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ABSTRACT	 	

Among	 HIV	 seropositive	 individuals,	 the	 progression	 of	 the	 HIV-related	 disease	 is	 quite	

heterogeneous,	 partially	 due	 to	 the	 genetic	 background	 of	 the	 patients.	 Different	 host	

genetic	factors	have	been	statistically	associated	with	HIV	disease	control	or	progression,	

especially	HLA	class	I	(HLA-I)	polymorphisms	because	of	the	direct	role	that	these	molecules	

play	in	the	immune	response	against	the	virus.	In	recent	years,	the	immune	response	against	

HIV	based	on	CD4
+
	T	helper	cells	and	HLA	class	II	(HLA-II)	restricted	responses	has	gained	

importance	 to	 refine	 current	 vaccine	 approaches.	 Therefore,	 the	 main	 objective	 of	 the	

present	study	was	to	explore	potential	statistical	associations	of	HLA-II	with	markers	of	HIV	

control,	 in	 particular	HIV	 viral	 load	 and	CD4
+	
counts,	 in	 a	 Peruvian	 cohort	 of	 almost	 400	

individuals	with	 existing	 HIV	 infection	 or	 at	 high	 risk	 for	 infection.	 Additionally,	 we	 also	

studied	 the	 associations	 of	 HLA-II	 with	 the	 presence	 of	 T	 cell	 responses	 to	 overlapping	

peptides	(OLPs)	covering	the	whole	HIV	proteome.		

In	order	to	achieve	such	objectives,	different	statistical	approaches	using	the	R	statistical	

software	 were	 applied.	Mainly,	 the	 Fisher’s	 Exact	 Test	 was	 used	 to	 assess	 whether	 the	

expression	of	certain	HLA-II	alleles	was	associated	with	HIV	infection	or	with	the	response	

to	the	different	HIV	epitopes.	On	the	other	hand,	the	Mann-Whitney	Test	was	used	to	detect	

differences	in	viral	loads	or	CD4
+	
counts	between	patients	with	or	without	a	certain	HLA-II	

allele.		

In	our	analyses,	alleles	HLA-DRB1*1201	and	HLA-DRB1*1302	appeared	to	be	significantly	

associated	 (p<0.05)	 with	 low	 and	 high	 viral	 loads,	 respectively.	 A	 number	 of	 additional	

alleles	were	significantly	associated	with	CD4
+
	counts.	Most	of	the	identified	associations	

included	the	HLA-DRB1	 locus,	 the	most	polymorphic	of	 the	HLA	class	 II	 loci.	Additionally,	

expression	of	HLA-DRB1*1201	was	associated	with	T	 cell	 response	 to	OLP	41	 in	 the	Gag	

protein,	 and	 HLA-DRB1*1302,	 with	 the	 response	 to	 OLP	 82	 in	 Nef	 protein,	 identifying	

dominant	targets	of	the	T	cell	response	restricted	by	these	two	alleles.		

Overall,	 the	associations	of	HLA-DRB1*1201	and	HLA-DRB1*1302	with	viral	 load,	support	

previous	 data	 suggesting	 a	 potential	 effect	 of	 the	 CD4
+
	 T	 cell	 responses	 on	 HIV	 disease	

control.		
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1.	INTRODUCTION	

1.1. HIV	Infection	and	AIDS	

According	 to	 the	World	Health	Organisation	 (WHO),	 HIV	 is	 still	 a	most	 important	 public	

health	concern,	with	around	36.9	million	people	infected	with	HIV	by	the	end	of	2014	and	

the	estimation	of,	at	least,	2	million	new	infections	during	that	year	(1).	

Human	Immunodeficiency	Virus	(HIV)	is	a	RNA	virus	that	targets	immune	cells,	particularly	

CD4
+
	 T	 cells	 and	 impairs	 their	 functioning.	 The	 progression	 of	 HIV	 associated	 disease	 in	

infected	people	causes	a	decline	of	their	immune	response,	which	leads	to	the	development	

of	the	acquired	immunodeficiency	syndrome	(AIDS)	if	they	are	not	adequately	treated.		AIDS	

is	characterised	by	a	major	susceptibility	of	getting	infected	by	opportunistic	pathogens	due	

to	the	weakness	of	the	immune	system,	mainly	consequence	of	this	CD4
+
	T	cells	depletion	

(2).	Actually,	HIV	disease	progression	is	determined	by	patient	CD4
+
	T	cell	counts	and	their	

viral	load	(Figure	1.1).	

Natural	course	of	HIV	infection	(Figure	1.1)	 is	usually	divided	in	4	stages:	Acute	retroviral	

syndrome,	asymptomatic	phase,	pre-AIDS	syndrome	and	AIDS.	The	asymptomatic	phase	can	

last	 between	 7	 and	 10	 years	 during	 which	 the	 viral	 replication	 is	 remarkably	 stable	

maintained	 around	 a	 so-called	 viral	 set	 point.	 The	 viral	 load	 at	 set	 point	 predicts	 the	

likeliness	of	a	patient	to	progress	towards	AIDS:	high	viral	load	in	this	set	point	is	associated	

with	a	higher	probability	of	disease	progression	(3,	4).	
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Within	 the	HIV	 infected	human	population,	 there	are	 some	 individuals	 called	 Long-Term	

Non-Progressors	 (LTNP)	 that	 control	 viremia	 and	 present	 moderate	 CD4
+
	 T	 cell	 counts	

decline.	Although	they	suffer	a	 loss	of	 these	cells,	 the	 rate	 in	which	 they	are	depleted	 is	

much	 slower	 than	 in	normal	 infected	 individuals.	Within	 the	 LTNP	group,	 there	are	Elite	

Controllers	(EC)	subjects	who	maintain	undetectable	viral	load	(under	50	copies/ml)	for	a	

long	period	of	time.	Furthermore,	there	are	some	individuals	that	do	not	seem	to	become	

infected	 despite	 being	 highly	 exposed	 to	 HIV,	 for	 instance,	 sex	 workers	 or	 discordant	

couples.	These	subjects	are	often	referred	to	as	Highly	Exposed	Seronegatives	(HESN).	These	

subpopulations	have	been	relevant	to	the	detection	of	different	biological	markers,	mainly	

host	genetic	factors,	associated	with	the	control	of	HIV	disease	progression.	Filling	the	gaps	

in	our	knowledge	of	the	pathogenesis	of	HIV	might	allow	the	refinement	of	the	current	HIV	

vaccine	approaches	(5).			

Figure	1.1	Natural	History	of	HIV.		Graph	showing	the	different	phases	of	HIV	disease	progression	
through	 weeks	 or	 years	 and	 how	 the	 parameters	 viral	 load	 and	 CD4

+
	 counts	 change	 during	 the	

different	periods	of	time.	There	is	an	inverse	correlation	between	these	two	parameters.	(Coffin,	J.,	
Hughes,	S.	and	Varmus,	H.	Retroviruses,	1997.	Cold	Spring	(NY):	Harbor	Laboratory	Press.)	
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1.2. HIV	structure	and	genome	

HIV	is	an	enveloped	retrovirus	containing	inside	its	capsid	2	copies	of	its	RNA	genome	and	

the	enzymes	reverse	transcriptase	(RT),	protease	and	integrase	which	are	necessary	to	start	

the	virus	replication	cycle	(Figure	1.2).	The	envelope	is	formed	by	a	host	derived	lipid	bilayer	

where	viral	proteins	gp41	and	gp120	are	embedded.	These	proteins	interact	with	the	host	

cells	and	prompt	the	membrane	fusion	between	the	targeted	cell	and	the	virus.	Once	HIV	is	

inside	the	host	cell,	the	RT	enzyme	converts	the	viral	genome	in	proviral	DNA,	which	is	then	

integrated	into	the	genome	of	the	infected	host	cell	by	the	integrase	enzyme	(2).		

	

The	HIV	genome	(Figure	1.3)	contains	9	genes	flanked	by	long	terminal	repeats	(LTR)	regions.	

The	9	coding	genes	encode	different	proteins	 that	can	be	divided	 in	3	groups:	Structural	

proteins,	Regulatory	proteins	and	Accessory	proteins.	The	structural	genes	 include	genes	

codifying	for	essential	proteins	common	in	all	retroviruses:	Gag,	Pol	and	Env.	Gag	encodes	

viral	core	and	matrix	proteins;	Pol,	the	enzymes	Protease,	Integrase,	RNAseH	and	RT	needed	

to	start	viral	replication;	and	Env,	the	envelope	glycoproteins	gp120	and	gp41.	Regulatory	

Figure	1.2	HIV	structure.	The	external	part	of	the	
virus,	in	contact	with	the	external	media,	is	formed	

by	the	 lipid	bilayer	envelope	containing	envelope	

proteins	 gp120	 and	 gp41.	 Inside	 the	 envelope	

there	 is	 the	 proteic	 nucleocapsid	 formed	 by	 the	

different	Gag	subunits.	It	contains	the	two	copies	

of	the	RNA	viral	genome	and	the	enzymes	reverse	

transcriptase	 (RT),	 protease	 and	 integrase.	

(Janeway	 CA	 Jr,	 Travers	 P,	 Walport	 M,	 et	 al.	
Immunobiology:	 The	 Immune	 System	 in	 Health	 and	
Disease,	2001.	Garland	Science	(NY))	
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proteins	Tat	and	Rev	are	fundamental	in	viral	replication.	Tat	allows	the	viral	RNA	synthesis	

and	Rev,	the	nuclear	export	to	the	host	cell	cytoplasm.	Regarding	the	accessory	proteins	

Nef,	 Vif,	 Vpr	 and	 Vpu,	 despite	 not	 being	 necessary	 for	 viral	 replication,	 they	 boost	 viral	

infection	(3,	5,	6)	

	

	

	

	

	 	

Figure	1.3	HIV	genome.	HIV	genome	consist	of	9	genes	that	are	translated	 in	15	different	proteins.	

Genes	Gag,	Pol	and	Env	encode	for	structural	proteins;	genes	Tat	and	Rev	for	regulatory	proteins	and	

genes	 Vif,	 Vpu,	 Vpr	 and	 Nef,	 for	 accessory	 ones.	 (Warner	 C.	 Greene,B.	 Matija	 Peterlin.	 Charting	 HIV’s	
remarkable	voyage	through	the	cell:	Basic	science	as	a	passport	to	future	therapy.	Nature	Medicine.	8	(2002):	673	
-	680)	
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1.3. Host	Genetics	–	The	Human	Leukocyte	Antigen	(HLA)	

System		

Different	host	genetics	factors	have	been	related	to	HIV	disease	control,	especially	the	HLA	

cell-surface	receptors	encoded	in	the	HLA	system.	This	is	a	highly	polymorphic	gene	complex	

located	in	the	short	arm	of	chromosome	6.		

There	are	3	regions	defined	in	this	complex	(Figure	1.4).	Regarding	HLA	association	studies,	

the	 interest	 is	on	regions	 I	and	 II	encoding	the	cell-surface	molecules	 involved	 in	antigen	

presentation.	Region	I	contains	the	different	loci	for	the	HLA	class	I	proteins:	There	are	the	

classical	HLA	molecules	(HLA-A,	HLA-B	and	HLA-C),	and	the	non-classical	molecules	(HLA-E,	

HLA-F	and	HLA-G)	with	some	functions	out	of	the	scope	of	this	study	(7),	although	HLA-E	has	

regained	interest	in	adaptive	immunity	due	to	recent	findings	in	CMV	vaccinated	monkeys	

(8).	On	the	other	hand,	region	II	encodes	the	HLA	class	II	molecules	HLA-DM,	HLA-DO,	HLA-

DP,	HLA-DQ	and	HLA-DR.	These	molecules,	the	focus	of	the	present	study,	are	heterodimers	

of	α	and	β	chains	encoded	in	different	loci	and	referred	as	A	or	B,	for	instance,	HLA-DQA	and	

HLA-DQB.	The	HLA-II	proteins	that	are	 involved	 in	antigen	presentation	to	T	cells	are	the	

HLA-DP,	HLA-DQ	and	HLA-DR	molecules	(7).		

	

Owing	to	the	common	function	of	HLA	I	and	II	molecules	of	binding	antigenic	peptides	and	

presenting	 them	 to	 T	 cells,	 they	 show	 similar	 structures	 (Figure	 1.5).	 For	 instance,	 both	

classes	need	a	peptide	binding	cleft.	However,	these	two	receptors	play	different	roles	in	

the	immune	system.	HLA-I	molecules	are	found	on	the	surface	of	almost	all	cell	types	in	the	

human	being,	and	bind	intracellular	processed	peptides	that	are	presented	to	CTLs.	If	the	

Figure	1.4	Simplified	map	of	the	HLA	complex.	This	figure	shows	the	short	arm	of	chromosome	

6	with	the	3	regions	defining	the	HLA	complex.	(Steven	G.E.	Marsh,	Peter	Parham	and	Linda	D.	Barber.	
The	HLA	Facts	Book,	1999.	FactsBook	series	–	Academic	Press).	
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peptide	in	question	does	not	belong	to	the	human	being,	the	TCR	of	the	CTL	will	recognise	

the	cell	as	infected	and	the	lymphocyte	will	eliminate	it.	In	contrast,	HLA-II	molecules	are	

preferentially	 found	at	the	surface	of	antigen	presenting	cells	 (APCs).	Their	 function	 is	to	

present	exogenous	antigens	that	are	recognised	by	the	TCR	of	T-helper	cells	(CD4
+
	T	cells)	

which	orchestrate	an	immune	response	against	the	pathogen	(2,	7).		

	 	

	

One	 particularity	 of	 HLA	 molecules	 is	 their	 co-dominance,	 which	 means	 that	 all	 the	

individuals	 will	 express	 the	 two	 copies	 of	 each	 of	 the	 genes	 in	 their	 genome.	 This	 fact	

provides	humans	with	a	wider	capacity	to	present	and	recognise	different	antigens.	At	the	

population	level,	co-dominance,	together	with	the	fact	that	HLA	complex	genes	are	highly	

polymorphic,	allow	the	presence	of	a	huge	variability	of	HLA	haplotypes	which	 is	 further	

increased	with	 heterozygosity.	 This	 is	 beneficial	 not	 only	 at	 individual	 level	 by	 ensuring	

broad	immune	responses,	but	also	at	population	level	by	blocking	pathogens	spread	(7,	9).		

The	HLA	polymorphisms	are	differently	distributed	among	the	distinct	human	populations	

(7),	one	allele	might	be	highly	frequent	in	Afroamericans	but	not	in	Caucasians	or	vice	versa.	

This	fact	must	be	considered	when	designing	therapies	for	different	diseases	and	in	the	case	

of	HIV,	to	get	a	vaccine	applicable	to	worldwide	populations.		

A	 B	

Figure	 1.5	 Structure	 of	 HLA	 cell-surface	 molecules.	On	 the	 left	 (A)	 the	 structure	 of	 a	 HLA-I	
molecule	 is	 shown.	On	 the	 right	 (B),	 the	 structure	of	a	HLA-II	protein	 formed	by	 the	α	 and	β	

chains.	Both	molecules	show	similar	structures	and	a	peptide	binding	cleft.	(Abul	K.	Abbas	&	Andrew	
H.	Lichtman.	Basic	Immunology.	Functions	and	Disorders	of	the	Immune	System.	2011.	Saunders	–	Elseiver).	



1. INTRODUCTION	 	 HLA-II	and	HIV	control	

	
7	

1.4. T	cell	responses	to	HIV	epitopes	

The	different	HLA-I	and	HLA-II	associations	with	HIV	control	might	be	consequence	of	the	

peptides	 presented	 by	 these	 molecules	 to	 T	 cells,	 which	 unleash	 different	 immune	

responses	against	HIV.	These	different	responses	have	been	mapped	to	the	HIV	genome,	

indicating	 that	 different	 alleles	 restrict	 the	 presentation	 of	 the	 different	 epitopes	 in	 a	

protein.	For	instance,	in	Figure	1.6	there	is	the	map	for	p17	subunit	from	the	HIV	Gag	protein	

(10).	

