°C for 
30 s and a final extension at 72°C for 10 min. This was followed 
by a size-selective cleanup using SPRIselect magnetic beads (0.8 
left-sized; Beckman Coulter, Brea, California, USA). Faecal and 
salivary DNA were not preamplified.

Targeted amplification of the 16S rRNA V4 region (primer 
sequences F515 5’-GTGCCAGCMGCCGCGGTAA-3’ and 
R806 5’-​GGACTACHVGGGTWTCTAAT-3’),63 was performed 
using the KAPA HiFi HotStart PCR mix (Roche, Basel, Swit-
zerland) in a two-step barcoded PCR protocol (NEXTflex 16S 
V4 Amplicon-Seq Kit; Bioo Scientific, Austin, Texas, USA) with 
minor modifications from the manufacturer’s instructions. PCR 
products were pooled, purified using size-selective SPRIselect 
magnetic beads (0.8 left-sized) and then sequenced at 2×250 bp 
on an Illumina MiSeq (Illumina, San Diego, California, USA) at 
the Genomics Core Facility, European Molecular Biology Labo-
ratory, Heidelberg.

16S rRNA amplicon data processing
Raw reads were quality trimmed, denoised and filtered against 
chimeric PCR artefacts using DADA2.64 The resulting exact 
amplicon sequence variants (ASVs) were taxonomically classified 
and mapped to a reference set of operational taxonomic units 
(OTUs) at 98% sequence similarity using MAPseq.65 Reads that 
did not confidently map to the reference were aligned to bacte-
rial and archaeal secondary structure-aware small subunit rRNA 
models using Infernal66 and clustered into OTUs with 98% 
average linkage using HPC-CLUST,67 as described previously.68 
As a result, we obtained taxa tables at two resolutions: 100% 
identical ASVs and 98% open-reference OTUs; unless otherwise 
indicated, analyses in the main text refer to OTUs.

Count tables were noise filtered by removing samples retaining 
less than 500 reads and taxa observed in fewer than five samples; 
this removed 2.5% of total reads from the dataset. For 18 sali-
vary samples, technical replicates were merged after confirming 
that they strongly correlated with community composition. For 
pancreatic tissue and tumour samples, ASVs observed in negative 
control samples were removed, as were reads mapping to known 
reagent kit contaminants.33 After these steps, we retained 308 
16S rRNA amplicon samples from 143 subjects for further anal-
yses (130 salivary, 118 faecal, 20 of unaffected pancreatic tissue, 
23 of tumour tissue with 17 matching PDAC tissue samples).

Shotgun metagenomic sequencing
Metagenomic libraries for 212 faecal and 100 salivary samples 
were prepared using the NEB Ultra II and SPRI HD kits, depending 
on the concentration of starting material, with a targeted insert 
size of 350, and sequenced on an Illumina HiSeq 4000 platform 
(Illumina, San Diego, California, USA) in 2×150 bp paired-end 
setup to a target depth of 8 Gbp per sample at the Genomics 
Core Facility, European Molecular Biology Laboratory, Heidel-
berg. Sequencing statistics for each sample are provided in the 
associated git repository (https://github.com/psecekartal/PDAC.​
git). For three salivary and one faecal samples, technical repli-
cates were merged after confirming that they strongly correlated 
in community composition.

Metagenome data processing
Metagenomic data were processed using established workflows 
in NGLess v0.7.1.69 Raw reads were quality trimmed (≥45 bp at 
Phred score ≥25) and filtered against the human genome (version 
hg19, mapping at ≥90% identity across ≥45 bp). The resulting 
filtered reads were mapped (≥97% identity across  ≥45 bp) 
against the representative genomes of 5306 species-level genome 
clusters obtained from the proGenomes database v2.70

Taxonomic profiles were obtained using the mOTU profiler 
v2.571 and filtered to retain only species observed at a relative 
abundance ≥10−5 in ≥2% of samples. Gene functional profiles 
were obtained from mappings against a global microbioal gene 
catalogue (GMGCv1, Coelho et al72, http://gmgc.embl.de/), by 
summarising read counts from eggNOG v4.573 annotations to 
orthologous groups and KEGG modules. Features with a rela-
tive abundance of ≥10−5 in ≥15% of samples were retained for 
further analyses.

Microbiome data statistical analyses
All data analyses were conducted in the R Statistical Computing 
framework v3.4 or higher.

Rarefied per-sample taxa diversity (‘alpha diversity’, averaged 
over 100 rarefaction iterations) was calculated as the effective 
number of taxa with Hill coefficients of q=0 (ie, taxa richness), 
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q=1 (exponential of Shannon entropy) and q=2 (inverse 
Simpson index), and evenness measures as ratios thereof. Unless 
otherwise stated, results in the main text refer to taxa richness. 
Differences in alpha diversity were tested using analysis of 
variance (ANOVA) followed by post hoc tests and Benjamini-
Hochberg correction, as specified in the main text.

