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water wetlands). First we identified the metacommunity 
structure that better fitted these microcrustacean assem-
blages. Then, we used hierarchical variation partitioning 
to quantify the relative influences of environmental filters 
and the distance among wetlands on the identified struc-
ture. Our results showed that under strong environmental 
filtering metacommunity structures were non-random. We 
also noted that even passive dispersers, that are supposed 
to be poorly spatially filtered, showed spatial signals at a 
large geographical scale. However, some difficulties arose 
when inferring biotic interactions at finer-scale spatial sig-
nals. Overall, our study shows the potential of elements of 
metacommunity structure combined with variation parti-
tion techniques to detect environmental drivers and broad-
scale patterns of metacommunity structure, and that some 
caution is needed when interpreting finer-scale spatial 
signals.

Keywords Moran eigenvector maps · Salinity · 
Copepoda · Cladocera · Ostracoda

Introduction

Understanding the mechanisms that determine the assem-
bly of species into local communities is a key question 
in community ecology. Empirical evidence suggests that 
these mechanisms can be driven by environmental factors 
(Heino 2011; Fernandes et al. 2014), although most avail-
able studies have analyzed the influence of the environment 
on organisms from a local perspective (e.g., Bagella et al. 
2010). As a consequence, community dynamics at regional 
scales had been largely overlooked until the popularization 
of the concept of metacommunity (Leibold et al. 2004). 
Metacommunities have been defined as “sets of local 

Abstract Metacommunity approaches are becoming 
popular when analyzing factors driving species distribu-
tion at the regional scale. However, until the populariza-
tion of the variation partitioning technique it was difficult 
to assess the main drivers of the observed patterns (spa-
tial or environmental). Here we propose a new framework 
linking the emergence of different metacommunity struc-
tures (e.g., nested, Gleasonian, Clementsian) to spatial and 
environmental filters. This is a novel approach that pro-
vides a more profound analysis of how both drivers could 
lead to similar metacommunity structures. We tested this 
framework on 110 sites covering a strong environmen-
tal gradient (i.e., microcrustacean assemblages organ-
ized along a salinity gradient, from freshwater to brackish 
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communities, potentially linked by dispersal” (Holyoak 
et al. 2005), thus introducing the importance of regional 
processes in structuring local communities. The inclusion 
of a metacommunity perspective serves to help understand 
how the links between dispersal ability, environmental fac-
tors and biotic interactions affect the assembling of spe-
cies within landscapes (e.g., Leibold et al. 2004; Cottenie 
2005).

Within the metacommunity framework, multiple ide-
alized non-random patterns of species distribution have 
been described: checkerboard, nested, evenly spaced, Cle-
mentsian and Gleasonian distributions (Leibold and Mik-
kelson 2002). These idealized structures are the result of 
ecologists’ efforts to typify the observed patterns of spe-
cies distribution among sites. A checkerboard structure 
would correspond to a metacommunity composed of pairs 
of mutually exclusive species (Diamond 1975). Tradition-
ally, the origin of checkerboard structures has been related 
to biotic interactions, such as competitive exclusion (Stone 
and Roberts 1992). Abiotic processes determining spe-
cies distributions could also contribute to create a variety 
of metacommunity structures. In this sense, environmen-
tal gradients can be understood as filters that include or 
exclude species in local communities because the organ-
isms’ traits may match or mismatch the selective character-
istics of the environment (Poff 1997; McAbendroth et al. 
2005). For example, nestedness occurs when species-poor 
assemblages are subsets of successively larger assemblages 
(Atmar and Patterson 1993). The loss of species across 
sites has been frequently related to dispersal abilities (e.g., 
De Bie et al. 2012; Cañedo-Argüelles et al. 2015) but envi-
ronmental gradients could also explain the appearance of 
nested structures (e.g., Wright et al. 1997; Tornés and Ruhí 
2013). Environmental gradients can also lead to other 
metacommunity structures. For instance, if several species 
compete along an environmental gradient, then their abil-
ity to exploit alternative resources would determine their 
distribution, creating an evenly spaced structure at the 
regional scale (Tilman 1982; Henriques-Silva et al. 2013). 
In contrast, Clementsian structures (Clements 1916) could 
emerge when groups of species with similar environmental 
requirements replace each other across an environmental 
gradient (Presley et al. 2010). Under this type of metacom-
munity structure, species and sites are organized in differ-
ent compartments, each one grouping sites that share spe-
cies with similar environmental boundaries (Lewinsohn 
et al. 2006). The identification of such compartments is of 
ecological relevance, and may be analyzed independently 
of each other since different metacommunity dynamics 
may operate in different compartments, affecting the final 
species distribution (Presley et al. 2010). Finally, commu-
nities can change in composition gradually along the envi-
ronmental gradient, since individual species may present 

somewhat idiosyncratic responses to abiotic factors, with 
coexistence resulting from chance similarities in require-
ments or tolerances (Presley et al. 2010). In such cases, a 
Gleasonian structure would arise (Gleason 1926). Over-
all, environmental gradients may be important drivers of 
metacommunity structure, creating non-random and eco-
logically meaningful patterns such as nested, Clementsian, 
Gleasonian and evenly spaced distributions.