	

To	design	an	effective	HIV	vaccine,	we	need	to	select	the	best	immunogen	that	covers	those	

epitopes	that	are	capable	of	triggering	the	most	effective	immune	response.	Accordingly,	it	

is	worth	and	necessary	to	study	the	T	cell	response	of	the	different	patients	to	the	entire	

viral	proteome.	This	can	be	accomplished	by	performing	an	IFNγ	ELISpot	assay	where	PBMCs	

of	patients	are	stimulated	with	different	 in	vitro	synthesised	overlapping	peptides	(OLPs).	

Normally,	in	the	study	of	the	HIV	immune	response,	a	set	of	410	overlapping	18-residues-

long	 peptides	with	 an	 overlap	 of	 10	 or	 11	 amino	 acids	 is	 used	 to	 ensure	 the	whole	HIV	

proteome	is	covered.	When	these	PBMCs	are	activated	by	one	of	the	OLPs,	they	produce	

IFNγ	that	is	then	detected	with	biotinylated	antibodies.	This	cytokine	is	mainly	produced	by	

CD8
+
	T	cells	and,	in	less	extent,	by	CD4

+
	T	cells	(11,	12).	

Figure	1.6.	p17	Epitope	Map.	Aminoacid	sequence	of	the	Gag	protein	p17	with	the	HLA-I	alleles	that	

restrict	 each	 of	 the	 protein	 epitopes	 presentation.	 (A.	 Llano,	 A.Williams,	 A.Olvera,	 S.	 Silva-Arrieta,	
C.Brander.	Best-Characterized	HIV-1	CTL	Epitopes:	The	2013	Update.	HIV	molecular	immunology.	2013.		Published	
by	Theoretical	Biology	and	Biophysics	Group,	Los	Alamos	National	Laboratory,	Los	Alamos,	NM.	LA-UR	13-27758)	
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Such	 studies	 point	 out	 the	 regions	 of	 the	HIV	 genome	more	 frequently	 attacked	 by	 the	

human	immune	system.	However,	the	selection	of	the	most	suitable	peptide	candidates	to	

be	 included	 in	 a	 HIV	 vaccine	 is	 not	 trivial.	 The	 immune	 system	 needs	 to	 cope	with	 the	

mutation	capacity	of	some	HIV	regions	that	can	facilitate	the	escape	from	T	cell	recognition	

and	avoid	the	elimination	of	infected	cells.	Consequently,	more	conserved	immunogens	are	

likely	 to	 outperform	 immunogens	 covering	 more	 variable	 segments	 of	 the	 virus.	 For	

instance,	Gag	peptides,	especially	 those	 in	p24,	are	highly	 conserved,	while	Nef	and	Env	

peptides	show	a	tremendous	mutation	rate	(3,	5,	6).		

Finally,	 each	HLA	molecule	 can	 recognise	a	wide	 range	of	peptides,	but	 these	molecules	

show	preferences	for	the	peptides	they	bound.	With	the	information	of	the	HLA	haplotype	

of	the	patients,	one	can	search	statistical	associations	of	HLA	alleles	with	the	T	cell	response	

to	the	different	OLPs.	The	HLA	alleles	returning	significant	associations	will	be	selected	in	

immunodominance	studies.	This	studies	allow	the	determination	of	the	HIV	epitopes	more	

frequently	 targeted	 by	 patients	 bearing	 a	 specific	 HLA	 allele.	 Therefore,	 it	 allows	 the	

identification	 of	 dominant	 epitopes	 whose	 presentation	 is	 restricted	 by	 these	 specific	

alleles.	
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2.	OBJECTIVES	

Only	a	few	studies	have	been	reported	that	focused	on	possible	associations	of	HLA-II	alleles	

with	HIV	control.	However,	there	is	a	growing	interest	on	the	role	of	HLA-II	and	CD4
+
	T	cells	

in	 the	 immune	 response	against	HIV	 (13,	14,	15).	 For	 this	 reason,	 the	central	aim	of	 the	

present	project	was	the	exploration	of	associations	between	the	HLA-II	alleles	in	the	HLA-

DQA,	HLA-DQB,	HLA-DRB1,	HLA-DRB3,	HLA-DRB4	and	HLA-DRB5	loci,	and	different	markers	

of	HIV	control	and	HIV	 infection	 risk	 in	a	Peruvian	cohort	of	almost	400	 individuals.	This	

cohort	was	already	studied	for	HLA-I	associations	(16),	identifying	individual	HLA-I	genes	and	

gene	combination	that	were	associated	with	viral	load	and	CD4
+
	T	cell	counts.	Both	studies	

contribute	with	a	better	characterization	of	the	immunogenetics	in	the	Peruvian	population,	

which	has	been	little	explored.	In	addition,	the	T	cell	responses	of	218	HIV	infected	subjects	

in	the	cohort	against	a	set	of	410	overlapping	peptides	 (OLPs)	covering	the	HIV	genome,	

were	analysed	with	an	IFNγ-	ELISpot	analysis	(12).	

The	specific	objectives	of	these	analyses	included:	

1. Exploration	of	 the	 associations	 between	HIV	 infection	 risk	 and	 specific	HLA-II	

alleles.	

2. Exploration	of	the	associations	of	HIV	control	and	specific	HLA-II	alleles.		

3. Determination	of	the	effect	of	heterozygosity	and	population	allele	frequencies	

on	HIV	control.		

4. Study	of	the	associations	of	T	cell	responses	to	HIV	epitopes	and	HLA-II	alleles.			
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3.	MATERIALS	AND	METHODS	

3.1.	Study	Cohort	

In	the	present	project	we	worked	with	a	Peruvian	cohort	of	392	subjects	established	and	

followed	at	the	IMPACTA	HIV	clinics	in	Lima,	Perú.	All	subjects	were	of	mixed	Amerindian	

ethnicity	and	showed	high-risk	behaviour	and	most	of	them	were	men	who	had	sex	with	

other	 men	 (MSM).	 Among	 them,	 there	 were	 148	 seronegative	 and	 244	 HIV-1	 infected	

(seropositive)	 individuals.	Of	 the	244	HIV	 infected	patients,	 11	were	under	antiretroviral	

treatment	(16).	These	treated	individuals	were	excluded	from	the	analyses	in	the	present	

study.		

From	the	untreated	seropositive	individuals,	we	had	information	about	CD4
+
	T	cell	counts	

and	viral	 load,	measured	by	routine	standard	flow	cytometry	and	qPCR	respectively.	The	

median	viral	load	in	the	cohort	was	37113	HIV	copies/ml	and	the	median	CD4	counts	was	

384	CD4
+	
T	cells	counts/µl.		

From	all	patients	in	the	cohort,	we	had	information	of	their	HLA-II	typing	for	loci	HLA-DQA,	

HLA-DQB,	 HLA-DRB1,	 HLA-DRB3,	 HLA-DRB4	 and	 HLA-DRB5.	 These	 last	 three	 loci	 were	

studied	as	a	single	one,	HLA-DRB345,	due	to	their	low	allelic	variability	and	their	genome	

proximity.	Additionally,	for	218	of	seropositive	patients,	T	cell	responses	were	measured	by	

FNɣ-ELISpot	assay	using	peripheral	blood	mononuclear	cells	(PBMCs)	(11,	12).	The	protocol	

used	was	optimised	for	CD8
+
	T	cell	response	detection	(12),	notwithstanding,	 it	 is	known	

that	part	of	the	IFNɣ	detected	can	be	produced	by	CD4
+
	T	cells.		

3.2.	HLA	Nomenclature	

Figure	3.1	offers	a	schematic	view	of	HLA	nomenclature.	First	of	all,	there	is	the	prefix	“HLA”	

and	separated	by	a	hyphen,	the	locus	in	question	(in	Figure	3.1,	locus	DQA	that	encodes	the	

α	 chain	 of	 HLA-DQ	molecule).	 Then,	 after	 an	 asterisk,	 the	 allele	 group	 is	 indicated,	 that	

generally	corresponds	to	two	digits	typing	in	line	with	serological	typing,	an	antibody	based	

method	that	has	been	used	for	HLA	typings	since	before	DNA	based	methodologies	(PCR	

and	sequencing)	emerged.	Finally,	a	second	set	of	digits	is	added	(optionally	after	a	colon)	



3. MATERIALS	AND	METHODS	 	 HLA-II	and	HIV	control	

	
11	

identifying	a	specific	HLA	allele.	These	latter	digits	inform	about	the	changes	in	the	amino	

acid	sequence	and	is	determined	by	DNA	based	methodologies	(16,	17).		

	

Focusing	on	the	HLA-II	typing	in	the	cohort	studied	herein,	most	of	the	HLA-II	alleles	were	

non-ambiguously	notated	with	the	4	digits	resolution,	but	a	few	of	them	were	designated	

as	a	group	of	alleles	with	the	2	digits	resolution.	In	this	project,	we	did	not	separate	with	a	

colon	the	first	and	the	second	set	of	digits.	Therefore,	we	would	have	 indicated	the	HLA	

allele	 in	 figure	 3.1	 as	 HLA-DQA*0201.	 As	 the	 prefix	 is	 always	 “HLA”,	 we	 considered	 it	

avoidable	and	hence,	we	also	referred	here	for	instance	to	this	allele	as	DQA*0201.	

As	mentioned	before,	the	three	loci	DRB3,	DRB4	and	DRB5	were	studied	as	a	single	locus	

HLA-DRB345.	Therefore,	when	designating	the	polymorphisms	of	this	region,	we	indicated	

the	specific	locus	3,	4	or	5	to	which	the	allele	belonged	ahead	of	the	4	digits	identifying	the	

specific	 allelic	 variant.	 For	 instance,	 HLA-DRB345*30101	 from	 locus	 DRB3.	 In	 this	 HLA-

DRB345	 region	 there	 were	 two	 exceptions.	 Firstly,	 there	 was	 the	 allele	 HLA-

DRB345*40101G.	G	indicates	a	group	of	alleles	with	the	same	nucleotide	sequence	in	the	

peptide	 binding	 domain	 but	 with	 synonymous	 changes	 or	 differences	 in	 untranslated	

regions	 (UTR)	 and	 introns	 (12).	 Secondly,	 some	 individuals	 did	 not	 express	 genes	 DRB3,	

DRB4	 and	 DRB5	 in	 one	 or	 both	 copies	 of	 the	 genome,	 which	 was	 indicated	 as	 HLA-

DRB345*AgBlank.	

		

Figure	3.1	HLA	Nomenclature.	Scheme	about	how	HLA	molecules	are	designated.	(Adapted	from	IPD-

IMGT/HLA	Database,	http://hla.alleles.org/nomenclature/naming.html	)	
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3.3.	Statistical	Analysis	

The	frequency	of	the	different	HLA-II	alleles	in	the	cohort	was	calculated	in	two	different	

manners.	 On	 the	 one	 hand,	 the	 cohort	 frequency	 was	 calculated	 as	 the	 number	 of	

individuals	bearing	a	certain	allele.	On	the	other	hand,	the	allele	frequency	as	the	number	

of	 times	 that	 an	 allele	 was	 present	 considering	 the	 two	 copies	 of	 each	 locus	 in	 each	

individual.	This	second	approach	results	in	more	or	less	half	the	frequency	when	compared	

to	 the	 frequency	 of	 individuals	 expressing	 a	 specific	 gene,	 but	 reflects	 situations	 of	

homozygosity	as	well.	In	addition,	for	each	patient,	we	calculated	the	cumulative	frequency	

of	their	HLA	haplotype	as	the	sum	of	the	cohort	frequency	for	each	of	the	alleles	expressed.		

In	order	to	assess	linkage	disequilibrium	(18,	19)	between	alleles	in	different	loci,	we	used	

chi	squared	test	with	1	degree	of	freedom	("#$).	To	assess	the	strength	of	LD,	the	measure	

D’	was	preferred	(Equation	3.1.).	

[Equation	3.1]	

%& = %
%()*	

Where:	

% = 0 12 − 0 1 ∗ 0(2)	

If	D	>	0:	

%()* = min	(0 1 0 ? , 0())0(2))	

If	D	<	0:	

%()* = min	(−0 1 0 2 ,−0())0(?))	

	

A	Fisher’s	Exact	Test	was	used	to	assess	associations	between	HLA-II	alleles	and	HIV	infection	

risk,	as	well	as	to	determine	associations	between	HLA-II	alleles	and	T	cell	responses	to	HIV	

epitopes.	False	discovery	rate	(FDR)	was	used	to	control	multiple	comparisons.		

To	explore	 the	associations	of	HLA-II	alleles	and	 the	quantitative	variables	viral	 load	and	

CD4
+
	counts,	we	first	tested	normality	with	a	Shapiro	test.	As	none	of	the	variables	fulfilled	

normality	assumption,	a	Mann-Whitney	test	was	used	to	compare	the	median	of	viral	load	

or	CD4
+
	counts	among	the	individuals	bearing	or	not	a	specific	allele.	To	analyse	differences	
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on	 several	 non-normally	 distributed	 continuous	 variables	 (viral	 load,	 CD4
+
	 counts	 and	

cumulative	frequency)	between	more	than	2	groups,	the	Kruskal-Wallis	test	was	applied.		

Additionally,	supervised	random	forest	(RF)	methodology	was	used	to	construct	a	regression	

model	for	each	of	the	HIV	control	predictors,	viral	load	and	CD4
+
	counts.	HLA-II	alleles	were	

used	as	the	covariates	of	the	model.	Their	importance	in	the	model	to	predict	changes	in	

viral	load	or	CD4
+
	counts	was	measured	with	the	mean	decrease	in	node	impurity.	The	more	

important	variables	showed	higher	values	of	this	measure.	In	parallel,	RFs	were	also	used	to	

construct	classification	models	about	the	T	cell	responses	to	different	OLPs.	A	classification	

model	was	constructed	for	each	OLP.	As	before,	the	HLA-II	alleles	were	used	as	explanatory	

variables.	 In	 this	 case,	 the	 importance	 of	 each	 variable	 was	 measured	 with	 the	 mean	

decrease	Gini	(MDG)	and	again,	the	higher	the	MDG	the	more	important	the	variable	was	

(19-22).	 We	 only	 computed	 MDG	 on	 the	 classification	 models	 with	 out-of-bag	 (OOB)	

estimates	with	an	error	rate	smaller	than	20%.	

For	 the	 determination	 of	 relevant	 variables	 for	 the	 construction	 of	 the	 regression	 or	

classification	models	with	RFs,	we	used	10-fold	cross-validation	procedure.	Each	 time	an	

increasing	number	of	variables	were	selected	based	on	their	relative	importance,	and	when	

the	 selected	 variables	 returned	 the	 minimum	 error	 of	 RF	 predictor,	 we	 were	 able	 to	

determine	the	most	influential	variables	in	the	model.					

All	the	statistical	analyses	were	performed	using	the	R	statistical	software	(23)	and	the	R	

studio	platform	(24).	The	random	forests	methodology	was	addressed	with	the	R	package	

randomForest	(25,	26).	The	different	plots	were	made	with	packages	graphics	(27),	ggplot2	

(28),	and	to	represent	linkage	disequilibrium,	package	corrplot	(29).		

Additionally,	an	R	package	named	AnalysisHLA	was	constructed	(Appendix	II)	to	store	all	the	

functions	used	in	the	present	study	to	carry	out	the	different	analyses.	For	the	construction	

of	this	package,	we	used	the	R	packages	devtools	(30)	and	roxygen2	(31).		

