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Abstract 

 
The capability of Anaerobic Digestion (AD) in minimising waste and retaining the value of materials and 

energy within the biological and technical cycles in the Dairy Industry (DI) makes AD a critical 

instrument of transition to circular economy. The aim of this paper is to propose a framework and an 

approach for measuring the environmental performance of the anaerobic treatment of dairy processing 

effluents based on circular economy principles. The potential of AD to close the water, energy and 

nutrient circular loops is investigated together with the relevant environmental costs and benefits at 

different levels of the dairy supply chain. The developed methodology was based on Material Flow 

Analysis (MFA) and Life Cycle Assessment (LCA) applied at three different system levels: the anaerobic 

digestion plant, the dairy processing facility, the entire dairy supply chain. The approach is demonstrated 

in a dairy facility coupled with a full-scale AD unit. The results show that the excess electricity (426 

MWh/annum) and heat (1236 MWh/annum) produced from the anaerobic digestion plant cause 

significant reduction of the overall environmental impact of the processing facility. The recovered energy 

from anaerobic digestion provides 20% of the energy requirements of the factory reducing the total 

carbon footprint emissions by 13% compared to the baseline scenario. 
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1. Introduction 29 

30 Dairy products form an essential source of daily nutrients in human diets (Weaver, 2010), whereas the 

31 dairy industry, in 2012, accounted for 13.6% of the food and drink industry turnover (Wijnands and 

32 Verhoog, 2016). Several studies discuss the need to reduce the amount of dairy products in European diet 

33 patterns (Freibauer et al., 2011), which is estimated to be beneficial both to the environment (Godfray et 
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al., 2010) and the human health (Hawkesworth et al., 2010). However, adaptation and mitigation 

strategies for reduction of greenhouse gas emissions (GHG) and enhancement of environmental resilience 

remain main challenge for the dairy industries (Prasad et al., 2004). The production of dairy products is 

combination of processes, including agriculture, livestock farming, manufacturing, packaging, 

distribution, retail and consumption (Kirilova and Vaklieva-Bancheva, 2017). Therefore, the 

development of sustainable dairy value chains should take into account the reduction of the environmental 

impacts and cause-effect relationships within all stages of the supply chain. Dairy farms have been the 

focal point of environmental assessments in the dairy sector. The application of life cycle impact 

assessment (LCIA) has been used as a tool to facilitate the decision making in the dairy sector and 

increase its environmental performance. Several works have assessed the environmental impacts of the 

dairy sector proposing measures for the improvement of the sustainability of the dairy value chains 

(Battini et al., 2014; Hospido et al., 2003; Roy et al., 2009). Recovery of bioenergy (Kimming et al., 

2015) and use of other renewable energy sources (Murgia et al., 2013), recycling of nutrients (Dolman et 

al., 2014) and wastewater treatment and valorisation (Gottschall et al., 2007), have been identified as key 

factors for the enhancement of the environmental profile of dairy farms. Recently, Kılkış and Kılkış 

(2017), developed a methodological approach for the comparison of different energy and biogas 

utilization schemes in a dairy farm following circular economy principles. New industrial symbiosis 

paradigms in Europe have demonstrated efficient management of materials, energy, water and waste 

flows mainly in industrial applications (WssTP, 2016), however, applications in the dairy supply chain are 

still premature. Monitoring of key performance indicators (KPIs) integrating environmental impact and 

related accountability allocation have been considered as main components for the development of an 
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55 enhanced sustainability framework (Huysman et al., 2015) and as a basis for the development of 
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56 circularity metrics (Linder et al., 2017). 

57 Circular economy (CE) is gaining increased attention over the conventional “make-use-dispose” models 

58 (Ghisellini et al., 2016; Jawahir and Bradley, 2016). Fundamental principles of circular economy 

59 strategies focus on the reduction, re-use and efficiency of resources utilization (Wu et al., 2014), while 

60 boosting economic growth (Ellen MacArthur Foundation and the McKinsey Center, 2015) and therefore 

61 directly linked with sustainable waste and resource management (Blomsma and Brennan, 2017), systems 
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79 keeping nutrients in a cycle (Passeggi et al., 2012). Dairy factories generate  significant amount of 

80 wastewater from the various processing steps (i.e. reverse osmosis for milk concentration) and during 

81 cleaning, heating, cooling or floor washing (Demirel et al., 2005). Dairy effluents constitute a good 
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thinking, re-design and “closing loops” of materials and energy flows (MacArthur, 2012). The dairy 

sector traditionally features circular practices and there are many examples that demonstrate the potential 

of circular dairy farming (Kılkış and Kılkış, 2017; Lybæk and Kjær, 2019). However, significant 

challenges remain to achieve a truly circular dairy sector that is regenerative and closes nutrient, water, 

carbon and waste cycles. The driving force for waste minimization in the dairy industry is the improved 

yields of product, reduced impact on the environment and lower wastewater treatment costs (Barnett et 

al., 2010). Waste-to-energy systems are seen as a mean to facilitate the transition to circular economy 