Between-sample differences in community composition (‘beta 
diversity’) were quantified as Bray-Curtis dissimilarity on raw 
or square-root transformed counts, abundance-weighted Jaccard 
index, and abundance-weighted and unweighted TINA index, as 
described previously.74 Trends between these indices were gener-
ally consistent, unless otherwise stated. Results are reported for 
Bray-Curtis dissimilarities on non-transformed data. Associations 
of community composition to microbiome-external factors were 
quantified using the ‘adonis2’ implementation of PERMANOVA 
and distance-based redundancy analysis in the R package vegan 
v2.5.75 To quantify potentially confounding univariate links 
between the abundance of individual taxa and subject-specific 

variables (see main text), we performed either ANOVA or non-
parametric Kruskal-Wallis tests, depending on abundance distri-
butions (online supplemental figure 2-3 and online supplemental 
table S4-S5). Bilirubin levels were measured from blood samples, 
and jaundice status was confirmed by clinical records. Owing 
to missing jaundice status for several individuals, values used 
for further analysis were imputed from existing data (figure 1, 
online supplemental table S1-S3).

Multivariable statistical modelling and model evaluation
In order to train multivariable statistical models for the predic-
tion of pancreatic cancer, we first removed taxa with low overall 
abundance and prevalence (abundance cut-off point: 0.001). 
Then, features were normalised by log10 transformation (to 
avoid infinite values from the logarithm, a pseudo-count of 
1e-05 was added to all values) followed by standardisation as 
centred log-ratio (​log.​clr). Data were randomly split into test and 

Figure 1  Community analysis of Spanish faecal microbiome data. (A) Study population overview. Grey bands between the bar plots indicate 
samples of matching body sites within individuals. (B) Bray-Curtis distance-based redundancy analysis (dbRDA) of pancreatic ductal adenocarcinoma 
(PDAC), chronic pancreatitis (CP) and control (CTR) faecal microbiome data in a Spanish (ES) cohort. PDAC samples are shown as red coloured 
circles, patients with CP as green and controls as blue. Richness, exponential Shannon (exp(Shannon)) and inverse Simpson (inv(Simpson)) diversity 
measures are also visualised with arrows similarly to tested metadata variables. The distance of the meta-variable from the centre represents the 
confounding effect size (see ‘Methods’). (C) Wilcoxon test results of ES faecal microbiome data to test enriched taxa between PDAC and control 
cases (see ‘Methods’). Y-axis is log10(FDR corrected p values), X-axis is generalised fold change, and dot size represents the relative abundance of a 
given species. Red dots represent significantly differentially abundant species in either group, while black dots show non-significant species after FDR 
correction. Green and brown-coloured species are selected in metagenomic model-1 as predictors of PDAC. FDR, false discovery rate.
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training sets in a 10 times repeated 10-fold cross-validation. For 
each test fold, the remaining folds were used as training data 
to train an L1-regularised (LASSO) logistic regression model76 
using the implementation within the LiblineaR R package v2.10. 
77 The trained model was then used to predict the left-out test set 
and finally, all predictions were used to calculate the area under 
the receiver operating characteristics curve (AUROC) (figure 2).

In a second approach, features were filtered within the cross-
validation (that is, for each training set) by first calculating the 
single-feature AUROC and then removing features with an 
AUROC  <0.5, thereby selecting features enriched in PDAC 
(‘enrichment-constrained’ model).

In order to combine the predictions from the microbiome-
based machine learning models with the CA19-9 marker, 

Figure 2  Predictive microbiome signatures of pancreatic ductal adenocarcinoma (PDAC). (A) Normalised abundance of 27 selected species in the 
faecal microbiome across samples shown as a heat map. The right panel represents the contribution of each selected feature to the overall model-1, 
and the robustness (the percentage of models in which the feature is included as predictor) of each feature is presented as percentage. Classification 
scores from cross-validation of each individual and condition for tested meta-variables are displayed at the bottom of the panel, yellow representing 
missing information. (B–D) Internal cross-validation results of unconstrained model-1 (without feature selection), enrichment-constrained model-2 
(constrained to positive features) and combination of carbohydrate antigen (CA)19-9 (using a threshold of 37 μL/mL) with microbial features (see 
‘Methods’) are shown as receiver operating characteristic (ROC) curve with 95% CI shaded in corresponding colour. True positive rates (TPRs) 
are given as a percentage at a 90% specificity cut-off. Validation of all models on an independent German (DE) PDAC test population (n=76) is 
represented as well. Published CA19-9 accuracy from a meta-study shown in orange. The yellow dots represent observed CA19-9 accuracies in our 
populations (data available for 33/50 controls (CTRs) and 44/57 patients with PDAC in the Spanish (ES) and for 8/32 CTRs and 44/44 patients with 
PDAC in the German (DE) population) (D) TPRs of all models at different PDAC progression stages and in addition, the false-positive rate for patients 
with chronic pancreatitis and controls at a 90% specificity cut-off are shown as bar plots. Stages I and II and stages III and IV are combined owing to 
the overall low sample size. The number of predicted cases compared with the total is also shown on the top of each bar. DE-Val, German validation 
population.
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the coded CA19-9 marker (1 for positive, 0 for negative or 
not available) was added to the mean predictions from the 
repeated cross-validation runs, resulting in an OR combina-
tion. Alternatively, the AND combination was calculated by 
multiplying the predictions with the CA19-9 marker. ROC 
curves and AUROC values were calculated for both combi-
nations using the pROC R package v1.15.78 The 95% CI 
is shaded in corresponding colour and specified in figure 
legends for each ROC curve.

