Deliverable **Project Acronym:** FERTIMANURE **Project full name:** Innovative nutrient recovery from secondary sources – Production of high-added value FERTIlisers from animal MANURE **Grant Agreement No.** 862849 # D1.5. Report on capitalization of relevant projects results | Project start date | January 1st, 2020 | |------------------------|-------------------| | Duration in months | 9 | | Deliverable due date | 31 January 2021 | | Actual submission date | 29 January 2021 | | Work package concerned | 1 | | Author | Anna Lloveras | | Contributor | Leitat | **Disclaimer:** This deliverable a. Reflects only the authors view; and b. Exempts the Commission from any use that may be made of the information it contains. # **Document History** | Date | Date Author | | Status | |---|--|--------------------------------|--------------------| | 1st September, 2020 | otember, 2020 Anna Lloveras 1 st draft revision | | Draft | | 30th October, 2020 | th October, 2020 Montse Jorba 2 nd draft revision | | Draft | | 11 th January, 2021 | Evan Marks | 2 nd draft revision | Draft | | 21 th January, 2021 | January, 2021 Gal·la Ramis 2 nd draft revision | | Draft | | 25 th January, 2021 Montse Jorba | | 2 nd draft revision | Draft | | January 28 th , 2021 Laia Llenas | | Approved by UVIC | Approved by the PC | # Content | Doc | cument History | 1 | |-----|---------------------|----| | 1. | Introduction: | 3 | | | Methodology | | | | Database design | | | b. | Data collection | 4 | | C. | Database processing | 4 | | 3. | Results | 5 | | a. | Database analysis | 5 | | 1 | Conclusions | 11 | #### 1. Introduction The work developed in this task is part of the WP1. FERTIMANURE framework, in particular of Task 1.5 Capitalization of relevant projects results developed by LEITAT, whose aim is to identify on-going and finished projects related with manure in the field of nutrient recycling, manure management, bio-based fertilizers and dissemination. The task aims to ensure maximisation of synergies between FERTIMANURE tasks and other related project activities and also elimination of all possible cases of overlaps. For that purpose, the approach is to become permanently aligned with all FERTIMANURE work packages and create an interactive and living tool, in order to make the accumulated experience usable during the project execution, linking with other related project outputs, skills and expertise. For the first thirteen months of the project, LEITAT created a database to compile all the projects related with FERTIMANURE framework. This database was filled in within partners contributions, European Sustainable Phosphorous Platform (ESPP) database(https://phosphorusplatform.eu) and Biorefine Cluster Europe (www.biorefine.eu/) with a total database of 163 projects. Information about running and finished projects was obtained including: name, acronym, website, summary (relevant information for FERTIMANURE), end date, partner coordinator, contact person, type of funding, current status, type of project (national, European or international). This information will be published at the FERTIMANURE website (www.fertimanure.eu) and can be used by stakeholders and general public. Each project was categorized by thematic area and the main objectives within the following categories: Organic wastes, Technology, End-products, Dissemination, Crop systems and Management. These categories were used to create a word cloud which includes the relevant information for FERTIMANURE of all the projects categorized. Moreover, data analysis was developed in order to obtain relevant results about the information compiled like diversity of projects or budget. Finally, LEITAT together with all FERTIMANURE partners selected the 5 most relevant projects in order to arrange a meeting with the coordinator. These meetings will have the objective of taking advantage of all the previous work done in the field of nutrient recycling and manure management, fertilization using BBFs or dissemination. The objectives of this work is basically to identify: - which are the challenges that have been identified in order to learn from them and avoid similar problems in FERTIMANURE, - the most relevant results in order to avoid overlaps and take advantage of the results specially addressed by FERTIMANURE and go beyond - in the on-going projects, identify potential synergies with FERTIMANURE and to monitor the projects results. # 2. Methodology In the development of methodology, 3 major steps are identified: a. Database design, b. Data collection and c. Database processing. ### a. Database design A database focusing on 12 significant pieces of information has been created: - 1- Project title - 2- Acronym - 3- Website - 4- Relevant information for FERTIMANURE - 5- Coordinator - 6- End year - 7- Type of funding - 8- Current status - 9- Type of project - 10-Budget - 11- Project contact name - 12- Project contact email #### b. Data collection Information has been principally provided from the project partners but also platforms such as CORDIS (https://cordis.europa.eu/es), Biorefinery Cluster Europe (https://www.biorefine.eu/), ESPP website (https://phosphorusplatform.eu/home2) and ESPP's network of companies and other stakeholders. # c. Database processing #### Project categorization Six different thematic areas were identified into which projects were divided in order to facilitate processing and integration. The categories were highly aligned with FERTIMANURE working areas and keywords. Each project was tagged with two of these following six categories: - Organic wastes - Management - Technologies - End-products - Dissemination - Crop systems #### Word cloud generation Once the projects are catalogued in two areas, key word cloud generation was carried out to obtain the graphical representation of the word frequency, using the Wordcloud tool (https://www.wordclouds.com/). Keyword cloud was generated by using words included in the cell "Relevant information for FERTIMANURE" of the database. #### Outline of stakeholder's meetings The capitalization of experience and knowledge was built up in order to identify the challenges that had arisen in some projects, to learn from them and avoid similar problems, to avoid overlaps, and take advantage of the results and finally to identify potential synergies with FERTIMANURE. To this effect, the 5 most relevant projects were selected by all the partners crating a ranking of relevant projects, the first 4 projects were finally selected. Meetings with the coordinators of the 4 projects will be arranged to identify and cultivate connections between the projects and organizations working in the same field for exchange experiences and furthering concepts. #### 3. Results The database is published at the FERTIMANURE website (<u>www.fertimanure.eu</u>) and can be used by stakeholders and general public. The most relevant information of the database is listed in the ANNEX 1 (see ANNEX 1 for more information). ## a. Database analysis With the above tasks, over **163 projects were identified**. Given the complexity of FERTIMANURE project which encompasses the whole value chain, all projects are of great