Furthermore, many studies have already evidenced the 
influence of geographical distances between sites on bio-
logical similarities [e.g., distance decay of similarity con-
cept (Nekola and White 1999; Soininen et al. 2007)]. How-
ever, there is a surprising lack of empirical studies that 
explicitly include some kind of spatial information when 
analyzing metacommunity structure patterns (i.e., checker-
board, nested, evenly spaced, Clementsian and Gleasonian 
distributions). Available studies suggest that both envi-
ronmental and spatial filters may contribute to the “final” 
species distribution that configures the metacommunity 
structure (Henriques-Silva et al. 2013; Meynard et al. 2013; 
Heino et al. 2015), suggesting that the spatial configuration 
of local communities needs to be taken into account when 
studying metacommunities (e.g., Cottenie 2005; Brown 
et al. 2011). Many environmental gradients occur at hierar-
chical spatial scales, ranging from microhabitats to water-
sheds (Poff 1997; Díaz et al. 1998; Bonada et al. 2008). 
Thus, when including spatial information it is important to 
discriminate between broad- and fine-scale patterns, since 
they could be related to different ecological processes. 
While broadscale patterns are usually related to biogeo-
graphical constraints (e.g., climate expressed as weather) 
or dispersal/colonization limitations, fine-scale patterns are 
more usually related to biotic interactions (Borcard et al. 
2011). Recently developed techniques allow quantification 
of the importance of drivers operating at different scales in 
shaping communities (Dray et al. 2012). Here we expand 
their use to quantify their effect on the metacommunity 
structure, through elements of metacommunity structure 
(EMS) analysis.

Although EMS allows one to distinguish the observed 
structures, it does not inform about the drivers shaping such 
structures. In fact, both environmental and spatial drivers 
could lead to similar metacommunity structures (Fig. 1). 
In this sense, different metacommunity structures could be 
identified regarding their turnover type (negative indicat-
ing species loss structures, or positive indicating species 
replacement structures) and the gradualism of the species 
loss or replacements (from one by one species, correspond-
ing to evenly spaced or hyperdispersed structures to groups 
of species corresponding to Clementsian or clumped spe-
cies loss; see Fig. 1). Species loss structures would appear 
when species show different environmental tolerances or 
dispersal abilities, whereas species replacement structures 
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would emerge when species show similar tolerances but 
with different optima, or similar dispersal abilities but dif-
ferent dispersal sources resulting in population or assem-
blages overlaps (Fig. 1). However, the detection of such 
non-random structures in the species distribution could be 
difficult if, for example, species do not respond similarly 
to the same driver (Leibold and Mikkelson 2002). In these 
cases it is probable to find no significant coherence, which 
would indicate a random structure. Nevertheless, this does 
not necessary mean that species occur randomly, since they 
could be responding to different gradients (Presley et al. 

2010). Therefore, the existence of strong environmental 
gradients can be relevant from a metacommunity structure 
perspective.

Here we propose a novel framework linking environmen-
tal and spatial filtering to the emergence of different meta-
community structures. We also provide empirical evidence 
of its usefulness by applying it to two different data sets: one 
exemplifying a metacommunity under a strong environmen-
tal filter and another one excluding that filter. To do so, we 
used wetland microcrustacean assemblages distributed along 
a strong salinity gradient. We have chosen a salinity gradient 

Fig. 1  Conceptual framework 
diagram indicating the meta-
community structure expected 
under different types of filters: 
spatial or environmental. White 
ellipses indicate the sites, and 
black symbols the species. Spe-
cies tolerance (black vertical 
lines) and optima (black points) 
along the environmental gradi-
ent, indicated by the gray tri-
angle (wide part of the triangle 
corresponds to less environmen-
tal constraint, and the narrow 
part of the triangle to higher 
environmental constraint), are 
shown. The gray ellipses in the 
spatial filtering part indicate 
species dispersal range along 
the space (X–Y coordinates). 
Only the result of opposite 
situations in the type of turnover 
(“Species replacement” cor-
responding to examples 1 and 
2; or “Species loss” correspond-
ing to examples 3 and 4), and 
the degree of species boundary 
clumping (“hyperdispersed” 
corresponding to examples 1 
and 3; or “clumped” corre-
sponding to examples 2 and 4) 
are shown. Therefore the result-
ing combinations of characteris-
tics give the following different 
metacommunity structures: (1) 
an evenly spaced distribution, 
(2) a Clementsian distribution, 
(3) hyperdispersed species loss, 
(4) clumped species loss
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as the filter to be tested because salinity is known to strongly 
affect the distribution of aquatic biota (e.g., Boix et al. 2008; 
Bradley 2009; Gutiérrez-Cánovas et al. 2013). Our data set 
included freshwater (FW) and brackish water (BW) wetlands. 
We first predicted that the whole metacommunity would fol-
low a clumped association because species would generally 
segregate between FW and BW sites (i.e., the overall micro-
crustacean metacommunity structure would fit a Clementsian 
pattern). A priori, we expected that a strong environmental 
gradient would lead to a positive coherent structure (i.e., spe-
cies replacement or species loss structure in BW). But, without 
a strong environmental gradient (i.e., FW) a random distribu-
tion could emerge, assuming that no other key environmental 
or spatial filter was acting. Therefore, we expected to find a 
relatively more environmentally controlled metacommunity 
in BW than in FW. Secondly, as we studied highly efficient 
dispersal organisms (Sohn 1996; Lopez et al. 2002; Havel and 
Shurin 2004; Louette and De Meester 2005), we hypothesized 
that distance among wetlands should not constrain dispersal at 
the spatial scale used here. We therefore predicted that envi-
ronmental conditions would be more important than spatial 
wetland distribution in shaping metacommunities.