(Pan et al., 2015) and are key solutions for the mitigation of the environmental impacts in the dairy 

processing sector. Nowadays, with the evolving recycling technologies and solutions that are available on 

the market, the nutrient conversion of dairy manure and milk processing residuals is becoming more 

efficient and economically viable As a result, the nutrient recycling is getting momentum due to its 

environmental and economic benefits (Dolman et al., 2014). The Dairy sector is included in the priority 

list of the recent political agenda of the European Union where the circular economy is an increasing area 

of focus for the European businesses (EC, 2015). The anaerobic digestion (AD) has a major role in the 

transition to circular economy due to its capability to minimise waste and retain the value of materials and 

energy within the biological and technical cycles. Using the liquid by-product of anaerobic digestion to 

restore natural capital to soil is a step forward in finding a way to produce fertiliser from a waste resource, 
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82 feedstock for anaerobic digestion processes, since they are characterised by significant organic and 
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83 microbiological load (Carvalho et al., 2013; Karadag et al., 2015; Prazeres et al., 2012). The techno- 

84 economic viability of dairy effluents treatment by applying anaerobic digestion has been assessed in 

85 various works (Carlini M et al., 2015; Traversi et al., 2013; Demirel et al., 2006; Gelegenis et al., 2007; 

86 Zhong et al., 2015). However, these are usually are standalone studies, partially addressing individual 

87 aspects of circular economy. At the same time optimization of the operating conditions remains the main 

88 constraint for the widespread AD implementation in the dairy industry (An et al., 2010; Prazeres et al., 
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106 CE is often associated with eliminating waste and closing the technological and biological material loops. 

107 Figure 1 illustrates the ability of AD treatment to increase the circularity potential by reducing the direct 

108 environmental pressure to receiving waters and valorise the embedded resources in the dairy effluents by 
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2012) especially without the use of other feedstock. 

 
Most of the LCA studies in dairy sector have been focusing on the dairy farm stage (Palhares and 

Pezzopane, 2015; Zonderland-Thomassen and Ledgard, 2012) and only limited number of works have 

considered the processing stage (Vasilaki et al., 2016). There is still a gap in the literature on sound LCA 

based environmental impact assessment for dairy processing wastewater treatment. To the best of our 

knowledge, the environmental and sustainability performance of a full scale AD treatment of dairy 

effluents management strategy has not been systematically evaluated. The main objective of this study is 

to evaluate the environmental performance of the AD dairy effluent treatment and to reveal its potential to 

close the water, energy and nutrient circular economy loops at different levels of the dairy supply chain. 

More specifically, the LCA was applied to assess the environmental performance of the AD, as well as its 

benefit and costs ratios at each level. The approach was applied to a dairy processing facility coupled with 

full-scale high-rate liquid AD unit treating the dairy processing effluents, located in South West of the 

UK. The novelty of this study is to translate the LCA and MFA results into suitable circular economy 

metrics for measuring the effectiveness of AD wastewater treatment on circularity performance, both in 

terms of efficiency and scale. The findings of such analyses will facilitate decision makers and managers 

towards improving sustainability of dairy industry. 

2. Materials and Methods 
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109 closing the water, energy and nutrient loops at different stages of the dairy supply chain. A linear model 
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110 of the water usage in dairy factory would follow the take, make dispose concept, where water is taken 

111 directly or indirectly (by a public drinking water system) from the nature and after its use the generated 

112 wastewater is discharged untreated into receiving water bodies. The latter results in release of direct 

113 emissions to water bodies, which can cause eutrophication and have other adverse effects on the 

114 ecosystem. Nowadays, water use industries should meet certain regulation and legislation standards for 

115 discharging their effluents either directly into the environment or into a public sewer. In this sense, the 
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122 Figure 1 Circular economy loops in the dairy supply chain 
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pre-treatment/treatment of the effluents of a dairy factory can be considered already as a step towards 

circularity depending on the water quality level and further appropriate use of the treated effluents. 

Therefore, the scenario in which the wastewater is discharged directly into the environment (linear model) 

is more suitable to be used as Baseline (reference point) to which all circularity scenarios are relatively 

assessed. (Figure 1). 
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123 The anaerobic digestion process enables the recovery of embodied resources from the dairy wastewater 
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124 that can be recycled in a closed loop fashion at various stages of the supply chain. However, focusing 

125 ultimately on closing the water, material and energy loops can result in bigger externalities and even lead 

126 to negative net environmental performance. The LCA has been recognised as a valuable tool to capture 

127 these trade-offs and justify the overall net environmental impact of a system change. Therefore, the 

128 proposed methodology follows the key elements of the LCA, which generally consists of four phases: 

129 goal and scope definition, life cycle inventory (LCI), life cycle impact assessment and interpretation of 
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148 dairy processing facility – 1) trade effluent from spillages and wash-water rinses; and 2) wastewater 

149 generated during soft cheese production (permeate of milk ultrafiltration). The permeate is characterised 
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results (ISO 14040, 2006). The results of the LCA identify the processes that have the highest impact in 

the product lifecycle and facilitate the selection of suitable measures for the overall environmental impact 

reduction. Although, the conventional LCA includes credits for recovered materials or substituted 

resource inputs, it does not provide suitable and meaningful interpretation of the results from circular 

economy perspective. Therefore, in the proposed methodology the LCA has been aligned to the circular 

economy approach by including additional means of interpretation and two circularity indicators 

expressing the material and environmental circularity performance. 