relevance and capitalization of their results contributes significantly to project implementation. For this reason, database will be published on the website and used by the partners during the entire project execution when needed. Figure 1 depicts schematically the overall ratio between projects implemented at the national level (38%) and those of European (55%) or international level (7%). It has to be mentioned that projects categorized as "national" projects are from European countries, whereas those from non-EU countries like Argentina and Chile are categorized as International. From the European funded projects, the most common funding programs are: **LIFE+**, **H2020 FP7**, **INTERREG**, **H2020 BBI**. Figure 1. Relation between projects implemented at the national level and those of Europe or international level The overall budget of all the projects compiled is about 320M Euros where 93% are from European funding and the 6% are from National and 1% from International funding (Figure 2). Figure 2. Total of budget for funded projects at European, International and National level Regarding the status of the projects (Figure 3), 106 of the 163 projects listed on the database are finished and 45 are currently on-going. Ending project years are identified and results show that the first project ended in 2004 and the last would end in 2024 (Figure 4) taking into account that the higher values are from 2015 to 2019. Figure 3. Current status of the projects listed in the database (N.D.A= No Data Available) Figure 4. Ending project year of the projects compiled in the database. In relation to the number of projects per country coordinator origin, the result is observed in Figure 5 which reflects that Spain has a large number of coordinated projects followed by France, Italy and Germany. It has to be mentioned that there are few projects which has not been detected which is the coordinator and these projects has not been taken into account. Figure 5. Number of projects coming from the coordinator origin #### Project categorization The Figure 5 below represents the results obtained during the project categorization. End-product and Technology categories are the most represented (with 85 and 67 projects respectively), followed by organic wastes (46), management (30), dissemination (20) and crop systems (1). Figure 6. Number of projects categorized during the database processing. #### Word cloud generation Figure 7 represents the 5 different word clouds
generated using the project description of the database. There are words like "waste" or "manure" that are present in all word clouds, except in the crop systems cloud. It must be taken into account that the crop systems cloud is made with words from only one project and that therefore it's a cloud with a very unrepresentative sample of database. **Organic Wastes** **Technology** **End-products** Dissemination Management Crop systems Figure 7. Word cloud obtained from the project description for each category (Organic wastes, Technology, End-products, Dissemination, Management, Crop systems) #### Outline of stakeholders meetings According to the selection of the 4 relevant projects within the poll partners, the most voted projects are: - Nutri2cycle: Transition towards a more carbon and nutrient efficient agriculture in Europe - LEX4BIO: Optimizing Bio-based Fertilisers in Agriculture Knowledgebase for New Policies - SYSTEMIC: recognises Europe's challenge to tackle the increasing resources constraint and to facilitate the transition towards a more circular economy - ReNu2Farm: Nutrient Recycling from pilot production to farms and fields Moreover, there are three other projects also selected because of the relevance and the high interaction within FERTIMANURE project: BioEcoSIM, ReuseWaste and IF2O-COOPERL. Taking into advantage that Nutri2cycle and SYTEMIC are leaded by two FERTIMANURE partners, it is decided to have the first meeting with these projects. Meetings with the project coordinators will be arranged to explore the promotions of the synergies between those two projects and this will be replicated with the other projects. The structure of the meetings with the projects has been as follows: - Presentation - Objectives - Synergies - Next steps This work will be developed in the following months within the WP7 framework, specifically in *Task 7.2.. Dissemination and communication (DC)* activities in order to promote the creation of a Biorefine cluster Community group. #### 4. Conclusions In the frame of the FERTIMANURE project, it has been created a project database collecting information on project title, acronym, website, relevant information, coordinator, end year, type of founding current status, type of project, budget, project contact name and project contact email. This data base has been created to identify projects related with manure to take advantage of all the previous work done in the field of nutrient recycling and manure management, and thus give FERTIMANURE an advantage. The database is published on the website (www.fertimanure.eu) so that all partners can use it when they deem appropriate during the project. 163 projects are identified, and they are cataloged in one or two of the six thematic areas, which are organic waste, management, technologies, end-products, dissemination, crop system. End-product and Technology categories are the most represented (with 85 and 67 projects respectively), followed by organic wastes (46), management (30), dissemination (20) and crop systems (1). It has also been seen that the most frequent words in the projects have been the words "waste" and "manure". Regarding the capitalization of the projects collected, the global ratio among all the projects is 38% at the national level, 55% at the European level and 7% at the international. As to note, the projects financed with European funds such as FERTIMANURE, the most common financing programs are: LIFE +, H2020 FP7, INTERREG, H2020 BBI. Based on the interests of FERTIMANURE and the partners, four relevant projects have been selected: Nutri2cycle, LEX4BIO, SYSTEMIC and ReNu2Farm. The intention of selecting these four projects is to explore the synergies promotions between them and FERTIMANURE. This part will be developed through meetings between the project coordinators to promote sustainable synergies between ongoing projects and to adapt the capitalization and improvement activities to the real needs of the project's beneficiaries. This work will be developed within the WP7 framework, specifically in Task 7.2. Dissemination and communication activities (CD) in order to promote the creation of a community group Cluster Biorefine. ## **ANNEX 1** Table 1. Representative part of database published on the FERTIMANURE website (<u>www.fertimanure.eu</u>) . | Project title | Website | End year | Type of funding | CATEGORY 1 | CATEGORY 2 | |---|-----------------------------|----------|--|---------------|--------------| | Evaluation of manure management and treatment technology for environmental protection and sustainable livestock farming in Europe | No data available | 2015 | LIFE+ | TECHNOLOGY | MANAGEMENT | | A blueprint and EU policy-forming protocol for the recycling and valorisation of agri-food waste | http://www.agroc