The trained ES metagenomic classifiers for PDAC were then 
applied to the DE dataset after applying a data normalisation 
routine, which selects the same set of features and uses the 
same normalisation parameters (for example, the mean of a 
feature for standardisation by using the frozen normalisation 
functionality in SIAMCAT) as in the normalisation procedure 
from the ES pancreatic cancer dataset. For this analysis, the 
cut-off point for the predictions was set to a false-positive 
rate of 10% among controls in the initial ES PDAC study 
population (figure 2).

All steps of data preprocessing (filtering and normalisa-
tion), model training, predictions and model evaluation were 
performed using the SIAMCAT R package v.1.5.079 (https://​
siamcat.embl.de/).

External validation of the metagenomic classifiers
To assess the disease specificity of the trained models, we 
obtained predictions for samples from other gut metagenomic 
datasets (online supplemental table S6) for the full list, including 
accession numbers). We performed a literature search to iden-
tify publicly available datasets of faecal metagenomes in case–
control or cohort studies for relevant diseases. For a total set of 
25 studies covering 5792 samples across nine disease states, raw 
sequencing data were downloaded from the European Nucleo-
tide Archive and taxonomically profiled as described above.35–59

The trained metagenomic classifiers for PDAC were then 
applied to each external dataset after applying a data normal-
isation routine which selects the same set of features and uses 
the same normalisation parameters (for example, the mean 
of a feature for standardisation by using frozen normalisation 
functionality in SIAMCAT) as in the normalisation proce-
dure from the pancreatic cancer dataset. Then, predictions 
were assessed for disease specificity because high prediction 
scores for samples from other disease samples would indi-
cate that the classifier relies on general features of dysbiosis 
in contrast to signals specific to pancreatic cancer, which 
would not result in elevated false-positive rates on samples 
from other diseases. For this analysis, the cut-off point for 
the predictions was set at a false-positive rate of 10% among 
controls in the initial PDAC study population (figure 3). The 
effect of age, sex and sequencing depth of 25 populations on 
prediction score were tested by using the ​cor.​test function 
(Spearman method) in the car R package v3.0–3.

Subspecies and strain-level analyses
Metagenomic reads were mapped against species-representative 
genomes from the proGenomes v1 database80 (see above). 
Microbial single nucleotide variants were called from uniquely 
mapping reads using metaSNV,81 and within-species allele 
distances between samples were calculated as described previ-
ously.82 Associations between allele distance and PDAC disease 
state were quantified using PERMANOVA after stratifying for 
potential confounders (including sampled body site).

Oral-intestinal transmission of strains was quantified as 
described previously.83 In short, the overlap between microbial 
single nucleotide variants in salivary and faecal samples within 
subjects was contrasted with a between-subject background to 
compute a quantitative oral-faecal transmission score and p 
value. Associations of species- and subject-specific transmission 
scores with clinical factors were tested using ANOVA and post 
hoc tests, followed by a Benjamini-Hochberg correction for 
multiple tests.

Fluorescence in situ hybridisation microscopy
FISH analyses were performed using probes specifically targeting 
the 16S rRNA sequence unique to a particular taxon of bacteria 
(figure 4). All probes were selected based on a literature search 
and the corresponding taxa are displayed in online supplemental 
table S7).

Pancreatic tumour and normal pancreas samples were 
obtained from the pathology department and immediately 
frozen in liquid nitrogen within less than 30 min of surgical exci-
sion. Sterile material was used to dissect the different samples. 
The minimum size of tissue for freezing was approximately 
0.125 cm3 (0.5×0.5×0.5 cm). Samples were transferred from 
the temporary liquid nitrogen transport container and kept in a 
locked freezer at –80°C. Before analysis they were transported 
on dry ice, moved to an optimal cutting temperature mould in 
liquid nitrogen and immediately cut on a cryotome to obtain 10 
sections of 3–5 µm each. All material was sterilised with ethanol 
after each sample handling.

Tissue sections of 5 µm thickness were mounted on posi-
tively charged slides (SuperFrost, Thermo Scientific). Briefly, 
tissues were postfixed in freshly prepared 4% paraformalde-
hyde. After enhancement of the bacteria wall permeabilisa-
tion by lysozyme treatment (10 g/L Tris HCl 6.5M), samples 
were hybridised for 1 hour at 45°C in the presence of the 
specific probe in a hybridiser machine (DAKO). Hybridisa-
tion was done in 20 µL of hybridisation buffer (20 nM Tris, 
pH 8.0. 0.9 M NaCl, 0.02% sodium dodecyl sulfate, 30% 
formamide) added to 100 ng of the probe. Finally, the tissues 
were washed in washing solution (70% formamide, 10 mM 
Tris pH7.2 and 01% bovine serum albumin), dehydrated in a 
series of ethanol samples, air-dried and stained with 0.5 µg/
mL DAPI (4',6,-diamidino-2-phenylindole)/antifade solution 
(Palex Medical). FISH images were captured using a Leica 
DM5500B microscope with a CCD camera (Photometrics 
SenSys) connected to a PC running the CytoVision software 
7.2 image analysis system (Applied Imaging). Images were 
analysed blind and scored based on the intensity of the probe 
signal.