2.1. System description 

 
The studied dairy processing facility is located in the South West of United Kingdom. The raw milk is 

sourced from local community dairy farms within 25 miles distance from the facility. The dairy farms 

vary in size from small family farms with 80 cows to larger farms with up to 400 cows. The cows are fed 

with grass during the summer months, while in the winter they are fed mainly with silage and cereals. The 

dairy processing company processes about 42 million litres of milk annually and produces various fresh 

and cultured dairy products for food manufacturers and service operators in the UK. It generates about 

80,000 m3 of wastewater annually from various processing stages, such as milk receiving/storage, 

pasteurisation, homogenisation, separation/clarification, cheese/butter/milk making, packaging and during 

cleaning, heating/cooling or floor washing. The dairy plant wastewater contains milk components, and 

acid and alkaline detergents used in the equipment cleaning. There are two wastewater streams leaving the 



150 by high chemical oxygen demand (COD) load ranging from 40.4 to 64.8 g/L, whereas the average COD 
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151 concentration of the trade effluent is 15.0 g/L. The wastewater streams generated from the dairy facility 

152 are stored in two equalization tanks and the mixed flow is fed to the AD reactor resulting in 21.1 g/L 

153 COD and 0.4% Total Suspended Solids (TSS) in the feedstock. Thus, the AD operates with 3.29 kg 

COD/m3·d Organic Loading Rate (OLR) and average hydraulic retention time (HRT) of 6.90 days. 154 
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167 Figure 1 Multilevel system boundaries within the dairy supply chain 
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System boundaries are usually defined according to the  goal of the study and include the relevant 

processes in the product system (ISO 14044, 2006). However, within the context of circular economy the 

boundaries are dependent also on the upstream and downstream processes. This is because the resource 

and energy recovery loops are crossing different levels in the supply chain in an open loop or closed loop 

fashion. Therefore, in order to better assess the AD circularity performance , three levels of system 

boundaries have been defined: Level 1: AD treatment plant; Level 2: Dairy processing factory; and Level 

3: The entire dairy supply chain – from the raw inputs in the farm stage to the dairy products distribution 

to the end customers (Figure 1). The analysis at Level 1 aim to evaluate the environmental efficiency of 

the AD unit, while at Level 2 and Level 3 reveal the scale of AD circularity improvements at dairy factory 

and supply chain level. 
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2.3.Definition of functional unit (FU) 169 

170 The main purpose of the functional unit is to quantify the performance characteristics for a target flow in 

171 the system and to provide a reference to which all inputs and outputs of the system are normalised 

(ISO14044 and ISO 14040, 2006). In Level 1, the m3 of wastewater on the input of the AD was selected 172 

173 for a FU as a common choice in most of the LCAs applied on wastewater treatment processes (Berlin, 

174 2002; Dolman et al., 2014; Salou et al., 2017). On a dairy factory or farm level, the most widely used 
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26 

functional unit is based on input mass/volume of the raw milk or focuses on the nutritional / economic 

aspects of the final dairy products (Cederberg and Mattsson, 2000; Flysjö et al., 2011). For the analysis at 

level 2 and level 3, FU of 1 kg of fat and protein corrected milk (FCPM) was chosen as recommended by 

the International Dairy Federation (IDF) guidelines (IDF, 2015). However, since the calculation of FCPM 

using the standard fat (4%) and protein (3.3%) equals ~1 kg of raw milk, for simplicity, the “1 kg of 

processed raw milk” was used. 

 

2.4. Life Cycle Inventory analysis 
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Primary data were collected from the dairy processing company about the operations of the installed AD 

plant, including: water, chemicals, energy consumption, energy generation, transport, and digestate 

management. The type of data used for the LCA were based on experimental data and the measurement 

records of main parameters (COD, TSS) (ii) complete mass balance of the process, and (iii) and data 

extracted from the relevant literature about the parameters related to emissions characterization. The 

construction of the AD plant has proven to have a minor contribution to total environmental impact thus 

the construction stage of the plant has not been taken into account in the analysis (Mezzullo et al. 2013). 

Figure 2 shows the material and energy flows of the treatment of dairy effluents. The characteristics of 

the treated effluent are shown in Table 1. The annual capacity of the mesophilic AD unit is 70,000 m3 

whereas currently the average influent to the reactor is 121.3 m3/day. The operating parameters of the 

system are summarised in Table 2. 

27 180 

28  

29  

30 181 
31  

32  

 



The produced biogas from the AD plant is about 0.35 m3 CH4/kg CODrem and consists of 64% CH4 and 

 

36% CO2 and is lead to a combined heat and power (CHP) engine where 2,258 kWh/day electricity on 
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194 

195 average is generated. The CHP unit has 105 kW electrical output and 32% electrical efficiency. The 

196 majority of the electricity generated (about 62%) is used for the operation of the AD plant, while the 

197 remaining electricity is used to cover the energy needs of the dairy facility or fed to the national grid. The 

198 AD effluent is characterised by 15.5 g/L COD and 1.3% TSS (average values). 

199 The digestate is pumped out of the AD reactor into two Dissolved Air Flotation (DAF) units where it is 
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thickened and polished, resulting into about 140 m3/day of treated effluent with 276 mg/L COD 

concentration. Approximately 92.5% of the thickened digestate is recirculated to the reactor and 7.5% is 

further thickened to a screw press (18% TSS). 

 

 

Figure 2. Flowchart of the anaerobic digestion plant treating dairy processing wastewater 

 

Table 1. Summary of input and output parameters in dairy AD unit. 