Materials and methods

Study site, field sampling and environmental variables

This study was conducted in 110 wetlands in Catalonia 
(north-eastern Iberian Peninsula; Fig. 2). Since we were pri-
marily interested in analyzing the salinity effect, the studied 
wetlands encompassed a wide conductivity gradient ranging 

from 0.2 to 119 mS cm−1. According to its mean conductiv-
ity value, two wetland types were distinguished (Boix et al. 
2008): FW wetlands (FW; conductivity <5 mS cm−1), and 
BW wetlands (BW; conductivity >5 mS cm−1). Previous 
studies did not find significant differences in species com-
position when comparing permanent and temporary BW 
wetlands (Boix et al. 2008), so we have considered tem-
porary and permanent wetlands of the BW type, and only 
permanent wetlands of the FW type. A total of 55 sites per 
typology were sampled. All studied wetlands were located 
below 800 m a.s.l. in order to ensure that they were under 
the influence of a Mediterranean climate. The survey took 
place in 2003 and 2007, with one visit per wetland (between 
June and July). Potential bias due to variation in sample 
timing (months and years) was checked with an analysis 
of similarity (factor month nested within factor year). No 
significant differences were observed for year (FW, global 
R = 0.045, P = 0.421; BW, global R = 0.591, P = 0.167) 
or month (FW, global R = −0.234, P = 0.722; BW, global 
R = 0.263, P = 0.276), indicating that bias in the data set 
due to this variation in sampling timing was unlikely.

Microcrustaceans were sampled with a 22-cm-diameter 
dip-net (250-µm mesh size). At each wetland, 20 sweeps 
were carried out, covering all microhabitats. Samples were 
preserved in situ with 4 % formaldehyde. The samples were 
taken to the laboratory for further processing and identifica-
tion. Three groups of microcrustaceans, namely Copepoda, 
Cladocera and Ostracoda, were identified to species level.

The considered environmental variables included physi-
cal, chemical and biological variables. Water temperature, 
dissolved oxygen (Hach, Loveland, CO), conductivity (Cri-
son 524 conductivity meter), pH (model HACH HQ30d) 
and water column depth were measured in situ. We calcu-
lated the deviation of oxygen saturation in absolute num-
bers. Dissolved inorganic nitrogen (DIN = ammonium 
+ nitrite + nitrate), as well as phosphate (PO4

3−), were 
obtained from filtered samples (250 ml) through GF/C 
Whatman filters. Total phosphorus and nitrogen were 
obtained from unfiltered samples. Dissolved and total nutri-
ent concentrations were measured following the methodol-
ogy used by Grasshoff et al. (1983). After filtering the water 
samples, chlorophyll-a was extracted with 90 % acetone and 
measured following Talling and Driver (1963). Information 
on fish presence and macroinvertebrate predator richness 
was also registered. Wetland size was obtained using geo-
graphic information systems (Institut Cartogràfic i Geòlogic 
de Catalunya, http://www.icc.cat). For more information on 
the environmental characteristics see Table 1.

Identification of potential environmental gradients

In order to know if BW showed a stronger salinity gradi-
ent than FW, as we expected, an F-test was performed (i.e., 

100 km

Fig. 2  Geographical location of the studied brackish water (BW; 
open triangles, n = 55) and freshwater (FW) wetlands (filled circles, 
n = 55)

http://www.icc.cat
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ratio variances test = BW variance/FW variance). This test 
showed if there was higher salinity variability (i.e., conduc-
tivity) in BW wetlands (i.e., >1 and a significant result). We 
performed the same test for the rest of environmental vari-
ables to explore the existence of other potential gradients 
(Table 1).

Spatial descriptors

We generated spatial predictors using Moran’s eigenvec-
tor maps (MEMs) as detailed in Dray et al. (2006). First, 
Universal Transverse Mercator coordinates were used to 
build a topology-based map of water body positions (using 
Euclidean distance and Gabriel graph criteria to construct 
the connection network among sites), which was binary 
transformed and weighted. Only positive and significant 
eigenvectors were retained (significantly positive Moran’s 
I), because they represent positive spatial associations 
of water bodies (Griffith and Peres-Neto 2006). Smaller 
eigenvectors describe broader-scale patterns (i.e., sites with 
opposite scores for these spatial eigenvectors are geograph-
ically distant), whereas higher eigenvectors describe finer 
scale variations (i.e., sites very close to each other within 
a region have opposite scores for these spatial eigenvec-
tors). This process was repeated three times: one using the 
overall data set (i.e., BW + FW), one using only FW, and 

one using only BW wetlands. All spatial analyses were per-
formed using the spacemakeR package (Dray et al. 2006) 
with R version 3.0.1 (R Development Core Team 2015).