3.3.1.	Additional	web-based	tools	

In	the	study	of	associations	between	HLA-II	alleles	and	T	cell	responses	to	different	epitopes,	

we	used	the	specific	R	function	we	made	with	this	purpose	(Hepitope_f	function	stored	in	

AnalysisHLA	package).	The	design	of	this	function	was	inspired	by	the	Hepitope	tool	from	

the	 HIV	 molecular	 immunology	 database	 (32,	

http://www.hiv.lanl.gov/content/immunology/hepitopes/	),	and	improved	it	 in	two	ways:	
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Adding	information	of	LD	and	retrieving	the	results	in	a	more	user-friendly	way.	Moreover,	

the	use	of	the	R	software	allows	a	major	flexibility	on	the	analysis.	However,	the	web-based	

tool	was	used	to	corroborate	the	results.		

Finally,	 the	 tools	 QuickAlign	 (33)	 and	 Entropy	 (34)	 from	 the	 HIV	 sequence	 database	

(http://www.hiv.lanl.gov/content/sequence/HIV/HIVTools.html)	 were	 used	 to	 determine	

how	conserved	an	OLP	sequence	was.	QuickAlign	aligns	a	given	OLP	sequence	against	all	the	

similar	HIV	sequences	in	the	HIV	database.	Then,	this	alignment	serves	as	the	input	for	the	

Entropy	tool	that	returns	the	Shannon	entropy	(S)	value	of	each	position	in	the	alignment.			
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4.	RESULTS	

4.1	Association	 of	HIV	 infection	 risk	 and	 specific	HLA-II	

alleles	

4.1.1	Description	of	HLA-II	allele	frequency	

In	the	high-risk	Peruvian	cohort	analysed	in	the	present	study,	there	were	12	DQA,	17	DQB,	

43	 DRB1	 and	 12	 DRB345	 HLA-II	 alleles.	 The	 frequency	 of	 these	 alleles	 in	 the	 cohort,	

understood	as	the	percentage	of	individuals	bearing	each	allele,	is	showed	in	Figure	4.1.	The	

main	observation	is	that	less	polymorphic	loci	showed	a	heterogeneous	distribution	of	the	

alleles,	 the	majority	of	 the	 individuals	 in	 the	cohort	expressed	the	same	allele,	 therefore	

there	was	one	very	frequent	allele	in	these	loci	while	the	other	ones	were	more	uniformly	

distributed.	Regarding	the	less	polymorphic	locus	DQA,	60%	of	individuals	expressed	HLA-	

DQA*0301,	 the	 most	 common	 allele	 in	 this	 locus	 and	 40%	 of	 them,	 the	 second	 more	

frequent	 allele	 HLA-DQA*0501.	 In	 locus	 DQB,	 more	 polymorphic	 than	 DQA,	 the	 more	

frequent	 allele	HLA-DQB*0302	was	 present	 in	 40%	of	 the	 individuals	 in	 the	 cohort.	 The	

DRB345	region	is	also	characterized	by	a	low	polymorphism,	and,	as	expected,	60%	of	the	

subjects	in	the	cohort	carried	the	most	common	allele	HLA-DRB345*40101G.	Finally,	in	the	

most	polymorphic	locus	DRB1,	the	most	common	allele	HLA-DRB1*0901	was	carried	by	less	

than	the	25%	of	the	individuals.	
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The	allele	 frequencies	of	 the	HLA-II	alleles	 in	 the	Peruvian	cohort	 (Appendix	 I)	were	also	

calculated.	These	were	compared	with	the	allele	frequencies	in	other	Peruvian	populations	

described	 in	 a	 limited	 set	 of	 studies	 in	 the	 Allele	 Frequency	 Net	 Database	 (35,	

http://www.allelefrequencies.net).	 Regarding	 locus	 DQA,	 in	 both	 the	 database	 and	 the	

cohort,	the	highest	allele	frequency	was	for	HLA-DQA*03	followed	by	HLA-DQA*0501	and	

HLA-DQA*0401.	In	the	case	of	the	DQB	gene,	the	three	most	frequent	alleles	described	in	

the	 database	 were	 HLA-DQB*0301,	 HLA-DQB*0402	 and	 HLA-DQB*0302.	 In	 the	 cohort,	

these	alleles	were	ordered	slightly	different	according	the	allele	frequency:	HLA-DQB*0302,	

HLA-DQB*0301,	HLA-DQB*0303	and	HLA-DQB*0402.	The	main	difference	 regarding	DQB	

locus	was	on	the	allele	frequency	of	HLA-DQB*0303,	which	was	reported	as	one	of	the	less	

frequent	alleles	in	the	allele	frequency	database.	In	the	DRB1	locus,	the	highest	frequency	

in	the	cohort	was	found	for	the	HLA-DRB1*0901	allele.	Although	this	allele	was	in	a	similar	

frequency	according	the	Peruvian	populations	described	in	the	database	(36,	37,	38),	the	

more	frequent	alleles	there	were	HLA-DRB1*0802	and	HLA-DRB1*0403,	which	showed	low	

Figure	4.1	Frequency	plots.	Plots	A,	B,	C	and	D	show	the	percentage	of	individuals	expressing	each	of	
the	different	alleles	in	the	locus	or	regions	DQA,	DQB,	DRB345	and	DRB1	respectively.		

A	 B	 C	

D	
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allelic	frequencies	in	the	studied	cohort	and	which	may	be	the	consequence	of	demographic	

and	geographic	differences	between	the	cohorts	included	in	this	study	and	the	ones	in	the	

Allele	Frequency	Database.	There	was	no	information	available	about	loci	DRB3,	DRB4	and	

DRB5	in	the	database.		

Finally,	 based	 on	 the	 frequencies	 of	 the	 alleles	 in	 the	 cohort,	 we	 measured	 linkage	

disequilibrium	(LD)	between	alleles	in	different	loci.	In	Figure	4.2,	the	LD	is	shown	between	

alleles	in	different	loci	measured	with	D’	parameter	(see	section	3).	There	was	a	high	degree	

of	non-random	associations	between	the	HLA-II	alleles	in	different	loci.	The	fact	that	there	

was	a	high	number	of	alleles	always	expressed	together	 (D’	=	1),	 implied	 the	absence	of	

other	haplotypes	(D’	=	-1),	increasing	the	number	of	alleles	in	LD.		In	particular,	the	most	

frequent	 allele	 HLA-DQA*0301	was	 in	 linkage	 disequilibrium	with	 all	 the	most	 frequent	

alleles	 in	 the	 other	 loci	 (D’	 is	 near	 +1),	 indicating	 the	 predominance	 of	 the	 haplotypes	

DQA*0301-DQB*0302	and	DQA*0301-DRB1*0901	and	DQA*0301-DRB345*40101G.	
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4.1.2	Association	of	HIV	infection	and	HLA-II	alleles	

To	 analyse	 associations	 of	 HLA-II	 alleles	 with	 HIV	 infection	 status,	 either	 referred	 to	 as	

seronegative	 or	 seropositive,	 we	 used	 a	 Fisher’s	 Exact	 Test.	 The	 two	 alleles	 HLA-

DRB345*401	 (p	 =	 0.035)	 and	HLA-DQB*0202	 (p	 =	 0.048)	 showed	 significant	 associations	

with	an	increased	and	a	lower	risk	of	being	seropositive,	respectively.	At	first	glance,	in	table	

4.1,	the	odds	ratio	(OR)	indicated	that	individuals	highly	exposed	to	HIV	carrying	the	allele	

HLA-DRB345*401,	had	7	times	more	risk	to	get	infected	than	individuals	without	this	allele.	

Figure	4.2	Linkage	Disequilibrium	between	HLA-II	 alleles	based	on	D’	measure.	 Correlation-like	
plot	based	on	D’	measure.	The	different	HLA-II	alleles	are	indicated	on	the	top	and	the	left	of	the	

plot.	On	the	right,	there	is	the	scale	indicating	the	D’	measure	of	linkage	disequilibrium.	Black	boxes	

mark	alleles	in	the	same	locus	for	which	no	LD	was	calculated.		
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On	 the	 contrary,	 allele	 HLA-DQB*0202	 seemed	 to	 be	 a	 protective	 allele,	 as	 individuals	

bearing	it	showed	a	2	fold	reduced	risk	to	be	HIV	infected	than	subjects	without	the	allele.	

However,	looking	at	the	95%	confidence	interval	(CI)	for	these	two	alleles,	it	was	not	possible	

to	identify	any	association	of	specific	HLA-II	alleles	and	the	risk	for	HIV	infection	due	to	the	

large	intervals	containing	the	null	value.	

DRB345*401	 OR	 CI	(95%)	 	 DQB*0202	 OR	 CI	(95%)	

0	 1.000	 -	 0	 2.149	 (0.936	–	5.0233)	

1	 6.918	 (0.986	–	300.328)	 1	 1.000	 -	

	

4.2	Association	between	HIV	control	and	HLA-II	genotype	

The	identification	of	associations	between	host	genetics	and	markers	of	HIV	control	(viral	

load	 and	CD4
+	
counts),	was	 the	main	 goal	 of	 this	 study.	 Therefore,	 seropositive	patients	

were	stratified	according	to	the	presence	or	absence	of	each	of	the	HLA-II	alleles	and	then,	

their	viral	load	and	CD4
+
	counts	were	compared	using	a	Mann-Whitney	test.	The	two	HIV	

control	markers	are	known	to	be	inversely	correlated	(3)	and	the	HLA-II	associations	with	a	

p-value	<	0.1	(arbitrary	threshold	to	avoid	the	representation	of	all	the	HLA-II	alleles	in	the	

cohort)	for	any	of	the	two	markers	are	presented	in	figure	4.3.	Regarding	viral	load	(Figure	

4.3A),	allele	HLA-DRB1*1302	(p	=	0.044)	was	associated	with	high	viral	load	and	so,	with	a	

lack	of	HIV	control.	On	the	contrary,	allele	HLA-DRB1*1201	(p	=	0.015)	was	associated	with	

low	viral	load	and	HIV	control.	Exploring	the	associations	of	CD4
+	
counts	with	HLA-II	alleles	

(Figure	4.3B),	yielded	4	significant	associations	including:	HLA-DRB1*0804	(p	=	0.018),	HLA-

DRB1*0301	(p	=	0.02),	HLA-DRB345*30101	(p	=	0.036)	and	HLA-DRB1*0401	(p	=	0.038).	All	

these	alleles	were	associated	with	reduced	counts	of	CD4
+
	T	cells,	with	the	exception	of	HLA-

DRB1*0804	which	was	related	to	higher	CD4
+
	counts.	None	of	the	associations	remained	

significant	after	correcting	for	multiple	comparisons	with	FDR	(q-value	>	0.2).		

Table	4.1	Odds	Ratio	(OR)	for	the	alleles	with	significant	p-values	from	the	Fisher’s	Exact	Test	in	
HIV	infection.	Each	of	the	tables	makes	reference	to	an	HLA-II	allele:	DBR345*401	and	DQB*0202.	

The	0	or	1	means	individuals	without	the	allele	and	with	it	respectively.	Then,	it	is	indicated	the	Odds	

Ratio	(OR)	and	the	95%	confidence	interval	(CI).		
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Previous	 studies	observed	 (16,	39)	 that	alleles	expressed	 in	a	higher	number	of	patients	

were	 associated	with	 HIV	 progression	 compared	 to	 less	 frequent	 alleles.	 In	 Figure	 4.3C,	

comparing	the	two	alleles	associated	with	differences	in	viral	load,	allele	HLA-DRB1*1201,	

associated	to	low	viral	loads,	was	less	frequent	than	HLA-DRB*1302	allele.	For	associations	

with	CD4
+
	T	cell	counts,	the	beneficial	allele	HLA-DRB1*0804	was	less	frequent	than	the	two	

alleles	associated	with	low	CD4
+
	counts,	HLA-DRB345*30101	and	HLA-DRB1*0301.		

To	analyse	which	HLA-II	 alleles	 (considering	 loci	DQA,	DQB,	DRB1	and	DRB345	 together)	

better	 explained	 the	 levels	 of	 viral	 load	 and	 CD4
+
	 counts,	 we	 used	 the	 random	 forest	

methodology	 to	 obtain	 one	 regression	 model	 for	 each	 of	 the	 HIV	 control	 markers	

(dependent	variables).	Figure	4.4	shows	the	importance	of	the	different	covariates	in	the	

regression	models	ordered	according	to	the	importance	measure	mean	decrease	in	node	

impurity	(higher	values	means	major	importance).	In	both	models	a	variable	selection	was	

made	using	10-fold	cross-validation.	Regarding	viral	load,	the	HLA-II	alleles	selected	as	the	

more	 important	 predictors	 of	 viral	 load	 were	 HLA-DRB1*1001,	 HLA-DQA*0201,	 HLA-

DRB345*40101G	 and	 HLA-DRB1*0407.	 In	 the	 case	 of	 CD4
+
	 T	 cell	 counts,	 HLA-II	 allele	

DQB*0302	appeared	to	be	enough	to	predict	changes	on	this	parameter.	However,	these	

results	were	no	reliable	because	the	two	models	 failed	 in	explaining	any	variance	on	the	

dependent	variable.			

	

	

	

	

	

	

	

	

	

	

	 	

Figure	4.3	Associations	of	HLA-II	molecules	with	viral	load	and	CD4
+
	counts.	Alleles	achieving	a	p-

value	<	0.1	for	any	of	the	two	control	markers	are	represented,	the	alleles	associated	(p<0.1)	with	

one	 of	 the	 markers	 are	 highlighted	 in	 colour.	 Green	 means	 beneficial	 association	 and	 red,	 a	

deleterious	association.	The	medians	for	log10	viral	load	and	CD4
+
	counts	of	the	cohort	are	indicated	

by	the	by	the	black	discontinuous	line.	Alleles	with	p-values	<	0.05	are	indicated	with	*.	On	the	right	

part	of	the	plot,	there	is	the	frequency	of	each	of	the	selected	alleles.		

	

A	 B	 C	
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A) Log10	Viral	Load	

B)		CD4+	cells	count	

4.4	Importance	of	the	different	HLA-II	alleles	to	explain	viral	loads	and	CD4+	counts	in	the	regression	
models	 obtained	 with	 the	 Random	 Forest	 methodology.	 In	 both	 plots	 the	 importance	 variable	

measured	as	Mean	Decrease	in	Node	Impurity	can	be	found	in	the	coordinates,	and	the	different	HLA-

II	alleles,	the	covariates,	in	the	ordinates.	Highlighted	in	red	are	the	HLA-II	alleles	that	were	identified	

as	the	more	important	ones	to	explain	the	differences	on	median	viral	loads	and	CD4
+
	T	cell	counts	

using	 cross	 validation	 procedure.	 Plot	 A	 shows	 the	 results	 considering	 viral	 load	 as	 dependent	

variable,	while	plot	B	shows	the	results	related	to	CD4
+
	counts.			
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4.3.	Effect	of	heterozygosity	and	rare	HLA-II	alleles	on	HIV	

control	

In	 this	 section	 we	 analysed	 whether	 seropositive	 patients	 with	 HLA-II	 alleles	 in	

heterozygosity	or	with	low	cumulative	HLA-II	cohort	frequency,	showed	a	control	of	HIV	as	

suggested	by	earlier	studies	(16,	39).	