RESULTS
PDAC is associated with moderate shifts in microbiome 
composition when controlling for confounding factors in 
shotgun metagenomic data
We studied 57 newly diagnosed, treatment-naïve patients 
with PDAC, 29 patients with chronic pancreatitis (CP), and 
50 controls matched for age, gender and hospital. Partic-
ipants were prospectively recruited from two hospitals in 
Barcelona and Madrid, Spain, between 2016 and 2018, using 
the same standards (see subject characteristics in figure 1A 
and online supplemental table S1-S3 for the clinical data for 
each subject). We obtained faecal shotgun metagenomes for 
all subjects and salivary metagenomes for 45 patients with 
PDAC, 12 with CP, and 43 controls (see ‘Methods’). The 
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analysis workflow is detailed in online supplemental figure 
1.

As several PDAC risk factors, such as tobacco smoking, 
alcohol consumption, obesity or diabetes, are themselves 
associated with microbiome composition84, we first sought 
to establish potential confounders of microbiome signatures 
in our study population, in order to adjust analyses accord-
ingly. For a total of 26 demographic and clinical variables, 
we quantified marginal effects on microbiome community-
level diversity (online supplemental table S4). Faecal and 
salivary microbiome richness (as a proxy for alpha diver-
sity) were not univariately associated with any tested vari-
able, or with PDAC status, when accounting for the most 
common PDAC risk factors and applying a false discovery 
rate threshold of 0.05 (online supplemental figure 2, online 
supplemental table S4).

Microbiome community composition, in contrast, varied 
with age at diagnosis (PERMANOVA on between-sample 
Bray-Curtis dissimilarities, R2=0.01, Benjamini-Hochberg-
corrected p=0.03), diabetes (R2=0.01, p=0.04) and jaun-
dice status (R2=0.02, p=0.009) in faeces, and with aspirin/
paracetamol use (R2=0.02, p=0.04) in saliva, albeit at 
very low effect sizes (online supplemental table S5). Even 
though cases and controls were matched for age and sex, 
we included these factors as strata for subsequent analyses. 
Under such adjustment, subject disease status was mildly 
but statistically significantly associated with community 
composition in faeces (R2=0.02, p=0.001), but not in saliva 
(R2=0.01, p=0.5) (figure  1B, online supplemental figure 
3–4, online supplemental table S5). Indeed, the faecal micro-
biome composition of patients with PDAC differed from that 
of both controls (R2=0.02, p≤0.0001) and patients with CP 

Figure 3  External validation of the disease specificity of pancreatic ductal adenocarcinoma (PDAC) faecal microbiome models. False positive 
rate (FPR) of metagenomic unconstrained model-1 and enrichment-constrained model-2 in 25 external test sets is shown as a bar plot (see online 
supplemental table S4 for a list of all studies included). Validation datasets were profiled and normalised in the same way as the initial dataset (see 
‘Methods’). Each study was stratified according to health status and models were tested to predict in the given group at a 90% specificity cut-off. 
A low FPR on metagenomes from patients with other disorders and healthy individuals indicates that the model is specific to PDAC. The number 
of subjects in each group is displayed as colour coded circles below. BRCA, breast cancer; CRC, colorectal cancer; CD, Crohn’s disease; CP, chronic 
pancreatitis;, CTR, controls; LD, liver disease; NAFLD, non-alcoholic fatty liver disease; PC, pancreatic cancer; T1D, type 1 diabetes; T2D, type 2 diabetes; 
UC, ulcerative colitis; ES, Spanish; DE, German.
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(R2=0.02, p=0.003), although likewise at very small effect 
sizes.

High-accuracy metagenomic classifiers capture specific faecal 
microbiome signatures in patients with PDAC
Having established the presence of a gut microbiome signal for 
PDAC at the coarse level of overall community composition, 
we next identified nine species with disease-specific univariate 
associations (Wilcoxon test of relative abundances in PDAC 
cases vs controls, Benjamini-Hochberg-corrected p<0.05; see 
figure  1c). Most prominently, Veillonella atypica, Fusobacte-
rium nucleatum/hwasookii and Alloscardovia omnicolens were 
enriched in faeces of patients with PDAC, whereas Romboutsia 
timonensis, Faecalibacterium prausnitzii, Bacteroides coprocola 
and Bifidobacterium bifidum species clusters were depleted. In 
contrast, we did not detect any species with significantly differ-
ential abundance in the salivary microbiome when correcting for 

multiple tests, including previously reported associations, such 
as Porphyromonas gingivalis, Aggregatibacter actinomycetem-
comitans,22 Neisseria elongata or Streptococcus mitis18 (online 
supplemental figure 5).