Data analyses

All analyses were done for the overall data set 
(BW + FW = 110 sites) and repeated for BW (55 sites) 
and FW (55 sites) separately. Because the procedure used 
to identify the metacommunity structures relies on a corre-
spondence analysis (CA) (see below), and our metacommu-
nity was quite sparse (many absences), the explained vari-
ation of the first CA axis (the one used to test the observed 
metacommunity structure) was low (all cases below 10 %; 
Table 2). Thus, we also performed the analysis excluding 
the species present in less than 5 % of the samples, which 
in general increases the explanatory power (to above 10 %; 
see Online Resource 1). We performed correlation analyses 
between the CA axis extracted with the complete (all spe-
cies) and the reduced matrix (excluding the species present 
in less than 5 % of the samples) to explore if the reduc-
tion in the species number significantly altered the solution. 
Although the reduction in the number of species could be 
important (e.g., more than half of the species reduction in 
the overall data set; Table 2 and Online Resource 1), cor-
relation analyses showed that the ordering of sites along 

Table 1  Environmental characteristics for each wetland type

Mean values ± SD, and minimum and maximum values (in parentheses). Results of an F-test performed to compare variances [ratio of vari-
ances—brackish water (BW)/ freshwater (FW)] are also shown; significant values >1 indicate that BW had a higher variance than FW; signifi-
cant values <1 indicate that FW had a higher variance than BW

aDO Deviation of oxygen saturation, TP total phosphorus (P), TN total nitrogen (N), DIN dissolved inorganic N, Chl-a chlorophyll-a

***P < 0.001

Wetland type BW (n = 55) FW (n = 55) Ratio of variances

Water characteristics

 Temperature (°C) 26.5 ± 3.6 (17.7–34.7) 23.6 ± 3.7 (13.3–31.7) 0.93

 Conductivity (mS cm−1) 25.0 ± 22.4 (2.40–119.7) 1.2 ± 0.9 (0.2–3.8) 559.72***

 pH 8.3 ± 0.5 (7.4–9.7) 7.9 ± 0.5 (7.1–8.8) 1.20

 aDO (%) 33.8 ± 26.5 (1.0–95.0) 39.1 ± 29.7 (2.9–99.6) 0.79

 TP (mg P L−1) 0.9 ± 1.5 (<0.1–7.8) 1.1 ± 2.5 (<0.1–13.7) 0.29***

 PO4
3− (mg P L−1) 0.3 ± 1.1 (<0.1–7.4) 0.2 ± 0.6 (<0.1–4.1) 2.86***

 TN (mg N L−1) 2.9 ± 3.0 (0.4–14.2) 5.0 ± 9.5 (0.2–68.4) 0.10***

 DIN (mg N L−1) 0.3 ± 0.7 (<0.1–3.7) 2.6 ± 5.3 (<0.1–30.6) 0.01***

Biotic characteristics

 Chl-a (µg L−1) 22.0 ± 36.2 (0.6–169.9) 24.9 ± 31.9 (<0.1–150.5) 1.29

 Fish presence (no. of wetlands) 50 43

 Macroinvertebrate predators (species 
richness per site)

2.8 ± 1.9 (0–7) 2.4 ± 1.8 (0–7) 1.09

Pond characteristics

 Wetland size (m2) 2.8 × 105 ± 8.2 × 105  
(3.3 × 102–4.6 × 106)

1.4 104 ± 2.4 × 104  
(8.2 × 101–1.2 × 105)

1099.53***
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the first axis remained almost invariable (correlation values 
always significant and higher than 0.9). We also performed 
the rest of the analyses twice (EMS and variable selection, 
see below), one with the complete and one with the reduced 
matrix, obtaining similar results. Since the reduction of less 
represented species could blur species boundaries and thus 
potentially affect the resulting metacommunity structure 
(Presley and Willig 2010), we report the results obtained 
with all species (see results obtained with the reduced 
matrix in Online Resource 1).

Elements of metacommunity structure

To analyze which metacommunity structure best fitted the 
microcrustacean species distribution, we used the EMS 
methodology described by Leibold and Mikkelson (2002), 
which was posteriorly expanded by Presley et al. (2010). 
The metacommunity structure was assessed by evaluating 
the coherence, turnover and boundary clumping of a site-
by-species incidence matrix, which was ordinated through 
CA (Fig. 3). This allowed us to obtain a gradient in which 
sites were ordered according to species resemblances, and 
species were ordered according to site occurrences. The 
arrangement of sites along the first axis of ordination rep-
resents a latent environmental gradient that shapes spe-
cies distributions (Gauch 1982). Consequently, no a priori 
assumptions are needed concerning the environmental fac-
tors to which species respond. The resulting species × sites 
ordination along the primary axis provided the basis on 
which to test the different metacommunity characteristics 
in a hierarchical way (Fig. 3): coherence (step 1), turnover 
(step 2), boundary clumping (step 3).