To	 study	 the	 effect	 of	 heterozygosity,	 different	 groups	 were	 made:	 Individuals	 in	 the	

heterozygous	group	were	those	with	all	the	alleles	in	heterozygosis	for	the	HLA-II	regions	

DQ,	DRB1	and	DRB345.	The	rest	of	the	individuals,	having	at	least	one	locus	in	homozygosis,	

were	 considered	 as	 homozygous.	 Additionally,	 for	 each	 locus,	 individuals	 were	 divided	

according	 the	 homozygosity	 or	 heterozygosity	 of	 one	 specific	 gene.	 The	 results	 of	 the	

heterozygous	effect	are	shown	in	Figure	4.5.	The	medians	of	viral	load	and	CD4
+
	counts	from	

the	 different	 groups	 were	 compared	 with	 a	 Kruskal-Wallis	 test,	 no	 significant	 results	

appeared	 in	 any	 case	 (p	 >	 0.05).	 Therefore,	 we	 did	 not	 find	 evidence	 that	 HLA-II	

heterozygosity	meant	an	advantage	for	the	HIV	infected	individuals	in	the	Peruvian	cohort.		

	

Figure	4.5	Comparison	of	viral	loads	and	CD4
+
	counts	in	HLA	heterozygosity.	Figure	A	is	a	boxplot	

with	y-axis	indicating	the	log10	viral	load	and	the	x-axis	the	different	groups	of	patients	made.	Figure	

B	shows	similar	results	but	in	y-axis	there	are	CD4
+	
counts.	The	groups	of	patients	are	denominated	

as	 follows:	 DQhomo,	 DRB1homo	 and	 DRB345homo,	 that	 make	 reference	 to	 those	 individuals	

homozygous	for	the	specific	locus,	and	DQhetero,	DRB1hetero	and	DRB345hetero,	that	refers	to	

heterozygous	individuals	in	these	loci.	Homozygous	group	contains	these	individuals	with	at	least	

one	locus	in	homozygosity,	and	the	Heterozygous	group,	individuals	totally	heterozygous.			

A	 B
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Next,	we	assessed	whether	rare	alleles	would	provide	any	advantage	on	HIV	control	(Figure	

4.6).	To	this	end,	individuals	were	divided	in	4	groups	according	to	the	quartile	of	the	levels	

of	their	viral	load	and	CD4
+
	T	cell	counts.	Then,	for	each	of	the	groups	in	each	of	DQ,	DRB1	

and	DRB345	loci,	we	computed	the	cumulative	frequency	as	the	sum	of	the	allele	cohort	

frequency.	 It	 was	 expected	 that	 individuals	 with	 lower	 viral	 load	 or	 higher	 CD4
+
	 counts	

would	 show	 smaller	 cumulative	 frequencies.	 However,	 no	 significant	 differences	 in	

cumulative	frequencies	were	detected	with	the	Kruskal-Wallis	test	in	any	case	(p	>	0.05).		

	

	

Figure	4.6	Comparison	of	median	cumulative	frequency	among	quartiles	based	on	viral	loads	and	
CD4+	cell	counts.	Figure	A	refers	to	viral	load,	and	figure	B,	to	CD4+	counts.	In	both	cases	in	the	y-axis	
there	is	the	cumulative	frequency	and	in	the	x	–axis	the	different	HLA-II	regions	analysed:	DQ,	DRB1	

and	DRB345.		For	each	of	the	regions,	individuals	are	divided	in	4	groups	according	the	4	quartiles	of	

viral	load	and	CD4
+
	counts	measures.		There	are	no	significant	differences	in	the	cumulative	frequency	

from	none	of	the	regions	neither	for	viral	load	nor	for	CD4
+
	counts	(Kruskal-Wallis	test	p-value	>	0.05).	

A	

B	
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4.4.	Association	of	T	cell	response	and	HLA-II	

The	T	cell	responses	against	HIV	epitopes	are	the	consequence	of	the	HLA-I	and	HLA-II	alleles	

molecules	presenting	different	epitope	peptides	to	virus-specific	T	cells.	Here,	we	explored	

the	associations	between	HLA-II	alleles	and	T	cell	responses	to	overlapping	peptides	(OLPs)	

covering	the	whole	HIV	proteome.	Reponses	to	the	different	OLPs	were	measured	as	IFNγ	

producing	PBMCs	in	an	ELISpot	assay,	bearing	in	mind	that,	part	of	the	IFNγ	producing	cells	

are	expected	to	be	CD8
+	
T	cells	and	thus	impacting	the	analyses	of	HLA-II	restricted	CD4

+
	T	

cell	responses.		

A	Fisher’s	Exact	Test	was	used	to	determine	independent	associations	between	each	of	the	

HLA-II	alleles	in	the	cohort	and	the	different	OLPs	to	which	the	patients	responded.	Figure	

4.7	maps	 the	percentage	of	 significant	 associations	 (p	<	0.05)	 in	each	of	 the	proteins	or	

subproteins	 of	 the	 HIV	 genome.	 As	 might	 be	 expected,	 the	 two	 larger	 proteins	 and	

subproteins,	reverse	transcriptase	and	gp120	derived	from	the	envelope	protein	precursor,	

were	the	ones	with	a	major	number	of	significantly	associated	OLPs	mapped.	

	

With	these	association	results	and	the	HLA-II	genotype	information	of	the	Peruvian	cohort,	

we	determined	the	frequency	of	patients	putatively	responding	to	different	OLPs.	We	only	

selected	those	OLPs	showing	a	significant	association	(p<0.05)	with	at	least	one	allele.	These	

results	are	shown	 in	 figure	4.8.	Only	peptides	against	which	at	 least	10%	of	 the	patients	

were	predicted	to	respond	are	represented,	lower	frequencies	were	not	considered	to	avoid	

Figure	 4.7	Map	 of	OLP	 reactivity	 significantly	 associated	with	HLA-II	 alleles.	Percentage	 of	OLPs	
associated	with	at	 least	one	HLA-II	 allele	 (p<0.05)	 in	 each	viral	protein	and	 subprotein	of	 the	HIV	

genome.		



4. RESULTS	 	 HLA-II	and	HIV	control	

	
25	

bias	towards	less	reactive	peptides.	The	highest	frequency	of	patients	was	found	on	putative	

T	cell	 responses	against	Gag,	Pol	and	Nef	proteins.	The	20%	of	 the	HIV	 infected	patients	

were	predicted	 to	 react	against	OLP	41	 in	Gag	protein	and	OLP	162,	190	and	207	 in	Pol	

protein.	In	addition,	around	35	patients	were	predicted	to	respond	to	OLP	76	in	Nef	protein.	

	

4.4.1	 Immunodominance	 on	 patients	 bearing	 HLA-

DRB1*1201	or	HLA-DRB1*1302	alleles	

We	 finally	 studied	 the	 immunodominance	 patterns	 of	 patients	 expressing	 alleles	 HLA-

DRB1*1201	 or	 HLA-DRB1*1302	 since	 they	were	 related	 to	 lower	 and	 higher	 viral	 loads,	

respectively.	 Figure	 4.9	 shows	 the	 percentage	 of	 patients	with	 HLA-DRB1*1201	 or	 HLA-

DRB1*1302	alleles	responding	to	OLPs	associated	with	T	cell	responses	in	at	least	10%	of	

the	patients	in	the	studied	cohort.	The	immunodominance	pattern	in	both	cases	is	mainly	

mapped	in	the	HIV	genome	regions	Gag,	Pol	and	Nef.		

From	the	OLPs	represented,	only	OLP	41	and	OLP	82	appeared	to	be	significantly	associated	

with	HLA-DRB1*1201	(p=0.038)	and	HLA-DRB1*1302	(p=0.036),	respectively	in	the	Fisher’s	

Exact	tests.	These	associations	went	 in	the	same	direction	in	the	RF	classification	models	

Figure	4.8	Percentage	of	patients	with	T	cell	responses	to	HIV	Overlapping	Peptides.	We	calculated	

the	percentage	of	patients	bearing	HLA-II	alleles	significantly	associated	with	the	different	OLPs.	Only	

peptides	predicted	to	show	INFɣ	responses	in	at	least	10%	of	the	patients	are	represented.	The	colours	

indicate	the	regions	of	the	HIV	genome.	
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where	 the	 HLA-II	 alleles	were	 ordered	 according	 to	 the	MDG	 classification	 of	 the	 T	 cell	

responses	 to	OLP	 41	 and	OLP	 82	 (Figure	 4.10).	 In	 the	 classification	model	 for	 the	 T	 cell	

response	against	OLP	41,	HLA-DRB1*1201	was	selected	as	an	important	variable,	and	the	

same	happened	considering	OLP	82	and	HLA-DRB1*1302.	

Comparing	 the	 immunodominance	 of	 these	 2	 groups	 of	 patients,	 the	 majority	 of	 HLA-

DRB1*1201	 patients	 exerted	 a	 T	 cell	 response	 against	 OLP	 41,	 while	 the	 individuals	

expressing	either	one	of	these	alleles	showed	comparable	frequency	of	reactivity	to	OLP	82.	

In	order	to	further	explore	the	contribution	of	the	T	cell	response	against	these	two	OLPs	

on	HIV	progression,	we	computed	the	entropy	of	their	peptide	sequence	using	the	Shannon	

Index	measure.	It	has	been	reported	(12)	that	more	conserved	sequences,	showing	a	lower	

Shannon	Index,	are	usually	associated	with	the	control	of	HIV	disease	progression	and	that	

peptides	 spanning	 more	 conserved	 regions,	 would	 more	 often	 match	 the	 patient’s	

autologous	sequence	and	thus	more	reliably	detect	potential	responses	than	OLP	covering	

more	variable	regions.	In	our	results	both	sequences	showed	similar	Shannon	index	values	

(data	not	shown).	Therefore,	we	could	not	define	the	T	cell	responses	against	OLP	41	and	

OLP	82	as	beneficial	or	prejudicial	according	the	entropy	of	their	sequences.			

	

	

	

	

	

Figure	 4.9	 Immunodominance	 comparison	 between	 patients	 carrying	 HLA-DRB1*1201	 or	 HLA-
DRB1*1302.	HLA-II	molecules	DRB1*1201	and	DRB1*1302	have	been	found	to	be	associated	with	

differences	in	viral	load.	The	OLPs	associated	(p<0.05)	with	at	least	one	HLA-II	allele	and	to	which	at	

least	10%	of	the	HIV	positive	patients	in	the	Peruvian	cohort	showed	a	response,	are	shown	in	the	

current	 plot	 (x-axis).	 The	 ordinates	 indicate	 the	 percentage	 of	 patients	 bearing	 DRB1*1201	 or	

DRB1*1302	responding	to	each	of	the	selected	peptides.		
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Finally,	we	searched	if	the	OLPs	against	which	at	least	a	10%	of	the	patients	responded	in	

the	Peruvian	cohort	had	described	T-helper	epitopes	 in	the	HIV	molecular	database	(40).	

The	same	database	also	contained	the	HLA-II	alleles	that	had	been	described	to	restrict	the	

T	 cell	 responses	 against	 these	 epitopes	 (Table	 4.2).	 None	 of	 the	mentioned	 OLPs	 were	

described	 to	 harbour	 an	 epitope	 presented	 by	 HLA-DRB1*1201.	 On	 the	 contrary,	 HLA-

4.10	Importance	of	the	different	HLA-II	alleles	to	classify	T	cell	responses	to	OLP	41	and	OLP	82.	In	
both	plots	the	HLA-II	alleles	 (y-axis)	are	ordered	according	 the	Mean	Decrease	Gini	 (y-axis).	Plot	A	

shows	the	classification	of	OLP	41	and	B,	the	classification	of	OLP	82.	The	most	important	alleles	to	

classify	the	responses	to	these	OLPs	are	marked	in	red.	
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DRB1*1302	was	described	to	be	associated	with	the	T	cell	responses	against	OLP	4,	5	and	

41	but	no	HLA-DRB1*1302	restricted	epitope	had	been	described	for	OLP	82.			

	

Table	4.2.	Epitopes	described	in	the	HIV	molecular	database	that	overlap	with	OLP	recognized	by	a	
10%	of	the	HIV	positive	patients	in	the	Peruvian	cohort.	In	this	table	we	show	the	peptide	sequences	of	
the	OLPs	to	which	the	patients	in	the	Peruvian	cohort	responded	to	and	the	HLA-II	alleles	that	have	

been	described	to	restrict	T	cell	epitopes	against	epitopes	contained	in	them.	In	red,	the	allele	that	was	

significantly	associated	with	high	viral	load	in	our	cohort	(DRB1*1302)	is	marked.		

	

EPITOPE	 HLA	 OLP	 PEPTIDE	

EKIRLRPGGKKKYKL	 	 OLP	3	 GAG	

EKIRLRPGGKKKYKLKHI	 	 OLP	3	 GAG	

RPGGKKKY?	 	 OLP	3	 GAG	

GKKKYKLKHIVWASREL	 DRB1*0101,	DRB1*0701,	DRB1*0801,	DRB1*1101,	
DRB1*1302,	DRB1*1303,	DRB3*0101,	DRB3*0301,	
DRB4*0101,	DRB5*0101	

OLP	4	 GAG	

KHIVWASRELERFAV	 DRB1*0301,	DRB1*1301,	DRB1*1302,	DRB1*1303,	
DRB3*0101,	DRB5*0101	

OLP	5	 GAG	

HIVWASRELER	 	 OLP	5	 GAG	

HIVWASRELERFAVN?	 	 OLP	5	 GAG	

AAEWDRLHPVHAGPIA	 DRB1*0701	 OLP	29	 GAG	

GPKEPFRDYVDRFYKTLR	 DRB1*1301	 OLP	40	 GAG	

YVDRFYKTLRAEQASQEV	 DRB1*0101,	DRB1*0401,	DRB1*0405,	DRB1*0701,	
DRB1*0801,	DRB1*1001,	DRB1*1101,	DRB1*1301,	
DRB1*1302,	DRB1*1303,	DRB1*1501,	DRB1*1502,	
DRB4*0101,	DRB5*0101	

OLP	41	 GAG	

RLHPVHAGPIA	 	 OLP	29	 GAG	

GPKEPFRDYVDRFYK	 	 OLP	40	 GAG	

PKEPFRDYV	 DQ5	 OLP	40	 GAG	

DRFYKTLRAEQASQ	 DRB1*0401	 OLP	41	 GAG	

RFYKTLRAEQAS	 DRB1*0101,	DRB1*0401,	DRB1*0405,	DRB1*0701,	
DRB1*1101,	DRB11*501,	DRB5*0101	

OLP	41	 GAG	

FYKTLRAEQASQ	 DRB1*0101,	DRB1*0401,	DRB1*1101,	DRB5*0101	 OLP	41	 GAG	

FYKTLRAEQASQE	 DRB1*0101,	DRB1*0401,	DRB1*0405,	DRB1*1101,	
DRB1*1501,	DRB5*0101	

OLP	41	 GAG	

YKTLRAEQA	 DRB1*0101	 OLP	41	 GAG	

LRAEQASQEVKNWMTETL	 	 OLP	42	 GAG	

LAENREILKEPVHGV	 	 OLP	207	 POL	

KTVRLIKFLYQSNPPPS	 	 OLP	96	 REV	

VGFPVRPQ	 DR1,	DRw15(2)	 OLP	76	 NEF	

YKAAVDLSHFLKEKGGL	 DRB1*0701,	DRB1*0804	 OLP	78	 NEF	

LWVYHTQGYFPDWQNY	 DRB1*0701,	DRB1*1301,	DRB1*1401,	DRB3*0101,	
DRB4*0101	

OLP	82	 NEF	
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5.	DISCUSSION	

Several	host	genetic	factors	have	been	associated	with	different	degrees	of	HIV	infection	

control.	 Among	 them	 HLA-I,	 and	 mainly	 polymorphisms	 in	 the	 HLA-B	 locus,	 have	 been	

related	with	differences	in	HIV	acquisition	and	control	of	HIV	associated	disease	(16,	48,	49).	