 Parameters Units Permeate Trade Effluent 

Wastewater flow m3/d 24.0 97.0 140 

COD g/L 48.4 14.4 0.28 

TSS % 0.37 0.55 - 

206 
     

 



207 

1 

2 

3 
208 Table 2. AD operating parameters. 
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Parameters Units Value 

HRT 
 

OLR 

Days 
 

Kg COD/m3day 

6.7 
 

3.9 

SRT Days 36 

T °C 30.7 
 

The avoided impacts from the substitution of mineral fertilisers with the organic fertiliser, generated from 

the AD were calculated based on the IPCC guidelines (IPCC, 2006). The electricity and heat produced 

from biogas combustion in the CHP unit was assumed that substitutes an equivalent energy amount of 

electricity and kerosene used in the dairy processing facility. The carbon emissions generated during the 

valorisation process of the produced biogas from the AD have not been included in the analysis, since the 

biogas is derived from organic waste streams. Thus, it does not add to the carbon dioxide load in the 

atmosphere since the CO2 emissions produced during combustion of biogas are offset by either the carbon 

dioxide consumed by the biomass or by the avoided fugitive methane emissions. 

In the expanded system boundaries (Level 2 and Level 3) the dairy processing stage has been considered 

as a “black box” representing an aggregation of processes, including the wastewater treatment stage. The 

total input and output energy and material flows for the operation of the dairy facility were collected from 

the dairy company. The transport emissions for supplying raw milk, packaging materials and the 

distribution of the dairy products were calculated based on the weight and the average distance to the 

providers and retailers respectively. Secondary data obtained with SimaPro from Ecoinvent® databases 

were used for the farm stage and all other upstream process to estimate the environmental impacts related 

to the intermediate inputs from the technosphere. 

The global inventory data is given in Table 3. 

 
Table 3. Global annual inventory data of material and energy flows for the dairy supply chain 

 
Inputs from technosphere Amount Unit Data source 
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Raw milk 42,000,000 kg/year 

1 Total Water Usage 12,450 m3/year 

2 

3 Chemical Usage 

4 Dairy processing 

5 

6 Disinfectant: mainly PAA 51,125 kg/year 

7 

8 Detergent 4,200 kg/year 

9 Alkaline detergent: NaOH and KOH 152,010 kg/year 

10 

11 Acid: nitric and phosphoric acid 8,470 kg/year 

12 Enzyme: protease, lipase 11,210 kg/year 

13 
14 Wastewater treatment 

15 

16 

17 

18 

19 

20 

21 
22 Energy use 

23 

24 Dairy processing 

25 Fuel (Kerosene/light oil) 450,934 kg/year 

26 
27 Electricity 3,687,989 kwh/year 

28 

29 Wastewater treatment 

30 Electricity 398,652 kwh/year 

31 

32 Packaging materials 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 Transportation 

56 Distribution of products 7,302,050 t-km 

57 

58 Average Distance to main distribution points 310 km 

 
Primary data: Dairy factory 
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Primary data: Dairy factory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Primary data: Dairy factory 

Flocculant (polyvinylvhloride) 27,000 kg/year 

Calcium carbonate 1,000 kg/year 

Iron (III) chloride, without water, 24,000 kg/year 

Sodium Hydroxide 36,000 kg/year 

 

Card Sleeve 18,942 kg/year  

Cardboard Divider 2,200 kg/year 

Cardboard Outer 15,330 kg/year 

Paper Label 36,546 kg/year 

Plastic Bucket 342,142 kg/year 

Plastic Carton 3,978 kg/year 

Plastic Film 12,860 kg/year Primary data: Dairy factory 

Plastic HDPE(2) Bottle 28,188 kg/year 
 

Plastic HDPE(4) Lid 2,619 kg/year 
 

Plastic label 643 kg/year 
 

Plastic Lid 107,350 kg/year 
 

Plastic Liner 22,330 kg/year 
 

Plastic Pot 9,156 kg/year  
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Total weight of generated products 23,555 t 

1 Chemical/ingredients inputs 81,725 t-km 

2 

3 Average distance from providers 360 km 

4 Packaging materials 251,755 t-km 

5 

6 Average distance from providers 418 km 

7 

8 Raw milk input 840,000 t-km 

9 Average distance from providers 20 km 

10 

11 Waste disposal 40,250 t-km 

12 Average distance to landfill 

13 

14 50 km 

15 

16 

17 Outputs to technosphere Amount Unit Data source 

18    

19 Avoided energy production 

20 AD Electricity Generation from CHP 824,039 kWh/year Primary data: Dairy factory 

21 

22 AD Heat Generation from CHP 1,236,000 kWh/year Primary data: Dairy factory 

23 

24 Avoided fertiliser production 

25 

26 

27 

28 

29 
30 Land application emissions of the recovered fertilizer 

31 

32 Direct N2O 3.97 kg N-N2O/year 

33 Indirect N2O (atm. deposition) 0.79 kg N-N2O/year 

34 IPCC 2006 guideline 

35 Indirect N2O (Leaching) 0.89 kg N-N2O/year 

36 

37 Indirect NO3 (Leaching) 119.10 kg N-NO3/year 

38 NH3 emissions 26.16 kg N-NH3/year 

39 EMEP/EEA 2016 guideline 

40 NO emissions 7.41 kg N-NO/year 

41 Phosphorus leached to ground water 0.07 kg P/ha*year 

42 

43 

44 

45 

46 

47 

48 

49 

50 
51 
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Waste 

Phosphorus lost by runoff 2.13 kg P/ha*year 

Phosphorus emitted through erosion to rivers 0.0008 kg P/ha*year 

 

Wastewater 80,346 m3/year 
 

Packaging waste 58.4 t 

SALCA emission models 

 

 

 

 

 
Primary data: Dairy factory 
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The Life Cycle Impact Assessment (LCIA) was conducted following the ReCiPe Midpoint (H) 1.12 

method (Goedkoop et al., 2009). Based on the nature of the system eight environmental impact categories 

were selected: climate change (CC), ozone depletion (OD), freshwater eutrophication (FE), ionising 

Generated sludge 805,000 kg/year Primary data: Dairy factory 

N fertiliser substitution 397 kg/year Vadenbo et al. 2017 

P fertiliser substitution 2287 kg/year Vadenbo et al. 2017 

 



231 radiation (IE), agricultural land occupation (ALO), water depletion (WD), metal depletion (MD) and 

1 

2 
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4 

5 

232 fossil depletion (FD). The software SimaPro v8.0.5.13 was used for the computational implementation of 

233 the inventories. 