Coherence was the first pattern tested (step 1 in Fig. 3). 
This was done by comparing the number of embedded 

absences in the ordinated empirical incidence matrix to 
a distribution of embedded absences derived from 1000 
ordinated null matrices. The applied null model permuted 
species across sites but fixed site richness (i.e., equal to the 
observed values). This type of permutation was chosen in 
previous studies, not only because it better represents site 
properties such as site species richness (e.g., Presley et al. 
2009; Henriques-Silva et al. 2013), but also because of 
its appropriate type I error rates and appropriate power to 
detect distribution patterns (Gotelli and Graves 1996). For 
each analysis (overall, FW, and BW) we generated 1000 
random matrices which were also ordered via CA. Nega-
tive significant coherence (more absences than expected 
by chance) is the defining characteristic of checkerboard 
distributions, with strong interspecific competition that 
results in mutual exclusion as the implied structuring 
mechanism. A significant positively coherent metacom-
munity implies that species distributions arise in response 
to a common gradient. The lack of significant coherence 
characterizes random distributions, indicating that species 
ordering is not responding to a common gradient. When 
coherence was found to be positive and significant, the 
turnover was tested (step 2 in Fig. 3). To do this, the num-
ber of empirical replacements was compared to the distri-
bution of randomly generated values based on a null model 
that randomly shifts entire ranges of species (Leibold 
and Mikkelson 2002). The null model used to test turno-
ver had the same characteristics as the one used for the 
coherence analysis, and allowed discriminating between 
a species loss structure (i.e., negative turnover because 
there were less replacements than the ones expected by 
chance) and a species replacement structure (i.e., positive 
turnover because there were more replacements than the 
ones expected by chance). In both cases, the underlying 

Table 2  Results of the 
hierarchical approach used 
to examine the elements of 
metacommunity structure

CA Correspondence analysis; for other abbreviations, see Table 1

BW + FW FW BW

No. of species 74 56 49

No. of sites 110 55 55

First CA axis 7 % 7 % 9 %

Coherence

 Observed value 2731 1319 585

 Expected values ± SD 4290 ± 256 1477 ± 92 1124 ± 97

 P <0.001 0.060 <0.001

Turnover

 Observed value 1,090,422 144,830 77,487

 Expected values ± SD 722,105 ± 158,684 112,243 ± 30,611 66,036 ± 20,363

 P 0.020 0.268 0.589

Clumping

 Morisita’s index 3.83 2.84 3.05

 P <0.001 <0.001 <0.001
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structure was further analyzed with the Morisita index-
based test, which gives information about the bound-
ary clumping of the structures (step 3 in Fig. 3). In this 
third step, significance was determined by a χ2-test that 
compared the empirical distribution of boundaries to an 
expected uniform distribution. While significant values >1 
indicate clumped boundaries, significant values <1 indi-
cate hyperdispersed boundaries. Species distributions that 
occur independently and idiosyncratically with respect to 
each other are indicated by a non-significant χ2-test. The 
combination of turnover results with those obtained from 
the boundary clumping allowed us to discern between six 
principal metacommunity structures and six quasi-struc-
tures (Fig. 3), that appear when non-significant turnover 
results occurs (a–f in Fig. 3). For all analyses, we used an 
α-level of 0.05 to determine significance (Fig. 3). Analy-
ses of metacommunity structure were performed using 
the metacom package version 1.3 (Dallas 2013) in R ver-
sion 3.0.1 (R Development Core Team 2015). A complete, 

comprehensive, and detailed, explanation of the EMS pro-
cedure can be found in Presley et al. (2010).

Hierarchical variation partitioning

To know which environmental variable and spatial eigen-
vectors were related to the observed metacommunity 
structure, we performed a forward selection procedure 
using the double stopping criterion (Blanchet et al. 2008). 
As environmental variables we included water, pond, and 
biotic characteristics (see Table 1). All water characteris-
tics (except pH), and wetland size were previously log10 
(var + 1) transformed to better achieve normality and 
homoscedasticity assumptions. The significant variables 
(Online Resource 2) were posteriorly used to quantify the 
variation explained by the overall selected spatial and envi-
ronmental filters (variation partitioning). Forward selection 
was done using the functions forward.sel available in the 
packfor package (Dray et al. 2007).
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Fig. 3  Schematic representation of the approach used to examine 
the elements of metacommunity structure (numbers indicate the dif-
ferent steps followed). Species × sites distributions corresponding to 
the principal metacommunity structures are represented as follows: 
columns represent species (different shapes are different species), 
and rows represent sites. Combining turnover and boundary clump-
ing results, six principal metacommunity structures can be identified: 
evenly spaced, Gleasonian, Clementsian, hyperdispersed species loss, 
random species loss, and clumped species loss. Quasi-structures are 
indicated by letters: a–c indicate quasi-structures obtained for non-