However,	the	Major	Histocompatibility	Complex	includes	other	classical	(HLA-II)	and	non-

classical	(HLA-E,	G,	F)	genes	also	involved	in	the	immune	response.	Of	them,	HLA-II	is	one	of	

the	most	studied	and	it	is	known	to	play	a	key	role	in	the	development	of	CD4
+
	T	cell	and	

humoral	 immune	 responses.	 However,	 in	 association	 to	 HIV	 infection,	 it	 has	 not	 been	

studied	to	the	same	level	as	HLA-I	polymorphisms.	HLA	molecules	of	class	II	are	structurally	

similar	 to	HLA-I	 ones,	 but	 their	 associations	with	HIV	 control	may	be	 subtler	 for	 several	

reasons:	Firstly,	because	its	function	is	related	to	the	stimulation	of	the	immune	response	

instead	 of	 the	 direct	 killing	 of	 infected	 cells	 and	 secondly,	 because	 these	molecules	 are	

formed	by	 two	subunits	encoded	 in	different	 loci	 (2,	9).	Here,	we	 took	advantage	of	 the	

access	 to	 a	 HLA-II	 typed	 cohort	 including	 almost	 400	 HIV-exposed	 and	 HIV	 infected	

individuals,	to	search	for	associations	between	HLA-II	alleles	and	HIV	infection	control.		

To	our	knowledge,	this	is	the	first	study	of	HLA-II	associations	with	HIV	performed	in	Peru,	

a	fairly	understudied	population	although	it	has	been	part	of	several	HIV	vaccine	trials	in	the	

past	(41,	42).	We	contribute	with	392	individuals	to	a	better	knowledge	of	the	frequency	

distribution	of	the	HLA-II	alleles	in	the	Peruvian	population	and,	as	far	as	the	authors	know,	

this	is	the	first	study	that	describes	the	frequency	of	genes	DRB3,	4	and	5	in	this	population.	

Comparing	the	allele	frequencies	of	the	present	cohort	with	the	information	of	the	three	

Peruvian	 populations	 described	 in	 the	 Allele	 Frequency	 Net	 Database	 (36,	 37,	 38),	 we	

observed	similar	allelic	frequency	distribution.	After	the	linkage	disequilibrium	analysis,	we	

could	infer	three	predominant	haplotypes	DQA*0301-DQB*0302,	DQA*0301-DRB1*0901,	

DQA*0301-DRB345*40101G.	

In	the	present	study,	we	did	not	find	statistically	robust	associations	between	HLA-II	alleles	

and	risk	for	HIV	infection.	We	did	however	identify	several	HLA-II	alleles	that	were	related	

to	 differences	 in	 the	 HIV	 control	 markers	 viral	 load	 and	 CD4
+
	 counts,	 but	 none	 of	 the	

associations	remained	significant	after	the	correction	for	multiple	comparisons	by	FDR.	The	

HLA-II	alleles	were	never	significantly	associated	with	both	HIV	control	markers	at	the	same	

time,	which	could	be	consequence	of	the	fact	that	viral	load	is	a	reflection	of	viral	set	point	
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and	 not	 necessarily	 reflective	 of	 disease	 progression	 without	 knowing	 the	 time	 since	

infection,	whereas	CD4
+
	T	cell	counts	reflect	more	the	clinical	advancement	of	HIV	disease.	

This	is	also	reflected	in	the	relatively	weak	correlation	between	viral	load	and	CD4
+
	counts	

in	the	present	cohort	(r
2
	=	0.114).	Hence,	and	in	the	absence	of	information	on	“time	since	

infection”	 (43,	 44),	we	 focused	 on	 the	HLA-II	 associations	with	 viral	 load.	 The	 two	main	

associations	 were	 with	 the	 HLA-II	 alleles	 DRB1*1201	 and	 DRB1*1302.	 The	 former	 was	

significantly	 associated	with	 low	 viral	 load,	while	HLA-DRB1*1302	was	 related	with	 high	

viremia.		

Other	 studies	 also	 found	 statistical	 associations	 with	 HLA-DRB1	 alleles.	 Julg	 et	 al	 (45)	

identified	HLA-DRB1*1303	to	be	significantly	associated	with	low	viral	load	in	chronic	HIV-1	

clade	C	and	B	infected	individuals.	They	transformed	viral	load	for	normality	and	applied	a	

generalised	linear	model	to	compare	the	viral	load	mean	of	patients	with	or	without	each	

of	the	HLA	alleles.	However,	as	in	the	present	study,	the	associations	found	by	Julg	et	al	did	

not	reach	significance	after	the	correction	for	multiple	comparisons.	Similarly,	Ranashinge	

et	al	(46)	identified	HLA-DRB1*1501	to	be	associated	with	low	viremia	and	DRB1*0301,	with	

high	viremia.	 In	 this	 study	 the	HLA-II	 associations	with	 viral	 load	maintained	 significance	

after	Bonferroni	correction	for	multiple	comparisons,	which	is	a	more	restrictive	approach	

to	 deal	 with	 multiple	 comparisons	 issues	 than	 the	 false	 discovery	 rate.	 However,	 their	

finding	may	also	be	a	consequence	of	the	different	statistical	approach	they	used,	as	they	

divided	the	seropositive	individuals	in	a	group	of	controllers	(VL	<	2,000	copies/ml)	and	a	

group	of	progressors	(VL	>	10,000	copies/ml)	and	applied	a	logistic	regression	for	each	allele	

where	 the	dependent	 variable	 viral	 load	was	 converted	 into	 a	binary	 variable:	 higher	or	

lower	to	the	viral	load	mean.	To	our	knowledge,	it	is	more	robust	to	compare	the	median	of	

continuous	variables	with	Mann-Whitney	test,	the	one	applied	in	our	analysis.	Additionally,	

in	the	cohort	division	there	were	some	individuals	in	the	middle	of	the	established	cut-offs	

that	were	not	considered,	and	which	increased	the	differences	between	the	two	extreme	

groups.		

None	of	the	associations	found	in	these	earlier	studies	were	reproduced	herein,	which	 is	

not	surprising,	considering	they	focused	on	cohorts	of	different	ancestry	and,	consequently,	

with	 a	 different	 HLA-II	 distribution.	 However,	 some	 of	 their	 other	 findings	 were	 in	

agreement	with	our	results;	the	HLA-II	associations	with	viral	load	were	overall	weak	and	

the	majority	of	them	were	related	with	locus	DRB1.	Considering	that	the	DRB1	gene	is	the	
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most	polymorphic	one	of	 the	HLA-II	genes,	 this	characteristic	could	be	somehow	related	

with	 the	 associations	 found.	 Actually,	 this	 hypothesis	 is	 reinforced	 by	 the	 fact	 that	 in	

different	studies	of	HLA-I	associations	(16,	47,	48,	49),	the	most	polymorphic	gene	HLA-B	

was	also	the	most	commonly	related	with	changes	in	viral	load.	Both	genes,	HLA-DRB1	and	

HLA-B,	 are	 highly	 polymorphic	 and	 do	 not	 show	 any	 dominant	 allele,	 possibly	 reflecting	

ongoing	host	evolution	after	pathogen	threat,	further	suggesting	that	the	products	of	these	

genes	are	critically	involved	in	the	host	defense.	Therefore,	the	HIV	antigens	restricted	by	

these	 low	 frequent	alleles	are	 less	probable	 to	 suffer	population-wide	 immune	selection	

pressure	and	mutate.	However,	on	the	contrary	of	what	Olvera	et	al	(16)	found	regarding	

HLA-I	alleles,	no	advantage	could	be	attributed	to	HLA-II	rare	alleles.	Additionally,	we	could	

not	establish	HLA-II	heterozygosity	as	being	advantageous	for	seropositive	subjects.	

In	the	present	project,	we	also	tried	a	random	forest	strategy	to	model	the	most	relevant	

HLA-II	 alleles	 to	 predict	 differences	 in	 viral	 load	 or	 CD4
+
	 counts.	 However,	 the	 obtained	

regression	models	were	inconclusive,	no	variance	could	be	explained	with	them.	Such	an	

outcome	might	be	consequence	of	the	high	linkage	disequilibrium	between	the	alleles,	and	

although	random	forests	can	cope	with	a	certain	degree	of	collinearity,	in	this	case	it	may	

have	 been	 too	 high	 and	 the	 importance	 of	 each	 of	 the	 covariates	was	 diminished	 (50).	

Consequently,	the	associations	with	the	independent	variables	were	weakened.	This	fact,	

together	with	the	indirect	effect	of	HLA-II	alleles	on	the	immune	response	against	HIV	and	

the	sparsity	of	the	data,	weakens	such	associations	even	more.	Therefore,	for	the	present	

analysis,	 the	 Mann-Whitney	 tests	 retrieved	 more	 reliable	 results.	 Nonetheless,	 larger	

sample	sizes	would	clearly	allow	the	determination	of	more	robust	associations.		

It	 is	 thought	 the	 majority	 of	 univariate	 associations	 between	 HLA-II	 alleles	 and	 HIV	

progression	 are	 the	 consequence	 of	 the	 antigen	 they	 present	 to	 CD4
+
	 T	 cells.	 For	 these	

reason,	we	explored	univariate	associations	between	HLA-II	alleles	and	the	T	cell	response	

to	the	overlapping	peptides	(OLPs)	covering	the	whole	HIV	proteome.	As	the	majority	of	the	

associations	were	not	significant	after	FDR,	we	selected	those	with	a	p-value	<	0.05.	Based	

on	such	selection,	we	calculated	the	percentage	of	patients	that	should	respond	to	a	given	

OLP	according	to	their	HLA	genotype.	We	found	that	the	majority	of	them	were	predicted	

to	respond	against	peptides	in	proteins	Gag,	Pol	and	Nef.	In	other	T	cell	response	studies	

(51,	52,	53),	these	3	proteins	also	appeared	as	the	ones	concentring	the	greatest	number	of	

patients	responding	against	their	peptides.	In	fact,	Pol	and	Env	are	the	largest	proteins	in	
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the	 HIV	 genome,	 and	 Gag	 and	 Nef	 are	 highly	 expressed	 during	 HIV	 infection	 (54,	 55),	

consequently,	the	chances	of	the	peptides	derived	from	these	proteins	to	be	presented	by	

different	HLA	alleles	are	 increased,	and	a	major	number	of	patients	were	 indeed	able	 to	

respond	against	them.		

Finally,	we	carried	an	immunodominance	analysis	of	HLA-II	restricted	T	cell	responses	(56).	

Immunodominance	is	defined	as	the	percentage	of	patients	with	a	concrete	HLA	allele	that	

recognise	a	certain	epitope	or	OLP	(57,	58).	As	viral	load	is	a	better	predictor	of	HIV	control	

in	 comparison	 to	CD4
+
	T	 cells	 counts,	we	determined	 the	T	 cell	 responses	 that	 could	be	

driving	the	associations	of	 the	alleles	HLA-DRB1*1201	and	HLA-DRB1*1302	with	 low	and	

high	viral	load.	Comparing	the	T	cell	responses	of	the	patients	expressing	each	of	the	alleles,	

some	differences	on	immunodominance	were	observed.	However,	not	all	the	OLPs	to	which	

the	 patients	 responded	 were	 statistically	 associated	 (Fisher’s	 Exact	 Test)	 with	 HLA-

DRB1*1201	 or	 HLA-DRB1*1302,	 therefore,	 such	 differences	 must	 be	 consequence	 of	

responses	 restricted	by	other	 alleles.	 Still,	OLP	41	 from	Gag	and	OLP	82	 from	Nef,	were	

significantly	associated	(p<0.05)	with	the	presence	of	HLA-DRB1*1201	and	HLA-DRB1*1302,	

respectively.	Therefore,	it	was	suspected	OLP	41	could	be	a	beneficial	peptide	and	OLP	82,	

a	deleterious	one.	In	line	with	these	associations,	Gag	responses	have	normally	been	related	

with	 beneficial	 HIV	 infection	 outcomes	 and	 Nef,	 to	 prejudicial	 ones	 (12,	 51,	 59,	 60).	

Comparing	 the	 immunodominance	 of	 these	 two	 OLPs,	 the	 majority	 (60%)	 of	 the	 HLA-

DRB1*1201	patients	responded	against	OLP	41,	establishing	this	as	a	dominant	target	of	the	

HLA-DRB1*1201	restricted	response	to	HIV	and	potentially	providing	some	benefit	for	HIV	

control.	There	were	no	immunodominance	differences	in	relation	to	OLP	82.		

The	 inclusion	 of	 CD4
+
	 T	 cell	 epitopes	 in	 a	 vaccine	 against	HIV	would	 be	 highly	 desirable	

because	it	would	provide	the	T-helper	cells	with	the	signal	needed	to	trigger	a	strong	cellular	

and	humoral	 immune	response.	Therefore,	 the	best	epitopes	to	be	 included	 in	a	vaccine	

would	be	targets	associated	with	HLA-II	alleles	that	were,	in	turn,	associated	with	lower	viral	

loads,	like	HLA-DRB1*1201.	Unfortunately,	with	our	results	and	the	cohort	size	at	hand,	we	

were	not	able	to	draw	robust	conclusions,	it	would	be	necessary	a	larger	sample	size	and	

the	preparation	of	an	ELISpot	assay	optimized	for	the	detection	of	CD4
+
	T	cells	response.	

This	could	be	achieved	by	the	removal	of	CD8
+
	cells	from	PBMCs	and	the	increase	of	the	

incubation	time	to	40h	(52).	Despite	these	limitations,	and	the	subtleness	of	the	associations	
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between	HLA-II	and	HIV	progression,	our	results	allow	some	glimpse	on	the	potential	effect	

that	HLA-DRB1	alleles	could	have	on	HIV	control.	
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6.	CONCLUSIONS	

1. In	the	present	study	no	associations	were	found	between	HLA-II	alleles	and	risk	for	

HIV	infection.		

2. The	 present	 study	 revealed	 new	 associations	 of	 HLA-II	 alleles	 with	 HIV	 control	

markers.	 Regarding	 viral	 load,	 alleles	 HLA-DRB1*1201	 and	 HLA-DRB1*1302	were	

associated	 with	 lower	 and	 higher	 HIV	 viral	 loads,	 respectively.	 In	 addition,	 HLA-

DRB1*0301,	 HLA-DRB1*0401	 and	 HLA-DRB345*30101	 were	 associated	 with	 low	

CD4
+
	cell	 counts,	and	HLA-DRB1*0804,	with	high	CD4

+
	cell	 counts.	None	of	 these	

associations	were	strong	enough	to	maintain	the	significance	after	the	adjustment	

of	multiple	corrections	using	a	FDR	cut-off	of	0.2.	

3. In	this	Peruvian	high-risk	cohort,	neither	the	homozygosity	of	HLA-II	alleles	nor	the	

cohort	 frequency	of	alleles	were	associated	with	 low	viral	 load	or	high	CD4
+
	cells	

counts.		

4. Allele	HLA-DRB1*1201	was	significantly	associated	(Fisher’s	Exact	Test	p<0.05)	with	

T	cell	responses	to	OLP	41	in	the	Gag	protein	and	may	identify	a	beneficial	target	of	

the	HLA-II	restricted	CD4
+
	T	cell	response	to	HIV.	
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Table	A1:	Frequency	table.	Table	with	absolute	and	relative	frequencies	of	the	patients	with	a	certain	
HLA-II	allele	in	the	Peruvian	cohort.	Columns	HLA	negative	and	HLA	positive	show	the	number	of	patients	

without	 or	 with	 a	 certain	 allele.	 From	 individuals	 expressing	 a	 certain	 allele	 there	 is	 the	 number	 of	

homozygotes	and	heterozygotes.	The	4
th
	 column	contain	 the	cohort	 frequency,	and	 the	5

th
,	 the	allele	

frequency.	