Among the univariately associated faecal species, several were 
by themselves moderately predictive of PDAC state (online 
supplemental figure 5). To coalesce such individual signals into 
an overarching model, we next built multispecies metagenomic 
classifiers by fitting LASSO logistic regression models in 10-fold 
cross-validation (see ‘Methods’). When applying no further 
constraints, the obtained model discriminated between patients 
with PDAC and controls with high accuracy in our study popula-
tion (‘model-1’; AUROC=0.84; Figure 2). The most prominent 
positive marker species in the model were Methanobrevibacter 
smithii, Alloscardovia omnicolens, Veillonella atypica and 
Bacteroides finegoldii. We note that by design, LASSO regres-
sion selects representative features among inter-correlated sets; 

Figure 4  Presence of microbiomes in different sections of the pancreas with different conditions. (A) Presence of different genera in four different 
body sites including faecal, saliva, pancreatic tumour and healthy tissue samples, as inferred by 16S amplicon data. Circle size corresponds to the 
total number of subjects available for each comparison (grey, bottom row) or with intra-individually matched amplicon sequence variants (coloured); 
matched sample types are connected by lines. The first column shows the total number of samples per site in which the genus was detected. (B) Seven 
selected pancreatic tissue samples (five tumour and two non-tumour) to show bacterial presence/absence with both 16S amplicon and fluorescence 
in situ hybridisation (FISH) methods. Validation of bacterial presence with both 16S amplicon sequencing and FISH is shown in blue. Samples showing 
bacterial presence according to 16S only are displayed in green. Bacterial presence validated only by FISH is shown in orange, and samples not 
subjected to FISH validation owing to lack of tissue material are shown in purple. (C) Representative microscopy images for Bacteroides (intranuclear, 
tumour tissue), Bifidobacterium (extranuclear, tumour tissue), Lactobacillus (extranuclear, non-tumour tissue), Streptococcus (extranuclear, non-
tumour tissue), Veillonella (extranuclear, tumour tissue). Fluorescein isothiocyanate (FITC) and Cy3 fluorescent dyes were used as indicated, and DAPI 
(4',6,-diamidino-2-phenylindole; blue) was used to label the nucleus.
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therefore, these species may be representatives of larger species 
sets with highly correlated abundances. None of the 26 demo-
graphic and epidemiological variables describing our study 
population were selected as predictive features by the model, and 
the microbiome signature was more informative than any other 
feature (see online supplemental figure 6 and 7). Further, none 
of these variables were individually associated with the microbial 
species represented in the model, ruling them out as potential 
confounders. This indicates that the classifier captured a diag-
nostic gut microbiome signature of PDAC that is probably inde-
pendent of other disease risk factors and potential confounders.

An analogous model built to differentiate patients with CP 
from controls had no predictive power (AUROC=0.5; online 
supplemental figure 8), consistent with the observation that these 
groups were compositionally largely indistinguishable. Similarly, 
no robust PDAC signature was detected for the salivary micro-
biome (AUROC=0.48; online supplemental figure 9). However, 
a faecal model to distinguish patients with PDAC from those with 
CP performed better with an AUC of 0.75, but model robustness 
was limited by the low sample size in the group with CP (online 
supplemental figure 8). We further explored predictive associations 
at the higher resolution of functional microbiome profiles. Models 
based on the abundances of KEGG modules (online supplemental 
figure 10) achieved an accuracy of up to AUROC=0.74, but feature 
selection was likewise not robust across validation folds, as a conse-
quence of fitting a high number of variables (modules) against a 
limited set of samples. We therefore pursued the species-based clas-
sifiers, as they provided stable models.

The initial gut microbiome-based classifier included several 
species depleted in PDAC relative to controls, such as Faecalibac-
terium prausnitzii, Bacteroides coprocola, Bifidobacterium bifidum 
or Romboutsia timonensis (figure 2B). For some of these species, 
it was previously suggested that depletion is linked to intestinal 
inflammation, in general, rather than to specific diseases.85 We 
therefore retrained a classifier with the constraint that positively 
associated (enriched) microbial features were exclusively selected 
in each cross-validation fold. The resulting enrichment-constrained 
model (model-2) discerned patients with PDAC with an accuracy 
of AUROC=0.71. The difference with the unconstrained model, 
model-1, was mostly attributable to a penalty on sensitivity—that 
is, a decrease in confident detections of patients with PDAC, in line 
with expectations when training on sparse data.

Combination of metagenomic classifiers with antigen CA19-9 
levels increases accuracy
Blood serum levels of the antigen CA19-9 are routinely used to 
monitor PDAC progress,86 87 but have also been suggested as a poten-
tial marker for early diagnosis of PDAC, although with moderate 
reported sensitivity (0.80, 95% CI 0.72 to 0.86) and specificity 
(0.75, 95% CI 0.68 to 0.80).12 CA19-9 serum levels were available 
for a subset of 77 individuals (33/50 controls and 44/57 patients 
with PDAC) in our Spanish population (online supplemental 
figure S11). Given that CA19-9 is directly secreted by tumours, we 
hypothesised that the readouts provided by CA19-9 serum levels 
and by our microbiome classifiers were complementary, and that 
their combination could improve the accuracy of PDAC predic-
tion. Indeed, accounting for CA19-9 increased the accuracy of our 
unconstrained model-1 from AUROC=0.84 to 0.94, driven mostly 
by an increase in sensitivity (figure 2B). More strikingly, when we 
amended the enrichment-constrained model-2 with CA19-9 infor-
mation, we observed a large increase in accuracy from AUC=0.71 to 
0.89, likewise driven by a significant improvement in sensitivity, 
thereby essentially abolishing the performance penalty relative to 

model-1 (figure 2C, online supplemental figure S11). There was no 
significant bias towards higher CA19-9 levels in later disease stages 
in either the ES or DE populations (online supplemental figure S11).