significant but positive turnover, and d–f the ones obtained for non-
significant but negative turnover. According to Morisita’s index we 
can distinguish: a quasi-evenly spaced structure (a), a quasi-Glea-
sonian structure (b), a quasi-Clementsian structure (c), quasi-hyper-
dispersed species loss (d), quasi-random species loss (e), and quasi-
clumped species loss (f). Metacommunity structures within the dotted 
frame do not show any coherence (random distribution), or show 
negative coherence (chekerboard distribution). Modified from Presley 
et al. (2010) and Henriques-Silva et al. (2013)
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We used a variation partitioning specially developed 
to better account for the orthogonality of MEM variables 
(Legendre et al. 2012). We separated the selected vari-
ables into three subsets of predictors: environmental filters, 
broadscale spatial descriptors (Moran eigenvectors 1–4), 
and finer-scale spatial descriptors (the rest of the Moran 
eigenvectors). We used a hierarchical approach because 
environmental conditions vary at a broader scale than biotic 
interactions, and a hierarchical influence of their effects 
on species distribution is expected (Legendre et al. 2012). 
For example, differences in salinity may be very important 
when comparing wetlands located far away, but within the 
same cluster of similarly saline wetlands finer-scale pat-
terns may emerge due to biotic interactions. Therefore, the 
total explained variation was partitioned among: (1) the 
effects of environmental filters, (2) those related to broad 
and finer-scale spatial patterns, and (3) the shared influ-
ence of environmental filters and spatial descriptors. The 
hierarchical variation partitioning was carried out with the 
function varpart3.MEM (Legendre et al. 2012) in R version 
3.0.1 (R Development Core Team 2015). We tested the sig-
nificance of the different fractions using the function anova.
cca available in the vegan package (Oksanen et al. 2013).

Results

Wetland size and conductivity were the variables that 
showed the highest differences in variation when com-
paring BW and FW, both showing higher variances in 
BW than in FW. In contrast, nutrients, with the exception 
of PO4

3−, showed higher variances in FW than in BW 
(Table 1).

The first step of the EMS analysis (Fig. 3) for the whole 
data set (BW + FW) indicated that the metacommunity had 
a positive and coherent structure (Table 2). Following the 
second step (Fig. 3), a significant and positive turnover was 
observed (i.e., the observed value was higher than expected 
by chance), indicating that microcrustaceans followed a 
species replacement structure (Table 2). Finally, when ana-
lyzing the boundary clumping (step 3 in Fig. 3), Morisita’s 
index was significantly higher than one (Table 2). There-
fore, the whole data set presented a Clementsian struc-
ture, as expected. Moreover, reciprocal averaging analyses 
ordered sites according to conductivity differences, with 
FW sites showing opposite scores to BW (Welch two-sam-
ple t-test; t = 8.4782; df = 60.55; P < 0.001; Fig. 4).

Fig. 4  Species × sites inci-
dence matrices after reciprocal 
averaging ordering (1st axis) 
resulting from the overall, FW, 
and BW analyses. FW wetlands 
are represented in gray, and BW 
wetlands in black. Numbers in 
parentheses indicate number of 
species, and sites, used in each 
analysis. For abbreviations, see 
Fig. 2
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When splitting the data set into FW and BW data, dif-
ferent metacommunity structures emerged. For FW, non-
coherent structures arose, indicating a possible lack of a 
key variable structuring the metacommunity or species 
being affected by different non-collinear key variables 
(Table 2). In contrast, BW microcrustaceans showed a 
coherent structure, indicating that a key variable was struc-
turing the metacommunity (Table 2). However, although 
positive, the turnover was not significant (Table 2). Finally, 
the Morisita index indicated that the metacommunity was 
clumped. As a result, BW microcrustacean metacommunity 
structure fitted a quasi-Clementsian pattern (Fig. 3).

The variation partitioning carried out for the whole data 
set (BW + FW) showed a high proportion of total variation 
(close to 60 %) being mainly explained by the environmen-
tal filters (Fig. 5). It should be noted that the environmental 
filter matrix only included conductivity information, since 
it was the only variable selected in the forward procedure 
(Online Resource 2). Moreover, no significant spatial pat-
terns were detected. BW showed a similar pattern to that 
observed for the overall data set (Fig. 5). Again, conductiv-
ity was the only variable selected as an environmental fil-
ter, but in this case the shared variation was restricted to 
broadscale patterns (Fig. 5). In contrast, when analyzing 
FW (Fig. 5) environmental filters only explained 4 % of 

the variation (in this case only temperature was selected; 
Online Resource 2), whereas broad- and finer-scale spa-
tial descriptors explained 11 and 19 % of the variation, 
respectively.