ycle.eu | 2019 | Horizon 2020,
H2020-WATER-
2015-two-stage,
WASTE-7-2015 -
Ensuring
sustainable use of
agricultural waste,
co-products and by-
products | ORGANIC WASTE | END PRODUCTS | | No Agro-Waste -
Innovative approaches to
turn agricultural waste
into ecological and
economic assets | http://www.noaw
2020.eu | 2020 | Horizon 2020,
H2020-WASTE-
2015-two-stage,
WASTE-7-2015 -
Ensuring
sustainable use of
agricultural waste,
co-products and by-
products | ORGANIC WASTE | END PRODUCTS | | Optimizing Bio-based
Fertilisers in Agriculture
– Knowledgebase for
New Policies | https://www.lex4
bio.eu/ | 2023 | Horizon 2020, CE-
RUR-08-2018-2019-
2020 - Closing
nutrient cycles | END PRODUCTS | | | Design of Enzymatic Technologies of plant origin to obtain low risk bioactive molecules with biostimulant or phytosanitary activity | No data available | 2018 | FEDER Catalunya,
Acció | TECHNOLOGY | END PRODUCTS | | Valorization of urban and bio-waste by insec bioconversion for the generation of innovative products in strategic sectors. | No data available | 2022 | CIEN, Centro
Desarrollo
Tecnologico
Industrial | TECHNOLOGY | END PRODUCTS | | Novel organic recovery using Mobile Advanced technology | No data available | 2022 | Horizon 2020,
H2020-SFS | TECHNOLOGY | END PRODUCTS | |---|--|------|----------------------------|---------------|--------------| | On-site valorization alternatives of sewage sludge in vineyard soils, within the framework of the circular economy | No data available | 2021 | ARC - ACCIO | ORGANIC WASTE | END PRODUCTS | | Introduction in the
market of a new high
quality organic fertilizer
obtained by the use of
poultry dejection | https://ec.europa
.eu/environment/
eco-
innovation/projec
ts/en/projects/fer
pode | 2011 | EIP ECO-Innovation | ORGANIC WASTE | END PRODUCTS | | Green fertilizer upcycling from manure: Technological, economic and environmental sustainability demonstration | https://cordis.eur
opa.eu/project/id
/603744 | 2016 | Horizon 2020,
H2020-FP7 | END PRODUCTS | | | Pilot plant for
environmentally friendly
animal by-products
industries | https://cordis.eur
opa.eu/project/id
/603986 | 2017 | EIP ECO-Innovation | TECHNOLOGY | END PRODUCTS | | Innovative fertilizer from
urban waste, bio-char
and farm residues as
substitute of chemicals
fertilizers | http://www.lifere
safe.com/ | 2015 | LIFE+ | ORGANIC WASTE | TECHNOLOGY | | Management of organic waste using anaerobic co-digestion for its recycling as organic fertiliser | https://ec.europa
.eu/environment/
eco-
innovation/projec
ts/en/projects/ap
re | 2013 | EIP ECO-Innovation | MANAGEMENT | END PRODUCTS | | An innovative bio- economy solution to valorise livestock manure into a range of stabilised soil improving materials for environmental sustainability and economic benefit for European agriculture | https://cordis.eur
opa.eu/project/id
/308637/reportin
g/de | 2016 | Horizon 2020,
H2020-FP7 | ORGANIC WASTE | END PRODUCTS | | | | | I | | | |---|--|------|--|---------------|--------------| | Recycling of nutrients from residues of thermochemical processing of bagasse and straw | No data available | 2018 | No data available | ORGANIC WASTE | END PRODUCTS | | Sewage sludge to energy,
phosphorus and iron by
metallurgical phophorus
recycling in one process
step - Sewage sludge
treatment for
Nuremburg area | https://bmbf.naw
am-
erwas.de/de/proj
ect/krn-mephrec | 2019 | ERWASNET | ORGANIC WASTE | END PRODUCTS | | SYSTEMIC recognises Europe's challenge to tackle the increasing resources constraint and to facilitate the transition towards a more circular economy (COM,2015-614). SYSTEMIC addresses these needs by identifying systemic innovation approaches to recover and
recycle valuable mineral components from organic waste streams into new products and to integrate them optimally into a local or regional circular economy. | https://systemicp
roject.eu/ | 2021 | Horizon 2020,
H2020-IND-CE-
2016-17, CIRC-01-
2016-2017:
Systemic, eco-
innovative
approaches for the
circular economy:
large-scale
demonstration
projects | ORGANIC WASTE | END PRODUCTS | | REcovery and REcycling
of nutrients TURNing
wasteWATER into added-
value products for a
circular economy in
agriculture | http://www.wate
r2return.eu/ | 2020 | Horizon 2020,
H2020-CIRC-
2016TwoStage,
CIRC-02-2016-2017
- Water in the
context of the
circular economy | ORGANIC WASTE | END PRODUCTS | | Phosphorus REcovery for
FertiLisers frOm dairy
processing Waste | No data available | 2022 | Horizon 2020, EU
Marie Skłodoswka
Curie Innovative
Training Network | ORGANIC WASTE | END PRODUCTS | | Ammonia emission reduction in Mediterranean agriculture with innovate slurry fertigation techniques | https://www.lifea
rimeda.eu/ | 2021 | LIFE+ | ORGANIC WASTE | TECHNOLOGY | | | | I | | I | | |--|---|------|----------------------------|---------------|---------------| | Environmentally correct
and sustainable
management of pig
slurry based on
innovative technologies:
demonstration project
carried out in Aragón | http://www.life-
eswamar.eu/Inici
o.aspx | 2011 | LIFE+ | ORGANIC WASTE | TECHNOLOGY | | Improvement of the management, valorization and Marketing of livestock by-products through Innovation | http://www.adroc
hes.org/index.php
/proyectos/subpg
an | 2020 | AEI-AGRI - PDR | MANAGEMENT | | | Development of membrane prototypes to reduce ammonia emissions from manure in poultry and pig farms | http://ammoniatr
apping.com/ | 2020 | LIFE+ | TECHNOLOGY | END PRODUCTS | | Improvement of the liquid fraction of pig slurry and application through localized irrigation | https://www.cam
pogalego.com/es/
riego-con-
purines-un-
proyecto-
orensano-para-
fertilizar-los-
cultivos/ | 2019 | No data available | TECHNOLOGY | ORGANIC WASTE | | Synergic TPAD and O3
process in WWTPs for
Resource Efficient waste
management | http://lifesto3re.c
om/ | 2018 | LIFE+ | TECHNOLOGY | END PRODUCTS | | Improving innovation capacities of private and public actors for sustainable and profitable Recycling of LIVEstock WASTE | https://re-
livewaste.interreg
-med.eu/ | 2020 | Interreg-
Mediterranean | TECHNOLOGY | END PRODUCTS | | Valorisation of the digestate from pig manure as new fertilizers with an organic / mineral base and gradual release | https://www.life
mixfertilizer.eu/e
n/ | 2016 | LIFE+ | TECHNOLOGY | | | Transition towards a more carbon and nutrient efficient agriculture in Europe | https://www.nutr
i2cycle.eu/ | 2022 | Horizon 2020, | TECHNOLOGY | | | Improved Nutrient and
Energy Management
through Anaerobic
Digestion | https://inemadhr.
wixsite.com/inem
ad | 2016 | Horizon 2020,
H2020-FP7 | MANAGEMENT | | |--|---|------|---|---------------|--------------| | Interreg Vlaanderen
Nederland | No data available | 2022 | Interreg-
Vlaanderen-
Nederland | TECHNOLOGY | END PRODUCTS | | 4x4, demonstrating a flexible value chain to utilize biomass functionalities in the processing industry | https://bio4produ
cts.eu/about/ | 2020 | INTERREG North-
West Europe | TECHNOLOGY | END PRODUCTS | | Nutrient Management
and Nutrient Recovery
Thematic Network | https://nutriman.