Our Spanish study population included 25 patients with 
PDAC in early disease stages (T1, T2) and 32 subjects in later 
stages (T3, T4). Disease stage did not affect the performance of 
either microbiome-based model (figure 2D); in particular, recall 
was not biased towards later stages.

Performance of metagenome-based classifiers generalises to 
independent validation cohorts
To test whether the observed microbiome signatures generalise 
beyond our focal Spanish study population, we next challenged 
our models in two validation scenarios. First, we tested prediction 
accuracy in an independent study population of 44 patients with 
PDAC and 32 matched controls, recruited from two hospitals in 
Erlangen and Frankfurt am Main, Germany (see figure 1, Methods 
and online supplemental table S3), with the samples being processed 
identically to those of the Spanish population. On this DE valida-
tion population, both the unconstrained model-1 (figure 2B) and 
the enrichment-constrained model-2 (figure  2C) performed with 
comparable or indeed superior accuracies to the training popula-
tion, both with and without complementation by CA19-9 levels, 
and with similar trends across disease stages (figure 2D).

Next, to confirm that our metagenomic classifiers captured 
PDAC-specific signatures, rather than unspecific, more general 
disease-associated variation, we further validated them against 
independent, external metagenomic datasets on various health 
conditions. In total, we classified 5792 publicly available gut 
metagenomes from 25 studies across 18 countries, including 
subjects with CP (this study), type 1 or type 2 diabetes, colorectal 
cancer, breast cancer, liver diseases, non-alcoholic fatty liver 
disease, including Crohn’s disease and ulcerative colitis, as well 
as healthy controls (figure 3 and online supplemental table S6).

When tuned to 90% specificity (allowing for 10% false positive 
predictions) in our focal ES study population, the unconstrained 
model-1 showed a recall of 56% of patients with PDAC in the 
ES population and 48% in the DE validation population (with 
6% false-positive rate), and up to 64% when complemented 
with information on CA19-9 levels (available for 8/32 controls 
and 43/44 patients with cases in the DE cohort). The disease 
specificity of model-1, however, was limited, with predictions 
of PDAC state for 15% of control subjects on average across 
all external datasets. Most of these false positive calls were 
observed in two Chinese populations of patients with Crohn’s 
disease48 or liver cirrhosis.44 Crohn’s disease has been associ-
ated with depletion signatures similar to those observed in our 
model (in particular of F. prausnitzii,88) whereas liver diseases 
share some physiological characteristics with impaired pancreas 
function. However, all other liver disease and Crohn's disease 
sets showed lower false detection rates, indicating that the effect 
was probably attributable, in part, to technical and demographic 
effects between studies. Indeed, we note that subjects in these 
two Chinese study populations were significantly younger than 
our populations (50±11 years for Qin_2014; 28.5±8 years 
for He_2017; 70±12 y ears for our ES population). This age 
effect was systematic: across all validation sets, PDAC predic-
tion scores were associated with subject age (ANOVA p=0.007; 
ρSpearman = 0.16), as well as with the sex of the subject (p<10-6;) 
and sequencing depth (p=0.0008; ρSpearman = 0.1) (online supple-
mental figure S12, online supplemental table S6).

The enrichment-constrained model-2 showed lower detection 
rates in patients with PDAC in both populations, although recall 
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was reinstated for CA19-9 combined models. Model-2 was highly 
specific for PDAC with, on average, just 0–5% PDAC predictions 
in almost all external populations, at a maximum of 17% predic-
tions among the aforementioned44 population with liver disease. 
In particular, the detected microbiome signatures were also robust 
against misclassification of patients with type 2 diabetes (<2% false-
positive rate); this is relevant to potential screening applications, as 
these patients are a major PDAC risk group (figure 3).