Discussion

EMS and variation partitioning techniques are becoming 
increasingly popular in empirical metacommunity stud-
ies (e.g., Hájek et al. 2011; Dallas and Presley 2014). The 
combination of both methodologies is recommended, since 
it allows disentangling the main drivers of the metacommu-
nity structures more precisely (e.g., Henriques-Silva et al. 
2013; Fernandes et al. 2014; Heino and Alahuhta 2015). 
Moreover, we have replaced the conventional variation par-
titioning approach by a hierarchical one. The hierarchical 
approach is more appropriate for the analysis of environ-
mental variability from broad to finer spatial scales (Leg-
endre et al. 2012), and we strongly recommend its use in 
combination with EMS. Such combination has allowed us 
to better understand and identify the relationships between 
environmental and spatial filters.

In our case study, the overall metacommunity fitted a 
Clementsian pattern, following our expectations (Fig. 6). 
Clementsian structures are not rare, and they have already 
been reported for a number of plant (e.g., Keith et al. 
2011; Meynard et al. 2013) and animal metacommuni-
ties (e.g., Henriques-Silva et al. 2013; Dallas and Presley 
2014). This structure arises when distinct communities are 
composed of groups of species (species association) that 
respond in a similar way to one (or more) structuring fac-
tors, and has generally been related to the effects of strong 
environmental filters (e.g., Keith et al. 2011; Meynard 
et al. 2013; Dallas and Presley 2014). The variation par-
titioning results, which indicated weak spatial structuring 
compared to the salinity effect, together with the clumped 
association related to changes in salinity, support this idea. 
Moreover, the existing salinity gradient constrained com-
munities (Boix et al. 2008; Waterkeyn et al. 2008; Brucet 
et al. 2009), with species richness being relatively lower 
in sites with higher salinity (t-test; t = −3.64; df = 108; 
P < 0.001). In fact, our results suggest that salinity acts as 
a key variable shaping the metacommunity structure, since 
no variation was exclusively linked to any spatial pattern.

Each wetland type showed distinct metacommunity 
structures: quasi-Clementsian in BW, and random in FW 
(Fig. 6). Random structures may be an artefact associated 
with the rarity of many species in the ensemble (Cisneros 
et al. 2015). However, we obtained the same result even 
when reducing rarity (i.e., suppressing species with occur-
rences lower than 5 % of the samples; Online Resource 
1). Our results agree with idiosyncratic responses of 

BW

Venn diagram
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E+FS
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34 %** <0.01%10%

56%

FW+BW

38%

44%**
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46%
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Fig. 5  Venn diagrams of the hierarchical variation partitioning 
for the whole data set (BW + FW), FW, and BW sites: the effects 
linked to environmental filters (E), those related to broadscale spatial 
patterns (BS), those resulting from finer-scale spatial patterns (FS), 
shared influence of environmental filters with broadscale (E + BS) 
and finer-scale spatial descriptors (E + FS). Numbers indicate per-
centage of variation explained; negative fractions are not shown. 
**P < 0.01
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individual microcrustaceans species to environmental con-
ditions (Jeffries 2003). Indeed, random structures do not 
indicate that species occur at random in the metacommu-
nity, but that species’ distributions are mainly independent 
of one another (Dallas and Presley 2014). Thus, random 
structures may not necessary imply lack of environmental 
control. Supporting this idea, our results showed the exist-
ence of environmental control in the metacommunities of 
both wetland types, but as expected, the BW metacom-
munity was more environmentally controlled than the FW 
one.

BW sites were transitional ecoclines in which both FW 
(e.g., Macrocyclops albidus, Cypridopsis vidua) and brack-
ish species (e.g., Amonardia cf. normanni, Cletocamptus 
confluens) could be found (Online Resource 3). Micro-
crustacean assemblages in BW sites were again organized 
according to salinity preferences, similarly to the macroin-
vertebrate species distribution observed in mixed estuaries 
(Attrill and Rundle 2002). This kind of species distribution 
creates different species subsets, and thus the emergence of 
clumped structures. However, euryhaline species (i.e., toler-
ating wide salinity gradients) might be blurring the bounda-
ries, leading to the existence of a quasi-structure. Neverthe-
less, it is also possible that the quasi-Clementsian structure 

observed was the result of an artefact because species niche 
breadth extended beyond the range observed in the data set, 
affecting the identification of boundaries. This could have 
some importance, especially for the species with more FW 
affinity, since when splitting the data set the lower part of 
their niche breath may be beyond 5 mS cm−1 (our cut-off 
point between typologies). On the other hand, temperature 
was the only variable related to the species distribution in 
FW, explaining a low proportion of the observed variation 
(4 % of the observed species distribution could be associ-
ated with differences in water temperature). A high propor-
tion of eurythermal organisms should be expected in warm 
and hydrological variable habitats (Poff et al. 2010) like 
Mediterranean wetlands. Other studies on factors determin-
ing microcrustacean species distribution in Mediterranean 
ponds similarly found that temperature may play a second-
ary role (Sahuquillo and Miracle 2013). Likewise, although 
temperature was related to species distribution, in our study 
it was not a key variable shaping metacommunity structure 
(otherwise metacommunity structure would have shown a 
positive and significant coherence).