	

HLA	–	II	alleles	 HLA	
negative	

HLA	
positive	

Number	
Homozygotes	

Number	
Heterozygotes	

Cohort	
Frequency	

Allele	
Frequency	

DQA*0101	 341	 51	 4	 47	 0.130	 0.070	

DQA*0401	 308	 84	 7	 77	 0.214	 0.116	

DQA*0102	 322	 70	 4	 66	 0.179	 0.094	

DQA*0201	 338	 54	 4	 50	 0.138	 0.074	

DQA*0301	 158	 234	 67	 167	 0.597	 0.384	

DQA*0104	 382	 10	 0	 10	 0.026	 0.013	

DQA*0501	 241	 151	 16	 135	 0.385	 0.213	

DQA*0103	 369	 23	 0	 23	 0.059	 0.029	

DQA*0503	 391	 1	 0	 1	 0.003	 0.001	

DQA*0601	 391	 1	 0	 1	 0.003	 0.001	

DQA*0302	 390	 2	 0	 2	 0.005	 0.003	

DQA*0402	 391	 1	 0	 1	 0.003	 0.001	

DQB*0302	 231	 161	 26	 135	 0.411	 0.239	

DQB*0402	 310	 82	 4	 78	 0.209	 0.110	

DQB*0202	 363	 29	 2	 27	 0.074	 0.040	

DQB*0201	 337	 55	 4	 51	 0.140	 0.075	

DQB*0303	 290	 102	 9	 93	 0.260	 0.142	

DQB*0301	 263	 129	 11	 118	 0.329	 0.179	

DQB*0502	 380	 12	 0	 12	 0.031	 0.015	

DQB*0602	 352	 40	 2	 38	 0.102	 0.054	

DQB*0401	 388	 4	 1	 3	 0.010	 0.006	

DQB*0503	 384	 8	 1	 7	 0.020	 0.011	

DQB*0501	 337	 55	 4	 51	 0.140	 0.075	

DQB*0603	 375	 17	 0	 17	 0.043	 0.022	

DQB*0601	 389	 3	 0	 3	 0.008	 0.004	

DQB*0609	 383	 9	 0	 9	 0.023	 0.011	

DQB*0604	 381	 11	 0	 11	 0.028	 0.014	

DQB*0605	 390	 2	 0	 2	 0.005	 0.003	

DQB*0306	 391	 1	 0	 1	 0.003	 0.001	

DRB1*0403	 366	 26	 0	 26	 0.066	 0.033	

DRB1*0802	 328	 64	 3	 61	 0.163	 0.085	

DRB1*0407	 330	 62	 6	 56	 0.158	 0.087	

DRB1*0404	 337	 55	 2	 53	 0.140	 0.073	

DRB1*0301	 352	 40	 1	 39	 0.102	 0.052	

DRB1*0701	 341	 51	 2	 49	 0.130	 0.068	
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DRB1*0901	 306	 86	 9	 77	 0.219	 0.121	

DRB1*0410	 389	 3	 0	 3	 0.008	 0.004	

DRB1*1502	 387	 5	 0	 5	 0.013	 0.006	

DRB1*0804	 382	 10	 0	 10	 0.026	 0.013	

DRB1*0102	 371	 21	 1	 20	 0.054	 0.028	

DRB1*0401	 387	 5	 0	 5	 0.013	 0.006	

DRB1*1302	 371	 21	 1	 20	 0.054	 0.028	

DRB1*0411	 374	 18	 2	 16	 0.046	 0.026	

DRB1*1101	 376	 16	 0	 16	 0.041	 0.020	

DRB1*1401	 381	 11	 0	 11	 0.028	 0.014	

DRB1*08	 391	 1	 0	 1	 0.003	 0.001	

DRB1*0807	 391	 1	 0	 1	 0.003	 0.001	

DRB1*0101	 381	 11	 1	 10	 0.028	 0.015	

DRB1*0405	 386	 6	 0	 6	 0.015	 0.008	

DRB1*0801	 385	 7	 0	 7	 0.018	 0.009	

DRB1*1301	 368	 24	 0	 24	 0.061	 0.031	

DRB1*0302	 386	 6	 0	 6	 0.015	 0.008	

DRB1*1402	 341	 51	 3	 48	 0.130	 0.069	

DRB1*1104	 379	 13	 1	 12	 0.033	 0.018	

DRB1*0402	 383	 9	 0	 9	 0.023	 0.011	

DRB1*0431	 391	 1	 0	 1	 0.003	 0.001	

DRB1*1201	 380	 12	 0	 12	 0.031	 0.015	

DRB1*0103	 386	 6	 0	 6	 0.015	 0.008	

DRB1*1304	 389	 3	 0	 3	 0.008	 0.004	

DRB1*1501	 368	 24	 1	 23	 0.061	 0.032	

DRB1*0408	 390	 2	 0	 2	 0.005	 0.003	

DRB1*1602	 361	 31	 1	 30	 0.079	 0.041	

DRB1*0806	 391	 1	 0	 1	 0.003	 0.001	

DRB1*1001	 383	 9	 0	 9	 0.023	 0.011	

DRB1*1305	 391	 1	 0	 1	 0.003	 0.001	

DRB1*0406	 390	 2	 0	 2	 0.005	 0.003	

DRB1*1503	 380	 12	 0	 12	 0.031	 0.015	

DRB1*1406	 387	 5	 0	 5	 0.013	 0.006	

DRB1*1601	 387	 5	 0	 5	 0.013	 0.006	

DRB1*1303	 382	 10	 0	 10	 0.026	 0.013	

DRB1*1102	 390	 2	 0	 2	 0.005	 0.003	

DRB1*0803	 391	 1	 0	 1	 0.003	 0.001	

DRB345*40101G	 142	 250	 74	 176	 0.638	 0.413	

DRB345*AgBlank	 273	 119	 19	 100	 0.304	 0.176	

DRB345*30202	 309	 83	 7	 76	 0.212	 0.115	

DRB345*30301	 383	 9	 0	 9	 0.023	 0.011	

DRB345*50202	 355	 37	 1	 36	 0.094	 0.048	

DRB345*30101	 291	 101	 18	 83	 0.258	 0.152	

DRB345*50102	 388	 4	 0	 4	 0.010	 0.005	

DRB345*301	 389	 3	 1	 2	 0.008	 0.005	
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DRB345*401	 380	 12	 6	 6	 0.031	 0.023	

DRB345*302	 391	 1	 0	 1	 0.003	 0.001	

DRB345*50101	 357	 35	 2	 33	 0.089	 0.047	

DRB345*30211	 391	 1	 1	 0	 0.003	 0.003	
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Package ‘AnalysisHLA’
September 16, 2016

Type Package

Title Analysis of different HLA associations

Version 1.0

Date 2016-09-13

Author Bruna Oriol

Maintainer Bruna Oriol <bruna.oriol@uvic.cat>

Description The present package allows the statistical univariate analysis of associations be-
tween HLA alleles and HIV progression markers.

License GPL (>= 2)

R topics documented:
AnalysisHLA-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
allelic.cumulative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
CD4.function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
cohort.cumulative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
CohortData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
fill.matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
fill.matrix2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Hepitope_f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
HLAtypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
LD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
matrixOLP_f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PatientsHepitop_f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Pept_Seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
VL.function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Index 24

AnalysisHLA-package Analysis of different HLA associations

Description

The present package allows the statistical univariate analysis of associations between HLA alleles
and HIV progression markers.

1



2 allelic.cumulative

Details

The DESCRIPTION file: This package was not yet installed at build time.
The present package allows the analysis of HLA and T cell responses to OLPs (peptides) with HIV
disease progression markers in an univariate manner.

Index: This package was not yet installed at build time.

Author(s)

Bruna Oriol

Maintainer: Bruna Oriol <bruna.oriol@uvic.cat>

allelic.cumulative Get the matrices to compute the allelic cumulative frequency

Description

Given the allelic frequency of the different alleles for each HLA locus, it returns a matrix with
patients in rows and HLA alleles in columns. Each cell contains a 0 if the patient does not have the
allele, and the allelic frequency in the opposite case.

Usage

allelic.cumulative(table012, freq, n)

Arguments

table012 Matrix with patients IDs in rows and HLA alleles in columns. It must contain
the alleles for all the isotypes. Each cell of the matrix contain 1 or 0 according
if each patient presents or not the allele.

freq Data frame with different columns. One of which must be the allelic relative
frequency of each of the HLA alleles for an HLA isotype in the cohort.

n Number correspoding to the position of the column where the relative frequences
are found.

Details

It is needed the output of the funcion fill.matrix2 for different HLA isotypes as input of the present
function and a data frame containing a column with the allelic relative frequence of each HLA allele
in the studied locus.

Value

It returns a matrix with patients in rows and the HLA alleles in columns, then if the patient is
positive for a given allele it contains the allelic frequence of this allele in the cohort.

Author(s)

Bruna Oriol
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See Also

fill.matrix2, CohortData

Examples

## The function is currently defined as
function (table012, freq, n)
{

matrix <- matrix(nrow = length(rownames(table012)), ncol = length(colnames(table012)))
rownames(matrix) <- rownames(table012)
colnames(matrix) <- colnames(table012)
for (i in 1:length(colnames(table012))) {

patients <- NULL
allele <- table012[, i]
for (a in 1:length(allele)) {

patient <- as.character(allele[a])
if (patient == "1") {

patient <- freq[i, n]
patients <- c(patients, patient)

}
else {

patients <- c(patients, 0)
}

}
matrix[, i] <- patients

}
return(matrix)

}

## EXAMPLES
data(CohortData)
patients <- CohortData[, c(1,3,4)]
HLA_types <- HLAtypes(CohortData[,c(3,4)])
table012 <- fill.matrix2(patients, HLA_types)
colnames(table012) <- paste("HLA1", HLA_types, sep = "_")
al_frqHLA <- apply(table012, 2, sum)
rel_frqHLA <- (al_frqHLA/(nrow(table012)*2))
freq <- data.frame(al_frqHLA, rel_frqHLA)
allelic.cumulative(table012, freq, 2)

CD4.function Association between HLA alleles and CD4 counts

Description

For each allele in a given HLA locus, the patients” CD4 counts are divided in 2 groups: a group with
CD4 counts for patients not presenting the studied HLA allele, and another one, with the patients
with the HLA allele. CD4 counts of these two groups are compared with a T-test and a Mann-
Whitney test to see if there are differences between them. The problem of multiple comparisons is
adressed with the false discovery rate (FDR) method.

Usage

CD4.function(HLA_types, tabProg)
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Arguments

HLA_types Output function HLAtypes. It is a vector containing all the possible alleles for a
given HLA isotype or locus.

tabProg Output function fill.matrix converted into a data frame (Patients in rows and
alleles in columns) with additional columns of information correspoding to viral
load or CD4 counts. It is important to give names to the columns of the data
frame: the alleles names or the information each column contains. Viral load
and CD4 counts columns name must be VL and CD4 respectively, otherwise
they will not be recognised by VL.function or CD4.function

Details

The present function CD4.function calls the functions t.test, wilcox.test, median, mean and p.adjust
from the package stats.

Value

The output of this function is a data frame containing the different HLA alleles of a given HLA
locus. The 2nd and 3rd column contain the mean for the CD4 counts of patients without or with
the selected allele respectively. The 4th column contains the p-value for the T-test, and in the 5th
column, there is this p-value corrected by FDR method. Analogously, the 6th and 7th columns
contain the median of the 2 CD4 counts groups (individual not having or having the allele), and the
8th and the 9th, the p-value and adjusted p-value from the Wilcox test.

Note

Test if data fulfil normality assumption with function shapiro.test from stats to decide between
T-test or Wilcoxon - Test results

Author(s)

Bruna Oriol

See Also

CohortData, HLAtypes, fill.matrix

Examples

## The function is currently defined as
function (HLA_types, tabProg)
{

pval <- NULL
pval_mw <- NULL
mean0 <- NULL
median0 <- NULL
mean1 <- NULL
median1 <- NULL
hla_class <- NULL
for (i in 1:length(HLA_types)) {

dqa <- colnames(tabProg)[i]
tabProg[, i] <- factor(tabProg[, i], levels = c(0, 1))
hla_class <- c(hla_class, dqa)
if (sum(tabProg[, i] == 1) > 1) {
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pv <- t.test(as.numeric(as.character(tabProg$CD4)) ~
tabProg[, i])$p.value

pvw <- wilcox.test(as.numeric(as.character(tabProg$CD4)) ~
tabProg[, i])$p.value

m0 <- subset(tabProg, tabProg[, i] == 0)
m0 <- mean(as.numeric(as.character(m0$CD4)), na.rm = TRUE)
m1 <- subset(tabProg, tabProg[, i] == 1)
m1 <- mean(as.numeric(as.character(m1$CD4)), na.rm = TRUE)
med0 <- subset(tabProg, tabProg[, i] == 0)
med0 <- median(as.numeric(as.character(med0$CD4)),

na.rm = TRUE)
med1 <- subset(tabProg, tabProg[, i] == 1)
med1 <- median(as.numeric(as.character(med1$CD4)),

na.rm = TRUE)
mean0 <- c(mean0, m0)
mean1 <- c(mean1, m1)
median0 <- c(median0, med0)
median1 <- c(median1, med1)
pval <- c(pval, pv)
pval_mw <- c(pval_mw, pvw)

}
else {

mean0 <- c(mean0, "NA")
mean1 <- c(mean1, "NA")
median0 <- c(median0, "NA")
median1 <- c(median1, "NA")
pval <- c(pval, "NA")
pval_mw <- c(pval_mw, "NA")

}
}
p.adj <- p.adjust(pval, method = "fdr")
p.adj_mw <- p.adjust(pval_mw, method = "fdr")
dd_CD4 <- cbind(hla_class, mean0, mean1, pval, p.adj, median0,

median1, pval_mw, p.adj_mw)
return(dd_CD4)

}

## EXAMPLES
data(CohortData)
patients <- CohortData[, c(1,3,4)]
HLA_types <- HLAtypes(CohortData[,c(3,4)])
table01 <- fill.matrix(patients, HLA_types)
colnames(table01) <- paste("HLA1", HLA_types, sep = "_")
tabProg <- cbind(table01, CohortData$logVL, CohortData$CD4 )
tabProg <- data.frame(tabProg, stringsAsFactors = FALSE)
colnames(tabProg) <- c(colnames(table01), "VL", "CD4")
CD4.function(HLA_types, tabProg)

cohort.cumulative Prepare matrices to compute the cohort cumulative frequency

Description

Given the cohort frequency of the different alleles for each locus, it returns a matrix with patients
in rows and HLA alleles in columns where each cell contains a 0 if the patient does not have the
allele, or the frequency of the allele in the opposite case
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Usage

cohort.cumulative(table01, freq, n)

Arguments

table01 Matrix containing all the patients in a cohort in rows, and all the HLA alleles in
the cohort for all the locus we want to evaluate in columns. For each cell of the
matrix we have a 1 or a 0 according if an allele is present or not in a patient.

freq Data frame with at least a column containing the relative frequency of each of
the HLA alleles for an HLA isotype in the cohort.

n Number correspoding to the column position in the data frame where the relative
frequence is found.

Details

It is needed the output of function fill.matrix for different HLA isotypes as input of the function.

Value

It retrieves a matrix with patients in rows and HLA alleles in columns. In each cell, if the patient is
positive for a given allele, it contains the frequency of this allele in the cohort, otherwise, it contains
a 0.