59 

60 

61 

62 

63 

64 

65 

13 

 

 

12 

21 

30 

35 

58 

6 

7 234 
8 
9 

235 
10 
11 

236 

13 

14 237 
15 
16 238 
17 
18 239 
19 

20 
240 

22 

23 241 
24 

25 242 
26 
27 243 
28 

29 
244 

31 
32 245 
33 
34 

246 

36 

37 247 

38 

39 248 
40 

41 249 
42 
43 

250 
44 

45 

46 

2.5. Circularity performance assessment 

 
The potential of circularity and the benefits of the AD treatment in dairy sector have been highlighted in a 

number of studies in the dairy sector (Demirel et al., 2005; Malaspina, F. et al., 1996; Strydom JP et al., 

1997). However, although there are several comprehensive sets of CE performance indicators on national 

and regional level (EASAC, 2016), to date there is still no standardized and well-established method to 

measure the circular economy performance on product level.. Quantitative indicators are essential to 

evaluate how well an organization or product system performs in relation to the CE principles. One of the 

main challenges in evaluating circularity is the selection of units that allow integration of the different 

circularity aspects into a single value of circularity. In this paper, two dimensionless circularity metrics 

based on MFA and LCA have been proposed to evaluate the material and environmental circularity 

performance of the AD solution. 

Material circularity performance indicator (MCPI) 

 

The material circularity performance metric is based on the Demand Minimisation Index (DMI) suggested 

by Agudelo-Vera et al., 2012 (Equation 1) which enables to assess to what extent the baseline demand of 

resource or energy flow is reduced at the level of the actual closing of the circularity loop. This results in 

a value between 0 and 1, where 0 means that there is no reduction in the demand and 1 means that the 

whole demand is covered. 
(1) 

𝐵𝑎𝑠𝑒𝑙i𝑛𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 − 𝑀i𝑛i𝑚i𝑠𝑒𝑑 𝑑𝑒𝑚𝑎𝑛𝑑 
47 𝑀𝐶𝑃𝐼 = 
48 

49 

50 

𝐵𝑎𝑠𝑒𝑙i𝑛𝑒 𝑑𝑒𝑚𝑎𝑛𝑑 
(2) 
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Environmental circularity performance indicator (ECPI) 

 

The main purpose of the LCA is to quantify both positive and negative environmental impact of a product 

system throughout its life cycle. Therefore, it is often considered as complementary and in line with the 

circularity assessment. However, the LCA is based on the conventional “cradle to grave” approach and 



255 even that it includes credits for the displaced materials and resources, its interpretation is not fully in 

1 

2 

3 

4 

5 

256 consonance with circular economy concept. From LCA point of view, the anaerobic treatment is 

257 considered ultimately as an end of life solution (“...grave”), focused on the reduction of direct 
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281 (e.g. avoided eutrophication, emissions from sludge disposal); 
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environmental pressure from the generated dairy effluent. On the other hand, the circular economy is 

based on the “cradle to cradle” principle, which shifts the perception of wastewater from waste flow to a 

source of valuable materials (Zijp et al., 2017) where the AD is seen as resource recovery solution 

(“…cradle”). Therefore, from circular economy perspective, the AD treatment can be defined as a 

multifunctional process with two main functions with relevant “environmental benefits”: 1) treatment of 

the wastewater to reduce direct environmental pressure to the water body (primary function); and 2) 

recovery of energy and valuable resources which brings indirect environmental benefits as a result of the 

avoided virgin material and energy sources (secondary function). However, to fulfil these two functions 

the AD requires the use of external resources such as energy, water and chemicals for its operation, which 

on the other side are associated with negative indirect environmental impact – “environmental costs” (Fig. 

1). In this sense, one can argue that an end of life solution is more circular when its overall 

“environmental benefits” outweighs its “environmental costs” including the indirect and direct impact 

generated within the foreground and background systems at the level where the circularity loops are 

closed. Therefore, an Environmental Circularity Performance Indicator (ECPI) based on the ratio of the 

total environmental benefits and costs is proposed to measure the circular environmental performance. 

The ReCiPe Endpoint (H) 1.12 method has been applied in order to normalise and aggregate both the 

direct and indirect environmental impact categories into one single score indicator. The ECPI indicator for 

the circularity performance of the AD is defined according to Equation 2: 

 
𝐸𝐵𝐿i + 𝐸𝐵𝐿i 

𝐸𝐶𝑃𝐼
𝐿i     = 𝑑i𝑟𝑒𝑐𝑡 i𝑛𝑑i𝑟𝑒𝑐𝑡 

50 𝐴𝐷 𝐸𝐶𝐿i + 𝐸𝐶𝐿i 
51 

278 
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54 279 
55 

 

 
,where 

𝑑i𝑟𝑒𝑐𝑡 i𝑑i𝑟𝑒𝑐𝑡 

56 
280 

57 
𝐸𝐵𝐿i is the direct (foreground) environmental benefit i.e. the reduced environmental pressure 
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303 categories meaning that the environmental benefits outweigh the environmental costs. 
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𝐸𝐵𝐿i is the indirect (background) environmental benefit i.e. avoided environmental impact 

from recovered products (e.g. energy, fertilisers); 

𝐸𝐶𝐿i is the direct (foreground) environmental cost (e.g. emitted CH4 and CO2 emissions); 

 
𝐸𝐶𝐿i is the indirect (background) environmental cost (e.g. embodied emissions to the 

resources used, transportation) 

𝐿i, is the level at which the environmental assessment is performed 

 
The indicator provides an aggregated metric of the environmental performance of a circular solution 

whereas an output value less than 1 indicates a negative environmental circularity performance and more 

than 1 indicates a positive performance. 