net/project | 2021 | Horizon 2020, RUR-
15-2018 Thematic
networks compiling
knowledge ready
for practice | TECHNOLOGY | END PRODUCTS | | AGRIWASTEVALUE | https://www.agri
wastevalue.eu/fr/ | 2022 | INTERREG North-
West Europe | END PRODUCTS | | | Agri and food waste valorisation co-ops based on flexible multi-feedstocks biorefinery processing technologies for new high added value applications | http://agrimax-
project.eu/ | 2020 | Horizon 2020,
H2020-BBI-PPP-
2015-2-1,
BBI.VC3.D5-2015 -
Valorisation of
agricultural
residues and side
streams from the
agro-food industry | TECHNOLOGY | END PRODUCTS | | Innovative Manure
Biofertilizers | http://integro.co.
ua/ | 2018 | Horizon 2020,
H2020 - SME INST | END PRODUCTS | | | From microbial interactions to new-concept biopesticides and biofertilizers | https://eventi.fm
ach.it/INTERFUTU
RE | 2020 | Horizon 2020,
H2020-MSCA | DISSEMINATION | END PRODUCTS | | Solutions for improving
Agroecosystem and Crop
Efficiency for water and
nutrient use | https://www.sola
ce-
eu.net/about.htm
I | 2022 | Horizon 2020,
H2020-SFS | END PRODUCTS | MANAGEMENT | |---|--|------|--|---------------|--------------| | Conversion of diluted mixed urban bio-wastes into sustainable materials and products in flexible purple photo biorefineries | https://deep-
purple.eu/ | 2023 | Horizon 2020, BBI | ORGANIC WASTE | | | REsources from URban
Blo-waSte | http://www.wast
e2bio.com/ | 2019 | Horizon 2020,
H2020 - ERA-NET
BESTF3 & Co-
financed by CDTI
and MINECO | ORGANIC WASTE | MANAGEMENT | | Sustainable cleaning
agent and organic
fertilizer recovery from
sewage sludge | https://www.rene
wtech.co/ | 2019 | Horizon 2020,
H2020 - SME INST | TECHNOLOGY | END PRODUCTS | | Developing
multifunctional fertilisers
for phosphorus and iron
supply | https://www.susf
ert.eu/ | 2023 | Horizon 2020, BBI | END PRODUCTS | | | Soil Care for profitable and sustainable crop production in Europe | https://www.soilc
are-
project.eu/en/ | 2021 | Horizon 2020, EIP-
Agri | CROP SYSTEMS | | | Upscale and demonstration of a integrated novel microwave pretreatment system for efficient production of biogas from anaerobic digestion of pig manure to create a sustainable waste management system | https://www.bio
wave-ad.eu/ | 2018 | Horizon 2020,
FTIPilot | TECHNOLOGY | MANAGEMENT | | Recovery and Utilisation
of Nutrients for Low
Impact Fertiliser | http://www.run4l
ife-project.eu | 2021 | Horizon 2020,
H2020-CIRC-
2016TwoStage,
CIRC-02-2016-2017
- Water in the
context of the
circular economy | ORGANIC WASTE | END PRODUCTS | | Biobased Fertilisers
Achterhoek/Kunstmestvr
ije Achterhoek | http://www.kunst
mestvrijeachterho
ek.nl | 2021 | Interreg-
Vlaanderen-
Nederland | ORGANIC WASTE | END PRODUCTS | |--|---|----------------------|---|---------------|--------------| | Combining algal and anaerobic digestion technology to reduce and reuse nutrient rich digestate converting nutrients to create algal biomass for sustainable animal feeds | https://www.bior
efine.eu/projects/
alg-ad | 2020 | INTERREG North-
West Europe | TECHNOLOGY | END PRODUCTS | | Improving livestock effluents characterization by innovating methods and models for a better agronomic assessment | http://www.rmt-
fertilisationetenvi
ronnement.org/m
oodle/pluginfile.p
hp/1806/mod_res
ource/content/2/
EffluentsElevage_
Synth%C3%A8sel
nnovationsAgron
omiques_mars20
14.pdf | 2012 | CasDAR + ADEME | ORGANIC WASTE | END PRODUCTS | | Complete the nitrogen cycle in the region Grand Est | https://grandest.c
hambre-
agriculture.fr/pro
ductions-
agricoles/referenc
es-
agronomiques/pa
rtage-pour-
boucler-le-cycle-
de-lazote/ | 2022 | EIP-AGRI, FEADER,
Grand Est region | MANAGEMENT | | | Optimize organic products use at a territorial scale | https://grandest.c
hambre-
agriculture.fr/pro
ductions-
agricoles/referenc
es-
agronomiques/pr
oterr-optimiser-
lusage-des-
produits-
organiques-a-
lechelle-
territoriale/ | 2020 | ADEME - GRAINE
Call | MANAGEMENT | | | Environmental impacts of recycle organic waste products on cultivated ecosystems | https://www6.inr
ae.fr/valor-
pro/SOERE-PRO-
Presentation-de-l-
observatoire | No data
available | ADEME, Agence de
l'Eau Rhin-Meuse
(=Rhin-Meuse
water Agency),
INRAE (National
Institute of | ORGANIC WASTE | | | | | | Agricultural, Food and Environment | | | |--
--|------|--|---------------|--------------| | | | | Research) | | | | Evaluation of treatment strategy and agricultural recycling of organic matter from farming systems with a major role on climate change mitigation | No data available | 2015 | ADEME (REACCTIF
Programme) | ORGANIC WASTE | MANAGEMENT | | Territorial strategies of methanisation to combine climate change, nitrogen pollution and soil quality improvement challenges. | No data available | 2019 | ADEME (REACCTIF
Programme) | TECHNOLOGY | MANAGEMENT | | Reducing ammonia pollutions at local scale | https://hautsdefr
ance.chambres-
agriculture.fr/act
ualites/detail-de-
lactualite/actualit
es/epandair-une-
agriculture-au-
service-dun-air-
meilleur/ | 2020 | ADEME - Agr'Air
Call | DISSEMINATION | | | Soil fertility management
by sequestration of
stable carbon from
thermochemical
conversion of residual
biomass from the
compost sector | https://www.iar-
pole.com/projets/
biochar-2021/ | 2021 | FUI (Special French
interministerial
Fund) | DISSEMINATION | | | Nutrient Recycling –
from pilot production to
farms and fields | https://www.nwe
urope.eu/projects
/project-
search/renu2farm
-nutrient-
recycling-from-
pilot-production-
to-farms-and-
fields/ | 2020 | INTERREG North-
West Europe | TECHNOLOGY | END PRODUCTS | | Sustainable Algae
Biorefinery for