PDAC harbours characteristic bacteria, consistent with oral 
and gut microbiome communities
Alterations in pancreatic secretion, as a consequence of tumour 
growth in the pancreatic duct, can affect digestive function 
and may thus plausibly underlie characteristic gut microbiome 
signatures, such as those described above. This would imply 
that PDAC progression can indirectly cause microbiome shifts 
(ie, reverse causation). In addition, the pancreatic duct directly 
communicates with the duodenum, providing an anatomical 
link for bacteria25 30 89 and fungi34 to colonise the pancreas and 
contribute to carcinogenesis.31

We therefore hypothesised that several gut microbial taxa asso-
ciated with PDAC should be detectable in pancreatic tumours. 
We taxonomically profiled all faecal and salivary samples, as well 
as biopsies of tumours (n=23) and adjacent healthy pancreatic 
tissue (n=20) of patients with PDAC from our study popula-
tion using 16S rRNA amplicon sequencing, applying strict filters 
to exclude putative reagent contaminants often seen in samples 
of low bacterial biomass33 90 (see ‘Methods’). We observed a 
surprisingly rich and diverse pancreas microbiome, with at 
least 13 bacterial genera present in  ≥25% of samples, prom-
inently including taxa with characteristic PDAC signatures in 
the faecal microbiome91 (figure 4A, online supplemental figure 
13). Among these, Lactobacillus spp, Akkermansia muciniphila 
and Bacteroides spp were enriched in tumours relative to non-
tumour pancreatic tissue (Wilcoxon test, false discovery rate-
corrected p<0.006).

In a subset of five tumour and two non-tumoral pancreatic 
tissue samples, we could further verify the prevalence of Akker-
mansia spp, Lactobacillus spp, Bifidobacterium spp, Veillonella 
spp, Bacteroides spp and Streptococcus spp using FISH assays 
with genus-specific primers (online supplemental figure 4, online 
supplemental table S7). Generally, amplicon and FISH data were 
concordant, though amplicon-based detection appeared more 
sensitive probably due to the amount of tissue analysed. Intrigu-
ingly, however, Akkermansia spp, although observed by ampl-
icon sequencing in 26/30 subjects, were not detectable using 
FISH in any of the tested samples (figure 4B–C, online supple-
mental figure 14).

Links between oral, intestinal and pancreatic microbiomes
We next traced exact amplicon sequence variants (ASVs) across 
salivary, faecal, tumour and healthy tissue samples within subjects 
(figure 4A), at the highest taxonomic resolution attainable using 
16S rRNA data. Veillonella spp, characteristically enriched in 
stool of patients with PDAC, were highly prevalent in both sali-
vary (100% of subjects) and faecal (87.5%) samples across the 
entire study population, while oral and faecal types also matched 
tumour and non-tumour tissue ASVs. Interestingly, we found no 
intraindividual match in Veillonella ASVs between tumour and 
adjacent tissue samples, indicating that tumor-dwelling Veil-
lonella spp may be distinct from those in healthy tissue. In addi-
tion, our data confirm previous reports that Lactobacillus spp26 
and Bifidobacterium spp25 are present in both PDAC tumour 

and non-tumour tissue. For both genera, we found that tumour 
types corresponded to either oral or faecal ASVs, but not both, 
whereas no ASVs from healthy tissue were matched with faecal 
samples, indicating that distinct pancreatic subpopulations may 
be linked to the mouth and the gut.

Using paired salivary and faecal shotgun metagenomes, 
we further confirmed that strains of faecal PDAC-associated 
microbes may be sourced from the oral cavity (online supple-
mental results).

DISCUSSION
Early detection of PDAC remains a formidable challenge, at the 
heart of ongoing efforts to mitigate the burden of this cancer. 
Currently, the sole FDA-approved biomarker for PDAC is 
serum CA19-9, mostly used for disease monitoring rather than 
screening, due to inherent limits of sensitivity and specificity: 
CA19-9 levels can be elevated in several conditions unrelated to 
pancreatic cancer, while subjects lacking the Lewis-A antigen do 
not produce CA19-9 at all.10–12 Small-scale studies have proposed 
PDAC markers based on pancreatic tissue,5 urine6 7 and blood 
serum8 9 with limited applicability. Yet there are currently no 
screening tools for PDAC in the clinic—in particular, for early 
disease stages.

In a prospectively recruited study population of newly 
diagnosed, treatment-naïve patients and matched controls 
for whom oral, faecal and tissue microbiomes were anal-
ysed (figure 1A), we developed metagenomic classifiers that 
robustly and accurately predict PDAC solely based on char-
acteristic faecal microbial species (figure  2). PDAC signa-
tures captured by our multispecies models were orthogonal 
to well-established PDAC risk factors (figures  1B and  2A). 
This suggests that, in practice, the faecal microbiome may be 
used to screen for PDAC, complementary to other testable 
markers, with added diagnostic accuracy in combined tests, as 
has been proposed for colorectal cancer.39 Indeed, a combi-
nation of our microbiome classifiers with CA19-9 data, avail-
able for a subset of our population, significantly enhanced the 
accuracy of PDAC detection (figure 2B–D).

Previous studies have explored links between PDAC and 
the oral18–22 26 92 93 or faecal23 24 microbiome at the limited 
taxonomic resolution of 16S rRNA sequencing, but provided 
conflicting reports regarding the association patterns of indi-
vidual taxa, probably due to heterogeneous experimental and 
analytical approaches. The non-availability of raw sequence 
and patient-level clinical data for several PDAC datasets has 
made comparisons between studies challenging, and thus a 
consensus on PDAC-associated microbiome signatures has so 
far failed to emerge. Several previously reported univariate 
PDAC associations of oral taxa including P. gingivalis, A. acti-
nomycetemcomitans, S. thermophilus and Fusobacterium spp 
were not confirmed in our study population (online supple-
mental figure 4); we generally did not observe any salivary 
PDAC signature either for individual species or for multispe-
cies models.