2.6 Sensitivity analysis 

 
The inherent uncertainties regarding the method used, the initial assumptions and the quality of the data 

could affect the results. In order to address this issue, a sensitivity analysis of the main inputs has been 

conducted. For this purpose, a ± 10% change from the average of the main input parameters has been 

simulated and the relevant effects on each impact category were calculated, assuming all other factors 

remained fixed at their mean level. The sensitivity results aim to reveal the parameters that contribute the 

most to the selected impact categories. 

 

3. Results and discussion 

3.1.Environmental assessment results 

The characterisation impact assessment results for the three sub-system boundary levels are shown in 

Table 1. The negative values at Level 1 indicate net positive environmental impact for these impact 
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318 produced from the boiler (kerosene). The electricity produced from the combustion of the biogas, is 

319 mainly responsible for the environmental benefits of the AD process with overall contribution ranging 

320 from 20% to 70%, for all impact categories. Additionally, the avoided impacts from the utilization of the 

321 heat produced in the CHP unit contribute to OD and FD impact categories (relative contributions equal to 

322 41% and 32% respectively). On the contrary, the chemicals used in the AD plant are mainly responsible 
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Impact Category Abbreviation Unit Level 1 Level 2 Level 3 

   FU 1 m3 FU 1 kg FPCM FU 1 kg FPCM 

Climate change CC kg CO2 eq -15.1 0.0991 1.92 

Ozone depletion OD g CFC-11 eq -4.50E-03 2.32E-05 1.06E-04 

Freshwater eutrophication FE g P eq -4.28 0.0240 2.76 

Ionising radiation IR kBq U235 eq -10.25 0.0242 0.0792 

Agricultural land occupation ALO m2a -1.96 0.0192 1.44 

 

Water depletion WD m3 0.415 1.11E-03 0.0404 

 

 

 

 

 

 

Environmental performance assessment of the AD system (Level 1) 

 
Error! Reference source not found. shows the relative contributions to the impact categories of the 

environmental performance of the anaerobic digestion system. The environmental benefits resulting from 

the reduced N and P discharge to the receiving water bodies, valorisation of heat, energy and digestate 

that is applied as fertiliser are shown in the figure with negative contributions. The AD process for the 

treatment of the dairy effluent results in environmental benefits for most of the impact categories. The 

largest environmental benefit is in the eutrophication impact category (around 80%) due to the of N and P 

removal in the AD treatment process. Approximately 48% of the generated electricity is utilized for the 

operation of the anaerobic digestion facility (about 399 MWh/annum), while the surplus electricity (426 

MWh/annum) is used to cover the dairy processing facility electricity needs. In the dairy processing 

facility, a kerosene boiler is used for heating purposes; thus, the CHP heat replaces equivalent heat 

 Metal depletion MD g Fe eq 3.1 2.30 61.9 

Fossil depletion FD kg oil eq -13.7 0.0506 0.241 

306       

 



323 for the negative environmental impacts for most of the impact categories and particularly for the OD and 
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324 WD (24% and 64% respectively). 
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Environmental performance of the dairy processing facility (Level 2) 338 

339 The expansion of the system boundaries to the dairy facility (level 2) provided insight on the most 

340 significant contributors to its environmental profile, shown in Error! Reference source not found.. It can 

341 be seen that that the avoided direct eutrophication potential is almost equal to the indirect eutrophication 
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Figure 3: Relative contributions to each impact category from different activities involved in the level 1 

assessment. 

There are only few studies available on the life-cycle based environmental analysis of AD process in the 

UK using waste as feedstock, with limited information on the operating characteristics and the mass 

balances of the systems. Whiting and Azapagic (2014), assessed the environmental impacts using the 

CML 2011 method of a UK AD-CHP plant operating with a mix of different agricultural wastes. 

Similarly, Styles et al. (2015) implemented CML 2010 method to determine the environmental impacts of 

AD installations in UK dairy farms. However, the results of the current work cannot be directly compared 

with the cited studies since different impact assessment methodologies or functional units were used. 

Nevertheless, all studies have concluded that the displacement of kerosene with the heat from AD 

contributes significantly to mitigate CO2 emissions and fossil fuel depletion leading to an overall net 

negative climate change impact. 
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342 associated with the resources used in the dairy processing. The excess energy produced from the 
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343 anaerobic digestion unit, is equal to 188 ton of CO2eq savings in the facility per annum. Benefits are also 
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363 packaging materials (i.e PLA, polyhydroxyalkanoates (PHA) etc.) have been proposed in the literature as 

364 alternatives to conventional synthetic polymers towards the mitigation of the environmental impacts of 

365 food packaging (Licciardello, 2017). 
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observed in IR, MD and FD impact categories (19%, 14% and 12% respectively). 