Author(s)

Bruna Oriol

See Also

fill.matrix, CohortData

Examples

## The function is currently defined as
function (table01, freq, n)
{

matrix <- matrix(nrow = length(rownames(table01)), ncol = length(colnames(table01)))
rownames(matrix) <- rownames(table01)
colnames(matrix) <- colnames(table01)
for (i in 1:ncol(table01)) {

patients <- NULL
allele <- table01[, i]
for (a in 1:length(allele)) {

pat <- as.character(allele[a])
if (pat == "1") {

patient <- freq[i, n]
patients <- c(patients, patient)

}
else {

patients <- c(patients, 0)
}

}
matrix[, i] <- patients
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}
return(matrix)

}

## EXAMPLE
data(CohortData)
patients <- CohortData[, c(1,3,4)]
HLA_types <- HLAtypes(CohortData[,c(3,4)])
table01 <- fill.matrix(patients, HLA_types)
colnames(table01) <- paste("HLA1", HLA_types, sep = "_")
al_frqHLA <- apply(table01, 2, sum)
rel_frqHLA <- (al_frqHLA/nrow(table01))
freq <- data.frame(al_frqHLA, rel_frqHLA)
rownames(freq) <- rownames(table01)
cohort.cumulative(table01, freq, 2)

CohortData Toy example of a HIV Cohort dataset

Description

This is a toy example of what a HIV cohort to be analysed might contain: Patients identifiers (IDs),
the HIV status, the pairs of HLA alleles for each gene or locus, the viral load and its logaritmic
conversion, the CD4 counts and finally, the overlapping sequences (OLPs)

Usage

data("CohortData")

Format

A data frame with 6 observations on the following 10 variables.

PatientID a character vector

HIV_Status a character vector

HLAII_1 a character vector

HLAII_2 a character vector

HLAIIa_1 a character vector

HLAIIb_2 a character vector

VL a numeric vector

logVL a numeric vector

CD4 a numeric vector

OLPs a character vector
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fill.matrix Presence/absence matrix of HLA alleles

Description

This function generates a matrix with patients in rows and HLA alleles in columns. For each cell in
the matrix it is given the number 0 or 1 according if the patient has or not the allele in question.

Usage

fill.matrix(patients, HLA_types)

Arguments

patients Data frame with 3 columns. The first one correspond to the patient ID, and
the other 2, to the HLA alleles of each patient. We can take these 3 columns
subsetting them from the toy example CohortData.

HLA_types A vector with all the alleles in the cohort of study for a given HLA locus, it can
be obtained from the function HLAtypes also in the present package.

Details

Function fill.matrix uses the output of function HLAtypes. The output of the present function will be
necessary for functions LD, cohort.cumulative, allellic.cumulative, VL.function and CD4.function.

Value

It returns a matrix with patients in rows and HLA alleles in columns and 0 or 1 in each cell according
if a patient has or not each allele.

Author(s)

Bruna Oriol

See Also

HLAtypes, CohortData

Examples

## The function is currently defined as
function (patients, HLA_types)
{

matrix <- matrix(ncol = length(HLA_types), nrow = nrow(patients))
for (i in 1:nrow(patients)) {

alleles <- NULL
pat1 <- patients[i, ]
for (h in 1:length(HLA_types)) {

hla_allele <- HLA_types[h]
ifelse((pat1[, 2] == hla_allele | pat1[, 3] == hla_allele),

alleles <- c(alleles, 1), alleles <- c(alleles,
0))
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}
matrix[i, ] <- as.matrix(alleles)
rownames(matrix) <- patients[,1]

}
return(matrix)

}

## EXAMPLE
data(CohortData)
patients <- CohortData[, c(1,3,4)]
HLA_types <- HLAtypes(CohortData[, c(3,4)])
fill.matrix(patients,HLA_types)

fill.matrix2 HLA alleles matrix: Homozygosis/Heterozygosis

Description

This function generates a matrix with patients in rows and HLA alleles in columns, then, for each
cell in the matrix it is given the number 0, 1 or 2 according if the patient does not present this allele,
presents it in heterozygosis or in homozygosis.

Usage

fill.matrix2(patients, HLA_types)

Arguments

patients Data frame with 3 columns. The first one correspond to the patient ID, and
the other 2, to the HLA alleles of each patient. We can take these 3 columns
subsetting them from the CohortData data frame given as sample data in the
present package.

HLA_types It is a vector with all the alleles in the cohort of study for a given HLA locus.
This vector is obtained from the function in this package called HLAtypes

Details

The present function fill.matrix2 uses the output of the function HLAtypes

Value

It returns a matrix with patients in rows and HLA alleles in columns and 0, 1 or 2 in each cell
according if a patient does not present the allele, presents it in heterozygosis or in homozygosis
respectively.

Author(s)

Bruna Oriol

See Also

HLAtypes, CohortData
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Examples

## The function is currently defined as
function (patients, HLA_types)
{

matrix <- matrix(ncol = length(HLA_types), nrow = nrow(patients))
for (i in 1:nrow(patients)) {

alleles <- NULL
pat1 <- patients[i, ]
for (h in 1:length(HLA_types)) {

hla_allele <- HLA_types[h]
if (pat1[, 2] == pat1[, 3]) {

ifelse(pat1[, 2] == hla_allele, alleles <- c(alleles,
2), alleles <- c(alleles, 0))

}
if (pat1[, 2] != pat1[, 3]) {

ifelse((pat1[, 2] == hla_allele | pat1[, 3] ==
hla_allele), alleles <- c(alleles, 1), alleles <- c(alleles,
0))

}
}
matrix[i, ] <- as.matrix(alleles)
rownames(matrix) <- patients[,1]

}
return(matrix)

}

## EXAMPLE
data(CohortData)
patients <- CohortData[, c(1,3,4)]
HLA_types <- HLAtypes(CohortData[, c(3,4)])
fill.matrix2(patients,HLA_types)

Hepitope_f Hopeful-epitopes or Hepitopes

Description

Based on the patients that respond to a given syntesised peptide (named overlapping peptides or
OLP) and their HLA haplotype, associations between the fact of responding to a given OLP and the
expression of certain HLA allele are tested.

Usage

Hepitope_f(Hepitop_df, Hepitope_HLAII, LD, Peptides, alpha = 0.05)

Arguments

Hepitop_df Data frame from a matrix with peptides (OLPs) in columns and patients in rows.
1 means the patient shows response to the selected peptide and 0, it does not.
The matrix can be obtained from the function in this package matrixOLP_f.

Hepitope_HLAII Matrix with information of which patients (rows) present (the cell will contain 1)
or not (the cell will contain 0) each of the HLA alleles (columns). It is important
to join the matrices for all of the HLA locus we want to evaluate in a single one.
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LD Output of function LD that computes linkage disequilibrium. It is a data frame
containing 7 columns. The 2 first ones, contain the different HLA alleles that
are compared. Then, there are 2 columns containing the p-value and the p-value
adjusted for multiple comparisons (using false discovery rate method) from the
Fisher’s test results applied to see if 2 alleles are associated or not. Finally, there
are 3 columns with different linkage disequilibrium measures: D, D’, r^2

Peptides Data frame that must contain a column corresponding to the number of OLP, the
OLP name (the peptide), the subunit and the sequence.

alpha The significance level alpha, by default it is 0.05

Details

This function needs as input matrices that are obtained from the output of functions fill.matrix,
matrixOLP_f and LD that corresponds to: Hepitope_df, Hepitope_HLAII and LD. Moreover, it
is needed the dataset Pept_Seq as Peptides. In order to perform the Fisher Test, it is necessary
to use functions table from base and fisher.test, from stats. It is important to note that if there
are significant results after applying the Fihser’s’ test, the function will return OLP-HLA allele
associations showing a p-value < 0.05; otherwise, it will return all the associations evaluated and
their p-value.

Value

This function returns a matrix containing the number of OLP (1,2,3...), the peptide to which the
OLP is mapped, the subunits, the sequences, the HLA allele to which the OLP is associated, the
p-values from the Fisher’s Exact Test and adjusted p-values for multiple comparisons (with false
discovery rate method) . Finally, there are different columns making reference to the HLA alleles
(retrieving association to the same OLP) in linkage disequilibrium (meaning a corrected p-value for
multiple comparisons < 0.05, and a D’ nearby 1) with the allele studied.

Author(s)

Bruna Oriol

References

The present function hepitope is made based on the Hepitope tool from the HIV molecular im-
munology databaser www.hiv.lanl.gov/content/immunology/hepitopes.

Examples

## The function is currently defined as
function (Hepitop_df, Hepitope_HLAII, LD, Peptides, alpha = 0.05)
{

pvals <- NULL
hla_classII <- NULL
epitope_num <- NULL
for (olp in 1:length(colnames(Hepitop_df))) {

olp.1 <- colnames(Hepitop_df)[olp]
olptab <- Hepitop_df[, olp.1]
for (dq1 in 1:length(colnames(Hepitope_HLAII))) {

dq1.1 <- colnames(Hepitope_HLAII)[dq1]
dq1tab <- Hepitope_HLAII[, dq1.1]
if (1 %in% dq1tab) {
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taula <- table(olptab, dq1tab)
ft <- fisher.test(taula)
pv <- ft$p.value
pvals <- c(pvals, pv)

}
else {

pvals <- c(pvals, "NA")
}
hla_classII <- c(hla_classII, dq1.1)
epitope_num <- c(epitope_num, olp.1)

}
}
hepitope_result <- data.frame(epitope_num, hla_classII, pvals)
hepitope_result$p.adj <- p.adjust(pvals, method = "fdr")
hepitope_result <- subset(hepitope_result, hepitope_result$pvals !=

"NA")
hepitope_sigres <- subset(hepitope_result, as.numeric(as.character(hepitope_result$pvals)) <

alpha)
LD_sig <- subset(LD, LD$p.adj < alpha & LD$Ds > abs(0.5))
if (length(hepitope_sigres[, 1]) < 1) {

hepitope_sigres <- hepitope_result
}
if (length(LD_sig[, 1]) < 1) {

LD_sig <- LD
}
peptides <- hepitope_sigres[, 1]
peptides <- as.character(peptides)
peptides <- unique(peptides)
vec <- NULL
rep <- NULL
for (i in 1:length(peptides)) {

pep <- peptides[i]
alleles <- subset(hepitope_sigres, hepitope_sigres[,

1] == pep)
alleles <- as.character(alleles[, 2])
for (h in 1:length(alleles)) {

a <- alleles[h]
b <- pep
vec <- c(vec, a)
rep <- c(rep, b)

}
}
pept_allele <- data.frame(rep, vec, stringsAsFactors = FALSE)
colnames(pept_allele) <- c("OLP", "HLA")
LDs <- LD_sig[, 1:2]
sigpeptds <- unique(pept_allele[, 1])
mm <- matrix(nrow = 1, ncol = 20)
for (k in 1:length(sigpeptds)) {

olp_h <- sigpeptds[k]
olph <- subset(pept_allele, pept_allele[, 1] == olp_h)
matrix_ld <- matrix(nrow = length(olph[, 2]), ncol = 20)
for (i in 1:length(olph[, 2])) {

olp <- olph[, 1][i]
hl <- olph[, 2][i]
hl_s <- subset(LDs, LDs[, 1] == hl | LDs[, 2] ==

hl)
ld1 <- which(hl_s[, 1] != hl)
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ld1 <- as.character(hl_s[, 1][ld1])
ld2 <- which(hl_s[, 2] != hl)
ld2 <- as.character(hl_s[, 2][ld2])
ld <- c(ld1, ld2)
ld <- unique(ld)
ld <- ld[which(ld %in% olph[, 2])]
l.ld <- length(ld)
l.olp <- length(olph[, 2]) + 1
l.mat <- 20 - 2 - l.ld
if (l.mat > 0) {

matrix_ld[i, ] <- c(olp, hl, ld, rep(" ", l.mat))
}
if (l.mat == 0) {

matrix_ld[i, ] <- c(olp, hl, ld)
}

}
mm <- rbind(mm, matrix_ld)

}
mm <- mm[-1, ]
mm <- mm[, !apply(mm, 2, function(x) all(x == " ")) == TRUE]
LDnames <- paste0("LD", seq(1:(ncol(mm) - 2)))
colnames(mm) <- c("OLP", "HLA-II", LDnames)
hh <- cbind(hepitope_sigres, mm[, -(1:2)])
OLPvec <- NULL
Subunit <- NULL
OLPseq <- NULL
for (i in 1:length(hh[, 1])) {

ep.num <- as.character(hh[, 1][[i]])
df <- Peptides[Peptides == ep.num, ]
olp <- as.character(df[, 2])
sub <- as.character(df[, 3])
seq <- as.character(df[, 4])
OLPvec <- c(OLPvec, olp)
Subunit <- c(Subunit, sub)
OLPseq <- c(OLPseq, seq)

}
hh$Peptide <- OLPvec
hh$Subunit <- Subunit
hh$Sequence <- OLPseq
hh <- hh[, c("epitope_num", "Peptide", "Subunit", "Sequence",

"hla_classII", "pvals", "p.adj", LDnames)]
return(hh)

}
## EXAMPLE

# Load both sample datasets
data(CohortData)
data(Pept_Seq)

Peptides <- Pept_Seq
Peptides$Num <- paste0("OLP_", Peptides$Num)

# Apply function matrixOLP_f
olp_rawdata <- CohortData[, c(1,ncol(CohortData))]
olp_rawdata$OLPs <- as.character(olp_rawdata$OLPs)
olp_rawdata$OLPs <-strsplit(olp_rawdata$OLPs, ";")
Hepitop_df <- matrixOLP_f(olp_rawdata)
Hepitop_df <- as.data.frame(Hepitop_df)
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colnames(Hepitop_df) <- paste0("OLP_", colnames(Hepitop_df))

# Apply function HLAtypes and following fill.matrix
# to each isotype or gene and make a data frame
# of the results.
patients1 <- CohortData[, c(1,3,4)]
HLA_types1 <- HLAtypes(CohortData[,c(3,4)])
patients2 <- CohortData[, c(1,5,6)]
HLA_types2 <- HLAtypes(CohortData[,c(5,6)])
HLA1_table <- fill.matrix(patients1, HLA_types1)
colnames(HLA1_table) <- paste("HLA1", HLA_types1, sep = "_")
HLA2_table <- fill.matrix(patients2, HLA_types2)
colnames(HLA2_table) <- paste("HLA2", HLA_types2, sep = "_")

Hepitope_HLAII <- data.frame(cbind(HLA1_table, HLA2_table))

#Apply function LD
LDoutput <- LD(HLA1_table, HLA2_table)

# Apply the current function Hepitope_f
Hepitope_f(Hepitop_df, Hepitope_HLAII, LDoutput, Peptides)

HLAtypes Alleles in a cohort

Description

This function makes a vector with all the alleles for a given HLA locus in a cohort of patients.

Usage

HLAtypes(df)

Arguments

df The input data frame consist on the 2 columns that contain HLA alleles for each
HLA isotype or gene.

Details

The output of this function will be essential to go on with the analysis pipeline.

Value

It returns a vector with all the alleles in the studied cohort from a given HLA isotype or gene.

Author(s)

Bruna Oriol

See Also

CohortData
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Examples

## The function is currently defined as
function (df)
{

colnames(df) <- c("HLA1", "HLA2")
A1 <- as.character(unique(df$HLA1))
A2 <- as.character(unique(df$HLA2))
HLAtypes <- union(A1, A2)
return(HLAtypes)

}

## EXAMPLE
data(CohortData)
HLAtypes(CohortData[, c(3,4)])

LD Linkage Disequilibrium between alleles in two different HLA locus or
isotypes

Description

This function computes associations between alleles in two different HLA locus or isotypes using a
chi-squared test with 1 degree of freedom as well as linkage disequilibrium measures: D, D’ and r2

Usage

LD(HLA1_table, HLA2_table)

Arguments

HLA1_table Matrix with patients in rows and HLA alleles for gene 1 in columns. Number 1
means the patient has the allele, and 0, it does not.