Agriculture aNd
Aquaculture | http://www.eu-
sabana.eu | 2020 | Horizon 2020,
H2020-BG-2016-1,
BG-01-2016 - Large-
scale algae biomass
integrated
biorefineries | TECHNOLOGY | END PRODUCTS | | Duckweed technology
for improving nutrient
management and
resource efficiency in pig
production systems | http://www.life-
lemna.eu/es/ | 2019 | LIFE+ | MANAGEMENT | TECHNOLOGY | |---|---|----------------------|---|---------------|---------------| | Phosphorus efficiency in
Gallus gallus and Sus
scrofa: bridging the gaps
in the phosphorus value
chain | http://pegasus.fb
n-
dummerstorf.de | 2020 | European Research
Area Network on
Sustainable Animal
Production ERA-NET
SusAn programme | MANAGEMENT | ORGANIC WASTE | | Phosphate recovery from iron phosphate and iron based phosphate adsorbents | http://www.wets
us.nl/phosphate-
recovery | No data
available | Kemira, ICL, Green
Water Solution,
Water authority
Brabantse Delta,
waterschapsbedrijf
Limburg+ national
funding, NWO | TECHNOLOGY | END PRODUCTS | | Leibniz ScienceCampus
Rostock Phosphorus
research | https://wissensch
aftscampus-
rostock.de | No data
available | Leibniz Association funding | DISSEMINATION | | | Efficient carbon, nitrogen
and phosphorus cycling
in the european agri-
food system and related
up- and down-stream
prcoesses to mitigate
emissions | http://www.circul
aragronomics.eu | 2022 | Horizon 2020,
Closing loops at
farm and regional
levels to mitigate
GHG emissions and
environmental
contamination -
focus on carbon,
nitrogen and
phosphorus cycling
in agro-ecosystems | MANAGEMENT | | | Demonstrative model of circular economy process in a high quality dairy industry | http://www.lifed
op.eu/en | 2021 | INTERREG 2 Seas | ORGANIC WASTE | END PRODUCTS | | Environmentally-friendly
Management of Organic
Fertilizers in Agriculture | http://database.c
entralbaltic.eu/pr
oject/36 | 2019 | INTERREG and ERDF | MANAGEMENT | END PRODUCTS | | Integrated pig manure digestate processing for direct injection of organic liquid fertiliser into irrigation systems | http://www.smar
tfertirrigation.eu/
en | 2018 | LIFE+ | TECHNOLOGY | END PRODUCTS | |--|---|----------------------|---|---------------|--------------| | Nutrient recovery from
biobased Waste for
fertiliser production | http://www.newf
ert.org | 2018 | Horizon 2020,
H2020-BBI-PPP-
2014-1,
BBI.VC4.R10 -
Nutrient recovery
from biobased
waste streams and
residues (Bio-based
industries Public-
Private
Partnerships) | TECHNOLOGY | END PRODUCTS | | Enhanced use of fur animal manure | https://www.luke
.fi/en/projects/tu
rkisteho | 2019 | European
Agricultural Fund
for Rural
Development
(EAFRD) 2014-2020 | ORGANIC WASTE | MANAGEMENT | | Protein recovery and recycling from animal by-products processes | http://www.bypr
otval.eu | 2021 | LIFE+ | ORGANIC WASTE | END PRODUCTS | | Replacement of
Contentious Inputs in
organic farming Systems | https://www.rela
cs-project.eu | 2022 | Horizon 2020,
H2020-SFS | TECHNOLOGY | | | Advanced manure standards for sustainable nutrient management and reduced emissions | https://projects.in
terreg-
baltic.eu/projects
/manure-
standards-92.html | 2019 | INTERREG Baltic Sea
Region Programme | ORGANIC WASTE | | | European cluster for biorefinery projects | https://www.bior
efine.eu | No data
available | INTERREG North-
West Europe | DISSEMINATION | | | Platform on Integrated
Water Cooperation | http://www.bsrw
ater.eu | 2021 | INTERREG Baltic Sea
Region Programme | DISSEMINATION | | | Dry anaerobic digestion as an alternative management & treatment solution for sewage sludge | http://www.life-
anadry.eu/index.p
hp/en | 2019 | LIFE+ | ORGANIC WASTE | END PRODUCTS | |--|--|------|---|---------------|--------------| | Nutrients, energy and livelihood from biogas plants to rural areas | http://www.syke.
fi/biokaasulaitoks
estaravinteita | 2019 | EIP / Finnish
Ministry of
Agriculture and
Forestry | TECHNOLOGY | END PRODUCTS | | VITiculture Innovative
Soil Organic Matter
management: variable-
rate distribution system
and monitoring of
impacts | https://en.lifevitis
om.com | 2019 | LIFE+ | MANAGEMENT | END PRODUCTS | | Development of Processes to Obtain Enzymes During the Composting of Animal Manure for their Potential Use as Biofertilizer | No data available | 2012 | FONDECYT | | | | Development of technological processes for the slurry management and the revaluation of manure to obtain biofertilizers | No data available | 2012 | Innova Bio-Bio | | | | Development of
technological processes
for the management of
slurry and the
revaluation of manure to
obtain biofertilizers | No data available | 2015 | FONDEF | | | | Management of solid waste generated from the work in a mobile work unit through an approved procedure and protocol for compost processing, replicable to other future experiences in the country | No data available | 2015 | FONDEF | | | | Technical and commercial validation of new biofertilizers formulated based on nanobiotechnology | No data available | 2017 | CORFO | | | |---|--|------|---|---------------|---------------| | Formulation of an environmentally neutral E-FORTE fertilizer, from biomass from PTAS | No data available | 2017 | CORFO | | | | Characterization and valorization of new biofertilizers, based on solid residues from the harvest and collection of beetroot (Beta vulgaris) in the sugar manufacturing process | No data available | 2017 | CORFO | | | | Re-focusing phosphorus use in the UK food system | http://wp.lancs.ac
.uk/rephokus | 2020 | UK Global Food
Security
programme led by
BBSRC, ESRC, NERC
and the Scottish