 
One of the most significant contributors to the majority of the impact categories is the energy 

requirements of the dairy facility. About 3687 MWh of electricity is required annually for the processing 

of the dairy products, whereas ~450 ton of kerosene are used for the heating requirements in the 

processing stages. The electricity and fossil fuels consumption in the dairy plant are equal to 1.25 kWh/L 

and 1.93 kWh/L of milk processed respectively. A wide range of electricity consumption has been 

reported for the European dairy sector based on different dairy products ranging from 0.15 – 2.5 kWh per 

kg of liquid milk processed for the production of milk and yoghurt products to 0.08 – 2.9 kWh per kg of 

liquid milk processed for the production of cheese products (Expo and Sevilla, 2003). In terms of fossil 

fuels consumption, the reported values range from 0.18 – 1.5 kWh per kg of liquid milk processed for the 

production of milk and yoghurt products, to 0.15 – 4.6 kWh per kg of liquid milk processed for the 

production of cheese products. Therefore, the energy requirements of the examined dairy facility (mixture 

of milk, cheese, yoghurt products) are moderate compared to the respective ones of the European dairy 

industry. 

Additionally, the packaging materials are identified as ‘hotspot’ in the majority of the categories, 

especially for ALO (relative contribution equal to ~69%) and OD (relative contribution equal to ~50%). 

The packaging is responsible for around 30% of the carbon footprint emissions in the dairy facility. The 

environmental impacts of packaging in dairy products have also been identified as an environmental 

hotspot in other research works (González-García et al., 2013a; Vasilaki et al., 2016). Bio-based 
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380 examined the effect of different cow feeding strategies on the environmental profile of cheese products 

381 and they demonstrated that irrespectively of the feeding strategy, raw milk is the main contributor of the 

382 environmental impacts in the dairy value chains. Previous studies assessing various dairy products have 

383 stressed the significance of the farm system (Fantin et al., 2012; Finnegan et al., 2015; González-García et 

384 al., 2013b) with contributions to the total carbon footprint of the products ranging from 81% to 93%. 

385 Even though the environmental impacts related to the production of raw milk affect significantly the 
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Figure 4: Relative contributions of activities involved at level 2 to each impact category 

 
Direct water consumption in the plant mainly affects the WD impact category (20% relative contribution) 

with 4.2 L water consumed per L of milk processed. According to the European Commission Directorate 

(Expo and Sevilla, 2003), water consumption for the processing of milk and yoghurt products, varies 

from 0.8 to 25 L/kg of processed milk whereas the range for cheese products is even higher and equal to 

1-60 L/kg of processed milk. Therefore, water consumption in the processing plant is relatively low 

compared to European average. 

Environmental assessment of the entire dairy supply chain (Level 3) 

 
The relative contribution of each sub-system on the entire dairy supply chain is shown on Error! 

Reference source not found. (dairy farm, processing plant, anaerobic digestion system) to the examined 

impact categories. The production of raw milk is the most significant contributor to all impact categories 

examined and almost the sole contributor for ALO, FE and WD (relative contribution equal to 96-99%). 

These findings correspond to the outcomes of other studies. Palmieri and Salimei (Palmieri et al., 2017) 
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profile of the dairy end-products the dairy processing facility contributes significantly to OD, IR, FD, MD 

and CC impact categories (relative contributions equal to 12%, 34%, 13%, 3% and 4% respectively). 

Significant environmental impact is attributed also to the distribution of the final products. Dairy 

products’ distribution to retailers accounts for 6% of the total carbon footprint and 17% of the OD, which 

is attributed to the GHG emissions emitted from the truck’s fuel combustion and the long distribution 

routes. 
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Figure 5 Relative contributions of various activities involved at level 3 to each impact category. 

 
Sensitivity analysis 

 
Fig. 6 shows the result of the sensitivity analysis performed regarding the main resource inputs 

(chemicals, transportation and energy) in the dairy supply chain and their endpoint impact at each system 

level. The results are based on 10% increase and 10% decrease in the average values of the individual 

input parameters. The energy has significant impact at all system levels with main contribution on Level 1 

and Level 2. This is interpreted by the high dependency of dairy facility processes and AD on energy use 

(electricity and kerosene). Transportation is the major contributor to Level 3 with highest impact in the 
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413 2) and to the farm stage (Level 3). It is assumed that the solid fraction of the digestate is applied directly 

414 to the land as a fertiliser for crop production to feed the cows. As described in the methodology section, 

415 the material circularity indicator (MCPI) was calculated based on the demand minimization index taking 

416 into account the actual reduction of the baseline demand at the level that the circular loop is closed. Table 

417 5 presents the MCPI results that related to the valorisation of the recovered energy and nutrients at the 

418 relevant system level; level 1 has not been considered here as it represent the AD solution itself. The 
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Level 1 Level 2 Level 3 

Resources 

Ecosystems 
Increase 

Human Health 
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Total 
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Figure 6 Multilevel sensitivity analyses 

 
3.2. Circularity performance evaluation 

 

3.2.1. Material circularity 

 
Material circularity is a key element in the circular economy, which addresses the challenges of resource 

scarcity, whilst delivering the same functionality. Within this context, AD has many advantages, since 

apart from its primary function to treat the wastewater and remove organic content, it also produces a 

valuable by-product (biogas), that can be recovered and utilized as a fuel; and generate sludge that can be 

utilised as fertilizer. The recovered N and P fertilizers are key elements in the biological nutrient cycle of 

the circular economy, especially the P, which is a scarce and finite resource. In this case, it is considered 

that the recovered energy and materials from AD are recycled in a closed loop to the dairy factory (Level 
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419 water pathway has not been included in the analysis, since the irrigation of pastures is not considered to 
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420 be economically viable in the UK. The MCPI shows that the energy obtained from the anaerobic 