Unexpectedly, we found signals of broadscale spa-
tial patterns determining the metacommunity structure 
in FW. The studied region has a complicated orography 
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FW SITES BW SITES
FW + BW SITES

species pool

Regional structure: Clementsian
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structure

Different main drivers of 
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Fig. 6  Schematic representation of the main results obtained in this 
study. Discontinuous line indicates that the finer scale could actu-
ally be explained by local environmental conditions. E Environmen-
tal variables, BS broadscale spatial descriptors, FS finer-scale spatial 

descriptors, E + BS shared variation between environmental filters 
with broadscale descriptors, E + FS shared variation between envi-
ronmental filters with finer-scale spatial descriptors
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that creates different climatic conditions. Accordingly, we 
observed a high amount of variation shared between tem-
perature and broadscale spatial descriptors in FW. Previous 
studies developed within the same geographical context 
(lowland wetlands in Catalonia) found that aquatic commu-
nities differed between mesothermal and semiarid climates 
not only in their compositions but also in their dynamics 
(Ruhí et al. 2014). Nevertheless, we also found a significant 
proportion of variation uniquely explained by broadscale 
patterns in FW. The complex orography might also contrib-
ute to diminish dispersal efficiency, even when considering 
high dispersal organisms such as microcrustaceans. Several 
studies have highlighted that the potential for frequent and 
widespread dispersal of passively dispersed invertebrates 
does not directly translate into real dispersal rates (Boho-
nak and Jenkins 2003; Incagnone et al. 2015). Within this 
context, specific experiments directly measuring zooplank-
ton dispersal rates have found lower than expected rates 
(Allen 2007). All these findings support the existence of 
broadscale spatial signals on the structure of metacommu-
nities of passive dispersers. Similarly to what happens with 
environmental controls on the expression of priority effects 
(Mergeay et al. 2011), the lack of pure effects of broadscale 
spatial patterns in BW suggests that environmental sort-
ing was paramount and weakened eventual mass effects 
(Fig. 6).

We also found some variation in species distribution 
related to finer-scale patterns in the less environmentally 
controlled wetlands (FW). We initially hypothesized 
that this could be the result of biotic interactions. How-
ever, we found no relationships between metacommunity 
structure and our biotic proxies (fish presence and preda-
tor macroinvertebrate richness). Previous studies sug-
gest that spatial signals can result from non-measured 
finer scale environmental variability (Cottenie 2005). FW 
sites included artesian spring ponds (six sites). In these 
systems temperature values are very stable due to a con-
tinuous groundwater feed (Sahuquillo and Miracle 2013), 
which could explain the shared variation observed. More-
over, these artesian spring ponds appear in small clusters 
in the landscape. This particular spatial arrangement, and 
not biotic interactions, could explain the high proportion 
of variation derived for the finer-scale spatial descriptors. 
To test this idea, we repeated the analysis without includ-
ing the artesian natural springs in the data set, and none of 
the spatial descriptors of finer-scale patterns were selected 
(i.e., variation uniquely linked to temperature was 9 %, 
broadscale patterns 10 %, and the shared variation 5 %). 
Therefore, even if at a first sight some biotic control could 
be inferred, a more careful analysis indicated that the 
most plausible explanation for this significant finer-scale 
spatial signal was unmeasured environmental variability. 

In summary, from a methodological perspective, our study 
shows the potential of EMS combined with variation par-
tition techniques to detect broadscale patterns (Fig. 6). 
However, we also report its weakness when aiming to 
infer biotic interactions from finer-scale signals (Dray 
et al. 2012), which highlights the conservative approach 
that should guide the interpretation of these signals (Leg-
endre et al. 2012).

Knowing the type of structure and the drivers that shape 
metacommunities is also relevant from the applied perspec-
tive, and so our approach could be useful to understand 
and predict the impacts of eventual stressors. For exam-
ple, increases in salinity values are expected as the result 
of anthropogenic activities such as agriculture or resource 
extraction (Williams 2001; Cañedo-Argüelles et al. 2013). 
Our results indicate that microcrustacean metacommuni-
ties follow clumped species replacement structures that are 
highly influenced by salinity. Consequently, communities 
found at low salinities share few taxa with those found at 
high salinities. Thus, an eventual increase in salinity, reach-
ing the limit of the species’ tolerance, potentially results in 
the disappearance of a whole group of species and not to a 
gradual species loss.

Recent advances have been made to understand how 
environmental management can affect biodiversity at local 
and regional scales (e.g., Sokol et al. 2015). The exist-
ence of structures due to species replacement or species 
loss can have strong implications in terms of management 
and biodiversity conservation (Baselga 2010). While spe-
cies replacement structures imply that each site hosts some 
kind of exclusive taxa, and so it is essential to preserve the 
whole network to maintain biodiversity, species loss struc-
tures allow the prioritization of sites in terms of manage-
ment efforts (e.g., those that are the richest in species). This 
information is highly relevant to the single large or several 
small debate applied to the conservation of FW biodiver-
sity, and we advance the notion that it needs to consider the 
influence of a network’s spatial arrangement.
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