government | MANAGEMENT | | | Demonstration of an integrated innovative biorefinery for the transformation of Municipal Solid Waste (MSW) into new BioBased products | http://www.urbio
fin.eu | 2021 | Horizon 2020, BBI | TECHNOLOGY | END PRODUCTS | | Efficient and sustainable use of poultry manure | https://www.luke
.fi/en/producers-
initiative-give-
rise-to-the-
teholanta-power-
manure-project/ | 2019 | European
Agricultural Fund
for Rural
Development
(EAFRD) 2014-2020 | TECHNOLOGY | ORGANIC WASTE | | Sustainable up-cycling of agro-, agrofood and fisheries residues in horticulture and agriculture as bioenergy, biochar and chitin-rich products | https://www.inte
rreg2seas.eu/en/
Horti-blueC | 2021 | Interreg-
Vlaanderen-
Nederland | ORGANIC WASTE | END PRODUCTS | | Direct and indirect biorefinery technologies |
http://www.bbi-
indirect.eu | 2019 | Horizon 2020, BBI | ORGANIC WASTE | END PRODUCTS | |---|---|------|---|---------------|---------------| | for conversion of organic
side-streams into
multiple marketable
products | | | | | | | Reducing nitrogen loss
from livestock
production by promoting
the use of slurry
acidification techniques
in the Balti Sea Region | http://www.baltic
slurry.eu | 2019 | Interreg Baltic Sea
Region | TECHNOLOGY | END PRODUCTS | | Includes phosphorus
filtering from artificially
drained agricultural
fields | https://www.proe
fstation.be/projec
t/iwt-a_propeau | 2018 | IWT (Belgium) and
EU funding | DISSEMINATION | | | Manure on Demand | http://www.mest
opmaat.eu | 2019 | Interreg VA | ORGANIC WASTE | END PRODUCTS | | CHIckens Manure
Exploitation and
RevAluation | https://www.life-
chimera.eu | 2019 | LIFE+ | TECHNOLOGY | END PRODUCTS | | Bio-based FERtilising products as the best practice for agricultural management | https://www.bfer
st.eu | 2024 | Horizon 2020, BBI | MANAGEMENT | ORGANIC WASTE | | A Disruptive Innovative Cooperative Entrepreneurial (DICE) education, training and skills development programme rolling out the next generation of Agri Biorefinery and Valorisation Bioeconomy leaders | https://cordis.eur
opa.eu/project/id
/860477 | 2023 | Horizon 2020,
MSCA-ITN-2019 -
Innovative Training
Networks | DISSEMINATION | END PRODUCTS | | Integrated business
model for turning Bio-
waste and sewage sludge
into renewable energy
and agri-urban fertilisers | http://www.lifein
brief.eu/?lang=en | 2018 | LIFE+ | MANAGEMENT | | | FArming Tools for external nutrient Inputs and water Management | http://www.fatim
a-h2020.eu | 2018 | Horizon 2020,
H2020-SFS | MANAGEMENT | | |---|--|------|--|---------------|--------------| | The Use of Bio-Effectors
for Crop Nutrition and
enhancing nutrient use
efficiency | http://www.biofe
ctor.info | 2017 | Horizon 2020,
H2020-FP7 | END PRODUCTS | TECHNOLOGY | | Valorization of pig
carcasses through their
transformation into
biofuels and organic
fertilizers | http://www.lifeva
lporc.eu | 2017 | LIFE+ | ORGANIC WASTE | TECHNOLOGY | | Swine-farm revolution | http://www.depu
rgan.com | 2017 | Horizon 2020,
H2020 - SME INST | TECHNOLOGY | END PRODUCTS | | Novel Release-on-
demand micronutrient
fertilisers for crops | http://cordis.euro
pa.eu/project/rcn
/195870_en.html | 2017 | Marie Skłodowska-
Curie Individual
Fellowships | END PRODUCTS | | | Supercritical water co-
oxidation (SCWcO) of
urban sewage sludge and
wastes | http://www.lo2x.
com/eng/ | 2017 | LIFE+ | ORGANIC WASTE | | | Zinc Interaction with
Phosphorus in Root
Uptake | http://cordis.euro
pa.eu/project/rcn
/189891_en.html | 2017 | Horizon 2020,
H2020-FP7 | END PRODUCTS | | | Cost efficient algal cultivation systems – A source of emission control and industrial development | http://www.bonu
sportal.org/micro
algae | 2016 | BONUS Innovation
funding 2012 (EU
Blue Growth
Strategy and EU
Strategy for the
Baltic Region) | END PRODUCTS | | | Valorisation of the digestate from pig manure as new fertilizers with an organic / mineral base and gradual release | https://www.life
mixfertilizer.eu/e
n | 2016 | LIFE+ | ORGANIC WASTE | TECHNOLOGY | | Crops and ANimals
TOGETHER | http://cordis.euro
pa.eu/project/rcn
/101746_en.html | 2015 | Horizon 2020,
H2020-FP7 | DISSEMINATION | | | Demonstration of
efficient Biomass Use for
Generation of Green
Energy and Recovery of
Nutrients | http://www.inno
energy.com/case-
study/debugger | 2015 | EIT KIC InnoEnergy
& LIFE+ | ORGANIC WASTE | END PRODUCTS | |---|--|------|------------------------------------|---------------|--------------| | Enhancing Resource
Uptake from Roots
Under Stress in Cereal
Crops | http://www.euro
ot.eu | 2015 | Horizon 2020,
H2020-FP7 | DISSEMINATION | | | Sewage sludge reuse
Phosphate recovery with
an innovative HTC
technology (HTCycle) | http://cordis.euro
pa.eu/project/rcn
/197563_en.html | 2015 | Horizon 2020,
H2020 - SME INST | TECHNOLOGY | END PRODUCTS | | Nutrient recovery from manure | http://www.reuse
waste.eu | 2015 | EU Marie Curie
Training Network | DISSEMINATION | | | Reducing mineral
fertilisers and agro-
chemicals by recycling
treated organic waste as
compost and bio-char
products | http://www.fertip
lus.eu | 2015 | Horizon 2020,
H2020-FP7 | TECHNOLOGY | END PRODUCTS | | PYROCHAR | http://www.pyroc
har.eu | 2015 | Horizon 2020,
H2020-FP7 | TECHNOLOGY | | | SmartSOIL Tool | https://projects.a
u.dk/smartsoil/ | 2015 | Horizon 2020,
H2020-FP7 | MANAGEMENT | | | Reducing mineral fertilisers & chemicals use in agriculture by recycling treated organic waste as compost and bio-char products | http://www.refer
til.info | 2015 | Horizon 2020,
H2020-FP7 | TECHNOLOGY | END PRODUCTS | | Accelerating Renewable
Energies through
valorisation of Biogenic
Organic Raw Material | http://4b.nweuro
pe.eu/index.php?