We carefully checked our analyses for demographic, lifestyle, 
and clinical confounders, as these can show stronger micro-
biome associations than disease states.84 We moreover validated 
our metagenomic classifiers against the independently sampled, 
yet consistently processed, DE population (figure  2B–D) and 
against external populations of various health states from 25 
different studies (n=5792)35–59 (figure  3). Both confounder 
control and external validation are essential when assessing the 
disease specificity of predictive models, in particular for diseases 
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like PDAC with low incidence in the general population. This 
was confirmed in our analyses: among our two metagenomic 
classifiers, model-1 showed a high accuracy of AUROC=0.84 
in our ES study population, driven by a high recall of patients 
with PDAC. However, model-1 showed only limited disease 
specificity in external validations, capturing non-specific species 
depletion signals discriminative between cases and controls in 
our population, but also shared by subjects with other diseases. 
These included generic inflammation signatures—for example, 
a depletion of F. prausnitzii, E. rectale or B. bifidum. Published 
metagenomic classifiers for various diseases, and in particular 
previously reported signatures for PDAC, share similar limita-
tions: highly tuned accuracy on the focal population, but non-
specific features shared with other diseases. This lack of specificity 
limits their translation into clinical practice. In contrast, our 
model-2, constrained to PDAC-enriched features, achieved only 
moderate accuracy within our populations (AUC=0.71 on ES, 
AUC=0.85 on DE) due to a penalty on sensitivity, but was highly 
PDAC-specific with very low false prediction rates in external 
populations, including known PDAC risk groups such as those 
with type 2 diabetes. In particular, PDAC-enriched features in 
both model-1 and model-2 showed little overlap with charac-
teristic faecal microbiome features for other cancer types, such 
as colorectal cancer, indicating that a combination of our micro-
biome models with CA19-9 levels (highly sensitive, but not 
specific to PDAC) is promising. We note that the residual false 
positive rate among external populations may partly be due to 
technical heterogeneity, as all external populations were sampled 
and processed using independent protocols, and that univariate 
PDAC associations of individual species may be informative, 
but not disease-specific (Supplementary Discussion). The panel 
of PDAC-enriched species in model-2 thus shows potential for 
microbiome-based PDAC screening, given that a combination 
with complementary information on serum CA19-9 significantly 
increased accuracy (AUC=0.89 and 0.92).

Our models showed comparable performance across PDAC 
disease stages, with no bias towards later stages (figure 2B–D). 
This indicates that characteristic microbiome signatures 
emerge early during progression of the disease and that the 
faecal microbiome can serve for the early detection of PDAC.

Our data are strictly observational and cross-sectional. 
Nevertheless, there are strong indications that the identi-
fied faecal microbiome shifts are not merely a consequence 
of impaired pancreatic function or systemic effects thereof, 
although indirect effects cannot be ruled out. Several taxa 
could be traced between the gut and pancreas, with univar-
iate enrichment in tumours relative to adjacent healthy tissue, 
indicating direct associations of PDAC with the gut micro-
biome. We confirmed previous observations25 30 31 89 91 that 
the human pancreas harbours a microbiome, both by ampl-
icon sequencing, and by FISH for the most comprehensive 
panel of taxa to date (figure 4). Pancreatic tissue and tumours 
contain only low bacterial biomass and are therefore prone 
to contamination in 16S rRNA amplicon data33, whereas 
FISH testing requires specific hypotheses, so a compre-
hensive cataloguing of the healthy and diseased pancreatic 
microbiome composition is still emerging. In our study, we 
carefully filtered our dataset against known kit contaminants 
and confirmed the presence of various key genera using FISH 
assays. We moreover observed an intraindividual overlap of 
exact amplicon sequence variants between oral, faecal and 
tissue samples, confirming a shared presence across multiple 
sites for several species at the highest attainable taxonomic 
resolution for amplicon data.

Faecal populations of characteristic PDAC-associated taxa 
could thus be traced back to pancreatic tumours. Similarly, 
we observed significantly increased levels of oral-intestinal 
strain transmission in patients with PDAC, in particular of 
PDAC signature taxa, indicating that these may be sourced 
intraindividually, from the oral cavity (online supplemental 
results). These findings suggest that the oral, intestinal and 
pancreatic microbiomes may be intricately linked, and that 
multibody site study designs such as presented here will be 
necessary to disentangle their respective roles and interac-
tions in PDAC aetiology.

In summary, the described faecal microbiome signatures 
enabled robust metagenomic classifiers for PDAC detection at 
high disease specificity, complementary to existing markers, 
and with potential towards cost-effective PDAC screening 
and monitoring. Furthermore, in view of previous reports on 
microbe-mediated pancreatic carcinogenesis in murine models 
and humans,25 30 94 we believe that the presented panel of PDAC-
associated bacterial species may be relevant beyond their use for 
diagnosis, providing promising future entry points for disease 
prevention and therapeutic intervention.
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