HLA2_table Matrix with patients in rows and HLA alleles for gene 1 in columns. Number 1
means the patient has the allele, and 0, it does not.

Details

This functions needs as input the output of the function fill.matrix for the 2 studied HLA isotypes
or locus. This function also calls the function fisher.test from the package stats in order to compute
if the 2 alleles compared are associated or not. The problem of multiple comparisons is addressed
with function p.adjust also from package stats using false discovery rate method (FDR). The output
of this function will be necessary for function Hepitope_df.

Value

It returns a data frame containing 2 columns with the alleles compared each time, so in column
1 there are the alleles in HLA1, and in column2, the alleles in HLA2. The 3rd and 4th column
correspond to the p-value and q-value, and finally there are 3 columns with different linkage dise-
quilibrium measures: D, D’ and r^2.
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Author(s)

Bruna Oriol

See Also

CohortData, HLAtypes, fill.matrix

Examples

## The function is currently defined as
function (HLA1_table, HLA2_table)
{

pvals <- NULL
hla1 <- NULL
hla2 <- NULL
Obs <- NULL
Exp <- NULL
D <- NULL
Ds <- NULL
r2 <- NULL
for (dq1 in 1:length(colnames(HLA1_table))) {

dq1.1 <- colnames(HLA1_table)[dq1]
dq1tab <- HLA1_table[, dq1.1]
for (dq2 in 1:length(colnames(HLA2_table))) {

dq2.1 <- colnames(HLA2_table)[dq2]
dq2tab <- HLA2_table[, dq2.1]
taula <- table(dq1tab, dq2tab)
hla1 <- c(hla1, dq1.1)
hla2 <- c(hla2, dq2.1)
O <- taula[2, 2]/sum(taula)
Obs <- c(Obs, O)
pA = (taula[2, 1] + taula[2, 2])/sum(taula)
pB = (taula[1, 2] + taula[2, 2])/sum(taula)
E <- pA * pB
Exp <- c(Exp, E)
d <- O - E
D <- c(D, d)
if (d > 0) {

Dmax = min(pA * (1 - pB), pB * (1 - pA))
ds <- d/Dmax
Ds <- c(Ds, ds)

}
if (d < 0) {

Dmax = min(pA * pB, (1 - pA) * (1 - pB))
ds <- d/Dmax
Ds <- c(Ds, ds)

}
r <- (d^2)/(pA * pB * (1 - pA) * (1 - pB))
r2 <- c(r2, r)
chi = sum(taula) * r
pv = 1 - pchisq(chi, 1)
pvals <- c(pvals, pv)

}
}
dd <- data.frame(hla1, hla2, pvals, Obs, Exp, D, Ds, r2)
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dd$p.adj <- p.adjust(pvals, method = "fdr")
dd <- dd[c("hla1", "hla2", "pvals", "p.adj", "Obs", "Exp",

"D", "Ds", "r2")]
return(dd)

}
## EXAMPLE
data(CohortData)

patients1 <- CohortData[, c(1,3,4)]
HLA_types1 <- HLAtypes(CohortData[,c(3,4)])
HLA1_table <- fill.matrix(patients1, HLA_types1)
colnames(HLA1_table) <- paste("HLA1", HLA_types1, sep = "_")

patients2 <- CohortData[, c(1,5,6)]
HLA_types2 <- HLAtypes(CohortData[,c(5,6)])
HLA2_table <- fill.matrix(patients2, HLA_types2)
colnames(HLA2_table) <- paste("HLA2", HLA_types2, sep = "_")

LD(HLA1_table, HLA2_table)

matrixOLP_f Matrix of the patients respoding to ech of the overlapping sequences
analysed (OLP)

Description

Given a data frame with the patient IDs and a column with a vector of all the OLPs to which a
patient responds to, it returns a matrix with all the OLPs in columns and the patients in rows where
each cell contains 1 if the patient show a response to the OLP, or a 0, if it does not.

Usage

matrixOLP_f(olp_rawdata)

Arguments

olp_rawdata A 2 columned data frame. In the first column, there are patient identifiers (Pa-
tient IDs) and in the second one, the vectors of the different OLPs (it must be of
type character) to which each patient reponds to.

Details

This function is essential to run function Hepitope_f in this same package AnalysisHLA

Value

Given a data frame with patients, and for each patient a vector of the OLPs to which it responds,
this function retrieves a matrix having the patients in rows and the HLA alleles in columns. Then,
cells in the matrix are filled with 0 or 1 according the absence of response or positive response to a
given overlapping sequence.

Author(s)

Bruna Oriol
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See Also

Hepitope_f, PatientsHepitop_f, Pept_Seq, CohortData

Examples

## The function is currently defined as
function (olp_rawdata)
{

colnames(olp_rawdata) <- c("PatientID, OLP")
OLPs <- NULL
for (i in 1:length(olp_rawdata$PatientID)) {

patient <- olp_rawdata[i, 2]
patient <- unlist(patient)
for (h in 1:length(patient)) {

olp <- patient[h]
OLPs <- c(OLPs, olp)

}
}
OLPs <- unique(OLPs)
OLPs <- sort(as.numeric(as.character(OLPs)))
OLPs <- unique(OLPs)
matrixOLP <- matrix(ncol = length(OLPs), nrow = length(olp_rawdata$PatientID))
rownames(matrixOLP) <- olp_rawdata$PatientID
colnames(matrixOLP) <- OLPs
for (j in 1:length(olp_rawdata$PatientID)) {

epitop <- NULL
patient <- olp_rawdata[j, 2]
patient <- unlist(patient)
for (k in 1:length(OLPs)) {

ifelse(OLPs[k] %in% patient, epitop <- c(epitop,
1), epitop <- c(epitop, 0))

}
matrixOLP[j, ] <- as.matrix(epitop)

}
return(matrixOLP)

}

## EXAMPLE
data(CohortData)
olp_rawdata <- CohortData[, c(1,ncol(CohortData))]
olp_rawdata$OLPs <- as.character(olp_rawdata$OLPs)
olp_rawdata$OLPs <-strsplit(olp_rawdata$OLPs, ";")

matrixOLP_f(olp_rawdata)

PatientsHepitop_f Patients Responding to OLPs
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Description

This function retrieves a data.frame with the following columns: OLP, PatientID and the HLA
haplotype for each patient.

Usage

PatientsHepitop_f(hepnames, HLA, matrixOLP, num_isotypes)

Arguments

hepnames Vector of class factor containing all the OLPs that give a response in the studied
cohort.

HLA It corresponds to the initial cohort data frame (see toy example CohortData). It
contains a column with the PatientID, the HIV Status of the patient, the HLA-II
isotype, the viral load and its logarithm and the CD4 counts. It will be useful to
extract the HLA haplotype of the patient.

matrixOLP It is a matrix with the patients in rows and the HLA alleles in columns. The cells
contain then 1 or 0 according if the patient presents or not response to a given
OLP.

num_isotypes It corresponds to the total number of HLA isotypes or locus present in the stud-
ied cohort, in the toy case there are 2.

Details

This function needs as input the CohortData dataset, the OLPs taken from the output of the function
Hepitope_f and the result of joining in a single matrix the output of function matrixOLP_f applied
on the different HLA isotypes or locus.

Value

The output of this funcion consist on a data frame containing the OLP, PatientID and the HLA
haplotype for each patient that is of especial interest for making plots of the hepitope results.

Author(s)

Bruna Oriol

See Also

Pept_Seq, CohortData,Hepitope_f

Examples

## The function is currently defined as
function (hepnames, HLA, matrixOLP, num_isotypes)
{

matrixOLPnames <- matrixOLP
colnames(matrixOLPnames) <- paste0("OLP_", colnames(matrixOLPnames))
OLPvec1 <- NULL
patients1 <- NULL
for (i in 1:length(hepnames)) {

ep.num <- as.character(hepnames[i])
mat <- matrixOLPnames[, ep.num]
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mat1 <- mat[mat == 1]
matnam <- names(mat1)
l.names <- length(matnam)
patients1 <- c(patients1, matnam)
ep.num.t <- rep(ep.num, l.names)
OLPvec1 <- c(OLPvec1, ep.num.t)

}
df_Patients <- cbind(OLPvec1, patients1)
matrix_pat <- matrix(nrow = length(df_Patients[, 1]), ncol = 1 +

2 * num_isotypes)
for (i in 1:length(df_Patients[, 1])) {

pat <- as.character(df_Patients[i, 2])
y <- subset(HLA, HLA[, 1] == pat)
y1 <- as.character(y[, 2 + seq(num_isotypes * 2)])
matrix_pat[i, ] <- c(pat, y1)

}
mpat <- as.data.frame(matrix_pat)
PatientsOLP <- cbind(df_Patients, mpat[-1])
colnames(PatientsOLP) <- c("OLP", "Patient ID", colnames(HLA)[2 +

seq(num_isotypes * 2)])
return(PatientsOLP)

}

## EXAMPLE
# Load both sample datasets
data(CohortData)
data(Pept_Seq)

Peptides <- Pept_Seq
Peptides$Num <- paste0("OLP_", Peptides$Num)

# Apply function matrixOLP_f
olp_rawdata <- CohortData[, c(1,ncol(CohortData))]
olp_rawdata$OLPs <- as.character(olp_rawdata$OLPs)
olp_rawdata$OLPs <-strsplit(olp_rawdata$OLPs, ";")
OLPmatrix <- matrixOLP_f(olp_rawdata)
Hepitop_df <- matrixOLP_f(olp_rawdata)
Hepitop_df <- as.data.frame(Hepitop_df)
colnames(Hepitop_df) <- paste0("OLP_", colnames(Hepitop_df))

# Apply function HLAtypes and following fill.matrix to each isotype or gene and make a data frame of the results.
patients1 <- CohortData[, c(1,3,4)]
HLA_types1 <- HLAtypes(CohortData[,c(3,4)])
patients2 <- CohortData[, c(1,5,6)]
HLA_types2 <- HLAtypes(CohortData[,c(5,6)])
HLA1_table <- fill.matrix(patients1, HLA_types1)
colnames(HLA1_table) <- paste("HLA1", HLA_types1, sep = "_")
HLA2_table <- fill.matrix(patients2, HLA_types2)
colnames(HLA2_table) <- paste("HLA2", HLA_types2, sep = "_")

Hepitope_HLAII <- data.frame(cbind(HLA1_table, HLA2_table))

#Apply function LD
LDoutput <- LD(HLA1_table, HLA2_table)
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# Apply function Hepitope_f and prepare vector hepnames
HepSigRes <- Hepitope_f(Hepitop_df, Hepitope_HLAII, LDoutput, Peptides)
hepnames <- unique(HepSigRes[,1])

# Apply the current function PatientsHepitop_f
PatientsHepitop_f(hepnames, Hepitope_HLAII, OLPmatrix, 2 )

Pept_Seq Overlapping Sequences (OLP) from HIV genome

Description

Data frame with 4 variables containing the OLP number, the peptide, the subunit and the amino
acids sequence

Usage

data("Pept_Seq")

Format

A data frame with 410 observations on the following 4 variables.

Num a character vector

OLP a character vector

subunit a character vector

sequence a character vector

Details

Its is important to have these 4 columns to apply function Hepitope_f

VL.function Association between HLA alleles and viral load

Description

For each HLA allele in a given HLA locus, the patients” viral load (in logarithmic scale) is divided
in 2 groups: a group with the viral load for patients not presenting the studied HLA allele, and
another one, with the patients with it. The viral load levels of these two groups are compared with
a T-test and a Mann-Whitney test to see if there are differences between them. The problem of
multiple comparisons is adressed with the false discovery rate (FDR) method.

Usage

VL.function(HLA_types, tabProg)



22 VL.function

Arguments

HLA_types It corresponds to the output of the function HLAtypes and it is a vector contain-
ing all the possible alleles for a given HLA isotype or locus.

tabProg Output function fill.matrix converted into a data frame (Patients in rows and
alleles in columns) with additional columns of information correspoding to viral
load or CD4 counts. It is important to give names to the columns of the data
frame: the alleles names or the information each column contains. Viral load
and CD4 counts columns name must be VL and CD4 respectively, otherwise
tehy will not be recognised for VL.function or CD4.function

Details

The present function VL.function calls the functions t.test, wilcox.test, median, mean and p.adjust
from the package stats.

Value

The output of this function is a data frame containing the different HLA alleles of a given HLA
locus. The 2nd and 3rd column contain the mean for the logarithm of the viral load value of
patients without or with the selected allele respectively. The 4th column contains the p-value for
the T-test, and in the 5th column, there is this p-value corrected by FDR (False Discovery Rate)
method. Analogously, the 6th and 7th columns contain the median of the 2 viral load level groups
(individual not having or having the allele), and the 8th and the 9th, the p-value and adjusted p-value
from the Wilcox test.

Note

Test if data fulfil normality assumption with function shapiro.test from stats to decide between
T-test or Wilcoxon - Test results.

Author(s)

Bruna Oriol

See Also

CohortData, HLAtypes, fill.matrix

Examples

## The function is currently defined as
function (HLA_types, tabProg)
{

pval <- NULL
pval_mw <- NULL
mean0 <- NULL
median0 <- NULL
mean1 <- NULL
median1 <- NULL
hla_class <- NULL
for (i in 1:length(HLA_types)) {

dqa <- colnames(tabProg)[i]
tabProg[, i] <- factor(tabProg[, i], levels = c(0, 1))
hla_class <- c(hla_class, dqa)
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if (sum(tabProg[, i] == 1) > 1) {
pv <- t.test(as.numeric(as.character(tabProg$VL)) ~

tabProg[, i])$p.value
pvw <- wilcox.test(as.numeric(as.character(tabProg$VL)) ~

tabProg[, i])$p.value
m0 <- subset(tabProg, tabProg[, i] == 0)
m0 <- mean(as.numeric(as.character(m0$VL)), na.rm = TRUE)
m1 <- subset(tabProg, tabProg[, i] == 1)
m1 <- mean(as.numeric(as.character(m1$VL)), na.rm = TRUE)
med0 <- subset(tabProg, tabProg[, i] == 0)
med0 <- median(as.numeric(as.character(med0$VL)),

na.rm = TRUE)
med1 <- subset(tabProg, tabProg[, i] == 1)
med1 <- median(as.numeric(as.character(med1$VL)),

na.rm = TRUE)
mean0 <- c(mean0, m0)
mean1 <- c(mean1, m1)
median0 <- c(median0, med0)
median1 <- c(median1, med1)
pval <- c(pval, pv)
pval_mw <- c(pval_mw, pvw)

}
else {

mean0 <- c(mean0, "NA")
mean1 <- c(mean1, "NA")
median0 <- c(median0, "NA")
median1 <- c(median1, "NA")
pval <- c(pval, "NA")
pval_mw <- c(pval_mw, "NA")

}
}
p.adj <- p.adjust(pval, method = "fdr")
p.adj_mw <- p.adjust(pval_mw, method = "fdr")
dd_VL <- cbind(hla_class, mean0, mean1, pval, p.adj, median0,

median1, pval_mw, p.adj_mw)
return(dd_VL)

}

## EXAMPLES
data(CohortData)
patients <- CohortData[, c(1,3,4)]
HLA_types <- HLAtypes(CohortData[,c(3,4)])
table01 <- fill.matrix(patients, HLA_types)
colnames(table01) <- paste("HLA1", HLA_types, sep = "_")
tabProg <- cbind(table01, CohortData$logVL, CohortData$CD4 )
tabProg <- data.frame(tabProg, stringsAsFactors = FALSE)
colnames(tabProg) <- c(colnames(table01), "VL", "CD4")
VL.function(HLA_types, tabProg)
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