act=project_detail
&id=5364 | 2015 | INTERREG North-
West Europe | DISSEMINATION | | | | | I | | | | |---|---|------|--------------------------------|---------------|--------------| | Recovery of Phosphorus
from Sewage Sludge and
Sewage Sludge Ashes
with the thermo-
reductive RecoPhos-
Process | http://www.reco
phos.org | 2015 | Horizon 2020,
H2020-FP7 | TECHNOLOGY | | | Transfer of knowledge in agriculture as an added value in protecting the environment | https://www.kee
p.eu/keep/project
-ext/21591/AGRI-
KNOWS?ss=ab209
e971da938870ba
1289ec2618b02&
espon= | 2014 | INTERREG | DISSEMINATION | | | Achieving good water
QUality status in
intensive Animal
production areas | http://ec.europa.
eu/environment/l
ife/project/Projec
ts/index.cfm?fuse
action=search.dsp
Page&n_proj_id=
3645 | 2014 | LIFE+ | END PRODUCTS | MANAGEMENT | | Marketable sludge derivatives from sustainable processing of wastewater in a highly integrated treatment plant | http://cordis.euro
pa.eu/result/rcn/
172107_en.html | 2013 | Horizon 2020,
H2020-FP7 | MANAGEMENT | END PRODUCTS | | Waste utilisation in phosphoric acid industry through the development of ecologically sustainable and environmentally friendly processes for a wide class of phosphorus-containing products | No data available | 2008 | Horizon 2020,
H2020-FP7 | TECHNOLOGY | END PRODUCTS | | Regional Development
and Integration of
unused biomass wastes
as Resources for Circular
products and economic
Transformation | http://www.nweu
rope.eu/projects/
project-
search/regional-
development-
and-integration-
of-unused-
biomass-wastes-
as-resources-for-
circular-products-
and-economic-
transformation-
re-direct | 2019 | INTERREG North-
West Europe | TECHNOLOGY | | | Converting Organic
Matters from European
urban and natural areas
into storable bio-Energy | http://www.comb
ine-nwe.eu | 2015 | INTERREG North-
West Europe | TECHNOLOGY | ORGANIC WASTE | |---|---|----------------------|---|---------------|---------------| | Baltic Forum for
Innovative Technologies
for Sustainable Manure
Management | http://www.baltic
manure.eu | 2013 | INTERREG Baltic Sea
Region Programme | DISSEMINATION | | | Nutrient recyclates for organic farming | http://brimstonef
ertilizers.com/?Br
imstone_Fertilizer
sWinning_van
_essenti%C3%ABI
e_nutri%C3%ABnt
en_uit_reststrom
en | 2018 | DBU (Foundation for Environment, Germany). | ORGANIC WASTE | | | Scaling-up APPlicative microbial electrochemical technologies for agroindustrial wastewater recovery | http://sites.unimi.
it/e-biocenter | 2018 | Project (RBSI14JKU3) financed by the SIR2014 Grant, Italian Ministry of University and Research (MIUR). | TECHNOLOGY | END PRODUCTS | | From waste to fertilizer -
phosphorus and carbon
waste mining as nutrient
recycling strategy for the
future | https://forschung.
boku.ac.at/fis/suc
hen.projekt_uebe
rsicht?sprache_in
=en&ansicht_in=
&menue_id_in=3
00&id_in=10302 | 2018 | The Austrian
Research
Promotion Agency
(FFG) | ORGANIC WASTE | TECHNOLOGY | | Process for
phosphorus recovery process from sewage sludge incineration ash | http://www.klaer
schlamm.zh.ch | No data
available | Zurich Kanton
funding | TECHNOLOGY | | | Closing the Global
Nutrient Loop | No data available | 2020 | German BMBF | END PRODUCTS | | | The Biochar-Soil-Plant | No data available | 2020 | Natural | END PRODUCTS | | |--|--|----------------------|--|---------------|--------------| | Interface, probing the potential for a sustainable phosphorus fertiliser. | | | Environment
Research Council | | | | Technological transition of the Flemish biogas sector towards innovative business models with increased profitability and reduced support dependence | http://www.bioga
s-e.be/transbio | 2019 | Co-funded by
Flanders Innovation
& Entrepreneurship
(IWT-VIS) | TECHNOLOGY | END PRODUCTS | | Symbiotic partnership
network formed to
coordinate companies
related to nutrient
recycling | https://www.bsag
.fi/en/action/nutri
ent-cycling-
business-
ecosystem/ | 2018 | TEKES, the Finnish
Funding Agency for
Innovation | DISSEMINATION | | | Pyrolysis of sewage
sludge and heavy metal
elimination for
phosphorus recycling | http://www.fibl.o
rg/en/projectdata
base/projectitem/
project/1195.html
http://www.fibl.o
rg/en/projectdata
base/projectitem/
project/1253.html | 2018 | KTI Commision for
technology and
innovation | TECHNOLOGY | END PRODUCTS | | New innovative methods
for nutrient recovery and
harvesting in wastewater
treatment plants | No data available | No data
available | No data available | END PRODUCTS | | | Algae delivering waste phosphorus to soil and crops | https://www.bios
c.de/algalfertilizer
_en | 2017 | BioSC BOOST Fund
NRW-
Strategieprojekt,
Ministry of
Innovation, Science
and Research of the
German State of
North Rhine-
Westphalia. | ORGANIC WASTE | END PRODUCTS | | AVA-CleanPhos
phosphorus recovery
process from sewage
sludge by hydrothermal
carbonization (HTC) | http://sustainabili
tyconsult.com/ne
ws/159-press-
release-valuable-
phosphorus-from-
sewage-sludge-
ava-cleanphos-
pilot-plant- | No data
available | DBU (Germany) | END PRODUCTS | | | | comes-online | | | | | |---|--|----------------------|---|---------------|---------------| | Recovering metals from sewage sludge and similar substances by hyperaccumulator plants | http://www.alche
mia-
nova.net/en/proj
ects/bio-ore/ | 2014 | 75% funded by FFG
from the Austrian
Ministry of
Infrastructure and
Innovation | END PRODUCTS | | | Nutrient recovery and
closing loops with biogas
technology in Western
Finland | https://ec.europa
.eu/eip/agricultur
e/en/news/inspir
ational-ideas-
biovakka-manure-
management-
produce-biogas-
and-nutrients-
finland | No data
available | Horizon 2020, EIP-
Agri | TECHNOLOGY | ORGANIC WASTE | | ElectroDialytic recovery of sludge incineration ashes (Danish: ElektroDialytisk genanvendelse af slamASKe) | http://www.kruge
r.dk/en | 2016 | Danish EPA & MUDP 2014 (Environmental Technology Development and Demonstration Program, 2014) | TECHNOLOGY | | | Low temperature CO2
phosphorus extraction
from sewage sludge to
produce phosphoric acid
(Budenheim process) | https://www.bud
enheim.com/en/b
udenheim-the-
company/history/
conquering-the-
world-with-
phosphate | No data
available | Private company | TECHNOLOGY | END PRODUCTS | | Phosphorus recovery
from sewage sludge with
calcium silicate hydrate
(CSH) | http://www.iwar.
