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Abstract

Understanding the regulatory machinery is one of the cur-

rent challenges for research in cancer epigenomics. Regulation

of gene expression is a complex process with many components

involved in it such as histone modifications, DNA methylation

and chromatin accessibility, among others. In this project we are

going to explore the Blueprint database of human hematopoi-

etic cells in order to characterize regulatory regions on samples

from this dataset. For this purpose we are going to carry out a

number of steps to analyse the DNA methylation, epigenomic

features and RNA-seq.

The characterization of methylation across 92 samples of 12

different cell types have determined that methylation state at

promoters and CpG islands are cell type-specific. Exploration

and integration of epigenomics in one sample of cell type mono-

cyte was carried out. We have seen the implications of two

marks studied (histone modification H3K4me3 and open chro-

matin state) in gene expression. This characterization of pro-

moters functionality enabled us to create a pipeline for the iden-

tification of novel regulatory regions based in the integration of

epigenomic features and RNA-seq data, which we later repro-

duced in four samples. This project could be a start point of

a bigger project for the cell type-specific promoters discovery

within the Blueprint projects.



Contents

1 Introduction 7

1.1 The Human Epigenome . . . . . . . . . . . . . . . . . . . 8

1.1.1. DNA Methylation . . . . . . . . . . . . . . . . . . . 10

1.1.2. Histone modification . . . . . . . . . . . . . . . . . 11

1.1.3. Chromatin accessibility . . . . . . . . . . . . . . . . 12

1.2 The Blueprint Consortium . . . . . . . . . . . . . . . . . . 14

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Methodology 16

2.1 Blueprint Database . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Genomic and Epigenomic data . . . . . . . . . . . . . . . 16

2.3 Description of methylation . . . . . . . . . . . . . . . . . 17

2.4 Exploration of the data . . . . . . . . . . . . . . . . . . . . 18

2.5 Principal Components Analysis . . . . . . . . . . . . . . . 18

2.6 Predictive model . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Target regions pipeline . . . . . . . . . . . . . . . . . . . . 20

2.8 Exploration of the transcriptomics . . . . . . . . . . . . . 22

3 Results 23

3.1 Methylation analysis of Blueprint Samples . . . . . . . . 23

3.2 Epigenomic analysis of sample to study . . . . . . . . . . 27

3.3 Prediction model for promoter function . . . . . . . . . . 31

3.4 Discovery and identification of novel promoters . . . . . 32

3.4.1. Target regions pipeline . . . . . . . . . . . . . . . . 32

3.4.2. Exploration of target regions . . . . . . . . . . . . . 33

3.4.3. Exploration of the transcriptomics . . . . . . . . . . 34

3.5 Reproducibility of the pipeline . . . . . . . . . . . . . . . 38

3.5.1. Description of samples to study . . . . . . . . . . . 38

3.5.2. Pipeline reproducibility on other cell types . . . . . 41

4 Discussion 42

4.1 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . 44



CONTENTS 4

5 Conclusions 45

Appendices 50

A List of software and languages used in pipeline 50

B Scripts for workflow 51

B.1 Methylation retrieval . . . . . . . . . . . . . . . . . . . . . 51

B.2 Target regions pipeline . . . . . . . . . . . . . . . . . . . . 53

B.3 RNA-seq retrieval . . . . . . . . . . . . . . . . . . . . . . . 54

C Data retrieval 55

D Description of the data 57



List of Tables

1.1 Description of abbreviations for the features to study in

the project . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Gene annotation of top 5 genes of first principal com-

ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Epigenomic features of sample C001UY . . . . . . . . . . 27