421 treatment leads to a reduction of 11.55% for electricity and 26.61% for kerosene consumption of the 

422 plant. At level 3 the nutrients derived from the dairy sludge account for about 0.033% N and 5,41% P 
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430 definition of system boundaries may not properly account for the environmental effects of the recovered 

431 materials and resources that cross the system boundary and are utilised in the upstream or downstream of 

432 the system or by other products or processes. A comprehensive LCA study that complies with the circular 

433 economy principles should extend the system boundary to the level that the circularity loops are closed 

434 considering processes and  products beyond the initial life cycle, in order to correctly  evaluate the 

435 circularity performance in the environmental domain for each potential scenario. Table 6 demonstrates the 
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fertilizer displacement at the farm. The MCPI indicators show that the AD solution has a considerable 

potential towards a more circular management in the dairy supply chain by minimising the baseline use of 

raw resources and providing a more self-sustaining system. 

Table 5 Material circularity performance indicator results 

18 
System boundary 
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21 level at which the 

 

 
Resource 

 
Baseline 

MCPI 

Minimised     
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23 CE loop is closed 
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Demand demand [-] [%] 
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44 
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429 

 
 

Level 2 Energy 

 

 
 

Kerosene [kg] 450,934 330,934 0.266 26.61% 
 

Level 3 Nutrients 
 

N fertilizer [kg] 1,214,400 1,214,003 0.00033 0.03% 
 

P fertilizer [kg] 42,240 39,953 0.054 5.41% 
 

3.2.2. Environmental circularity 

When applying the LCA following the circular economy mind-set it is important, as mentioned above, to 

consider very carefully the system boundaries of the study. A standard application of the LCA and 

28  Electricity [kWh] 3,687,989 3,261,989 0.116 11.55% 
       

       

       

       

      

      

      

      

      

   

   

   

   
        

 



436 application of this approach to the AD treatment solution based on the LCA analysis performed following 

1 

2 

3 

4 

5 
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7 

8 

437 the Endpoint (H) 1.12 method. Although the endpoint environmental assessment method is associated 

438 with increased uncertainty of the results, in this case it is considered reliable enough to best represent the 

439 aggregated environmental cost-benefit ratio. 
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445 The single score ratio of the total impact result in a value of 1.72 meaning that the overall environmental 

446 benefits are ~1.7 times higher than the related environmental costs induced from the AD operation. At 

447 Level 3, a clear trade-off between the damage categories is observed. In Human health category the 

448 environmental benefits are about four times higher than the environmental costs, while for Resources the 

449 opposite is true. However, as a single score ratio the nutrient recycling AD scenario also has a positive 

450 benefit-cost ratio of 2.13. 
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Table 6 Environmental circularity performance indicator calculation 
 
 

System boundary 

level at which the 

CE loop is closed 

 
 

Damage Category 

Environmental 

benefits 

𝐸𝐵𝐿i + 𝐸𝐵𝐿i 
𝑑i𝑟𝑒𝑐𝑡 i𝑛𝑑i𝑟𝑒𝑐𝑡 

Environmental 

costs 

𝐸𝐶𝐿i + 𝐸𝐶𝐿i 
𝑑i𝑟𝑒𝑐𝑡 i𝑑i𝑟𝑒𝑐𝑡 

ECPI 

[-] 

Level 2 

(Energy CE 

pathway) 

Human health [kPt] 23.55 17.04 1.38 

Ecosystems [kPt] 13.16 8.67 1.52 

Resources[kPt] 32.34 14.39 2.25 

Total [kPt] 69.04 40.10 1.72 

Level 3 

(Nutrient CE 

pathway) 

Human health [kPt] 6.63 1.68 3.95 

Ecosystems [kPt] 1.96 0.87 1.05 

Resources [kPt] 0.35 1.65 0.21 

Total [kPt] 8.94 4.20 2.13 

 

The ECPI indicators represent the environmental benefit-cost ratio performance for the energy and 

nutrient circularity loops at the relevant system level. At Level 2, the ECPI shows that the AD treatment 

has a positive environmental circularity performance in all damage categories varying from 1.38 to 2.25. 
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effluents was proposed. The results of the work demonstrate the potential to close the material and energy 

circular economy loops at different levels of the dairy supply chain. The assessment on the AD system 

level (Level 1), showed significant net positive impact in most of the impact categories (CC, OD, FE, IR, 

ALO, FD). The analysis at dairy factory level (Level 2) revealed the main “hotspots” of the dairy 

processing facility, and showed that the AD total GHG emissions can be reduced by about 13%. The 

values obtained for the MCPI and ECPI circularity indicators reveal the importance of the application of 

the AD treatment as an instrument of circular economy solutions for dairy effluent treatment. The 

application of the indicators provides quantitative measure of the material and environmental performance 

of the energy and nutrient circularity valorisation pathways. The latter can facilitate operational decisions 

for the implementation of circular economy models aiming at retaining the material value within the 

system taking into account any possible trade-offs within and between these two domains of CE. 
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- Implementation of circular economy concept in a dairy processing industry 

 

- LCA assessment of the anaerobic treatment of dairy processing effluents 

 

- Material and environmental indicators for measuring circularity performance 