tu-
darmstadt.de/me
dia/iwar_abwasse
rtechnik/abgeschl
osseneforschungs
projekte/FIXPhos
_Poster_IFAT2012
.pdf | No data
available | BMBF (Germany) | END PRODUCTS | | | Transdisciplinary processes for sustainable phosphorus management | http://www.globa
ltraps.ch | 2014 | IFDA and private funding | DISSEMINATION | | | The holistic optimization of the biogas process chain focusing on its operational, material, energetic and ecological efficiency. | https://www.igb.f
raunhofer.de/en/
research/compet
ences/molecular-
biotechnology/fu
nctional-
genomics/next-
generation-
sequencing/gobi.
html | 2016 | German Ministry of
Education and
Research | TECHNOLOGY | | |---|--|----------------------|---|---------------|--------------| | Water cradle-to-cradle
(C2C) in intensive
livestock farming | http://www.biore
fine.eu/cluster/pr
ojects/h2oc2c | 2013 | Province West-
Flanders (Belgium) | TECHNOLOGY | | | Manufacture of organic fertilizers derived from livestock manure | http://www.phos
phorusplatform.e
u/images/Confere
nce/ESPC2-
materials/Convers
%20IF2O%20post
er%20ESPC2.pdf | No data
available | No data available | END PRODUCTS | MANAGEMENT | | Improved Phosphorus
Resource efficiency in
Organic agriculture Via
recycling and Enhanced
biological mobilization | https://improve-
p.uni-
hohenheim.de | 2017 | Private company | DISSEMINATION | | | Transforming sewage sludge to energy, fertiliser and iron in a single step using metallurgical phosphorus recycling | https://bmbf.naw
am-
erwas.de/en/proj
ect/krn-mephrec
https://www.nuer
nberg.de/internet
/krn_mephrec | No data
available | BMBF (germany) | TECHNOLOGY | | | Finnish tool to to plan regional manure nutrient recycling | http://jukuri.luke.
fi/handle/10024/
481761 | No data
available | Finland government | TECHNOLOGY | END PRODUCTS | | Manure valorization with manure treatment | No data available | No data
available | No data available | TECHNOLOGY | | | | | | I | I | I | |---|--|----------------------|---|---------------|---------------| | Finnish tool to calculate manure quantity and quality | http://jukuri.luke.
fi/handle/10024/
540238 | No data
available | Finland government | TECHNOLOGY | ORGANIC WASTE | | Green fertilizers from digestate and manure | http://www.dlvin
novision.be/dlvin
novision/en/mip-
icon-2011-
nutricycle | 2013 | MIP ICON | END PRODUCTS | ORGANIC WASTE | | Nutrient recycling tool for municipalities and regions | http://www.ympa
risto.fi/en-
US/Nutrient_Neut
ral_Municipality | 2017 | Six Finish
municipalities | DISSEMINATION | MANAGEMENT | | Evaluation of
technologies for nutrient
recovery at Grødaland
biogas plant in Rogaland,
Norway. | No data available | 2015 | Private company | TECHNOLOGY | | | Transition towards
Sustainable Nutrient
Economy in Finland | https://www.luke
.fi/projektit/nuts-
transition-
towards-sustai | 2015 | Finland government | DISSEMINATION | | | Ochre and biochar:
technologies for
phosphorus capture and
re-use | For links to papers arising from this research see: http://www.resea rch.ed.ac.uk/port al/en/persons/kat e-heal(aa3451d2-c9c3-4802-9874-a03baa9b7fc5)/p ublications.html | 2016 | University of
Edinburgh & Icon
Water, Australia | TECHNOLOGY | END PRODUCTS | | Better utilisation of phosphorous derived from organic waste products in Norway. | No data available | 2017 | Norwegian
Environmental
Directorate | MANAGEMENT | ORGANIC WASTE | | Efficient phosphate recovery from agro waste streams by enzyme, strain, and process engineering | https://www.bios
c.de/p-eng_en | 2016 | BioSC BOOST Fund
NRW-
Strategieprojekt ,
Ministry of
Innovation, Science
and Research of the | ORGANIC WASTE | TECHNOLOGY | | | | | German State of
North Rhine-
Westphalia. | | | |---|---|----------------------|---|---------------|------------| | Renewable phosphorus fertilizer from livestock effluent to prevent water eutrophication | http://www.ifib20
15.talkb2b.net/m
embers/details/4
1
http://users.unim | No data
available | CARIPLO
Foundation | END PRODUCTS | | | | i.it/ricicla | | | | | | Potential of sewage sludge phosphorus in plant production | No data available | 2018 | Finland Ministry of
Agriculture | END
PRODUCTS | | | Recovering phosphorus
from sewage sludge to
fertilizer | No data available | 2015 | Finland Ministry of
Agriculture | END PRODUCTS | | | From sewage sludge to fertilizers and soil improvers | http://www.wur.
nl/nl/project/Slud
ge2Soil.htm | 2017 | Dutch waterboards
and sludge
treatment
companies | END PRODUCTS | | | Holistic decision support for slurry storage and treatment | http://wp.lancs.ac
.uk/slurry-max | 2018 | NERC (United
Kingdom) | DISSEMINATION | TECHNOLOGY | | Optimal Valorization of
Digestate with nitrogen,
phosphorus and
potassium recovery | http://www.ovali
e-
innovation.com/e
n/valodim-2 | 2018 | French Bank for industry (BPI) | TECHNOLOGY | MANAGEMENT | | Clean production and management of slurry in swine production systems of European Union countries, for the evaluation and validation of environmental solutions in Chile, as a strategic factor for the competitiveness of the sector | No data available | 2004 | FIA | MANAGEMENT | | | Ekiji: anaerobic fermentation of agricultural waste for the production of biofertilizers | No data available | 2008 | FIA | END PRODUCTS | | | Energy recovery of agricultural waste in the Province of Valdivia, integrated into a sustainable supply management system, for the production of biogas in centralized cogeneration units, biofertilizers and reduction of pollutants | No data available | 2008 | FIA | MANAGEMENT | | |---|-------------------|------|------------|------------|--------------| | Slurry treatment plant
with biodigester and
electrical co-generation
for irrigation of
biofertilizer | No data available | 2014 | MINENERGIA | TECHNOLOGY | END PRODUCTS |