3.3 Epigenomic features in TSS regions . . . . . . . . . . . . 29

3.4 Logistic regression analysis results . . . . . . . . . . . . . 31

3.5 Confussion matrix from logistic regression . . . . . . . . 32

3.6 Description of samples for reproducing the pipeline . . . 41

D.1 DNAse hotspots description . . . . . . . . . . . . . . . . . 57

D.2 H3K4me4 peaks feature description . . . . . . . . . . . . 58

D.3 Samples description . . . . . . . . . . . . . . . . . . . . . 61



List of Figures

1.1 Regulatory regions and methods for describing . . . . . 9

1.2 Bisulfite treatment for methylation sequencing . . . . . . 13

2.1 Graphical explanation of usage of Bedtools: closestBed . 21

3.1 PCA of 92 healthy samples TSSs methylation mean clus-

tered by cell type . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 PCA of 92 healthy samples CGIs methylation mean

clustered by cell type . . . . . . . . . . . . . . . . . . . . . 26

3.3 Histograms of distance distribution between features

and genomic elements . . . . . . . . . . . . . . . . . . . . 28

3.4 Boxplots of gene expression and TSS intersections . . . . 30

3.5 Simplified graphic of pipeline for target regions . . . . . 33

3.6 Representation of a target region . . . . . . . . . . . . . . 34

3.7 RNA-seq analysis comparison . . . . . . . . . . . . . . . . 35

3.8 Correlation plot of gene expression (TPM) and RNA-

seq at TSS regions . . . . . . . . . . . . . . . . . . . . . . . 36

3.9 Description of DNase hotspots per cell type . . . . . . . 38

3.10 Description of HM H3K4me3 per cell type . . . . . . . . 39

3.11 Description of HM H3K4me3 and DNase hotspots by

laboratory . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
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1 Introduction

As far as we know, DNA is static and does not change among the

different cells of an organism, whereas chromatin is highly dynamic

and changes in response to signalling systems and environmental

stimulus. Chromatin dynamics govern the diverse response to such

stimulations through the addition of chemical tags by specialized en-

zymes [2]. The study of the epigenome consists in the study of those

chemical tags on the DNA and histone proteins in the nucleus, and

its changes in different conditions, tissues and cell types.

The epigenome is involved in embryonic development, tissue

differentiation, and regulation of the gene expression in tissues [3].

It has also been shown its strong relation with neurological and au-

toimmune diseases, cancer development and metastasis, as reported

in different studies [4, 5].

Promoters are the regions that initiate the transcription of a gene

and are located at the 5’ end of the gene, surrounding the Transcrip-

tion Start Site (TSS) of the gene. Promoters are formed of two parts,

the core promoter, which is found in the upstream aside the gene and

is approximately 250 base pairs long and where transcription factors

(TFs) are bounded, and the distal promoter, which can go up to 1000

to 5000 base pairs upstream from the gene. Most of the genes have

more than one TSS that control the transcription of its gene. The

regulatory machinery carries out the initiation of transcription at pro-

moters by recruitment of the RNA polymerase II [6].

Although there is a lot of knowledge about promoters, in recent

papers it has been reported in mouse and some human tissues that

there could be unannotated regulatory regions which would be cell

type-specific [1, 7–9]. This means that there could be up-regulated

transcripts on some cell types which transcription initiation is carried

out by specific regulatory elements that will not have this functional-
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ity on other cell types.

The exploration of those cell type-specific regulatory regions

would be interesting in order to understand the possible function-

alities of these regions; which genes are they regulating, how far are

they from the transcripts, which cell types show a higher density of

specific promoters, etc. Those regions could be intragenic or inter-

genic, and could intersect CpG islands, repetitive domains or other

elements.

This information could be of high interest for the epigenomics

community because it may lead to insights in how cell type-specific

regulatory elements lead to differences in the phenotypes, and further

investigation on how do these regulatory regions behave in blood

diseases. In this project we start a first exploration of this problem, by

integrating datasets from the Blueprint consortium.

1.1 The Human Epigenome

Each cell in our body has the same information, although each cell

type have their own regulation that alters the gene expression. Chro-

matin dynamics determines the mechanisms of cell type-specific tran-

scriptomics after stimulus [10]. For many years, regulatory elements

have been deeply studied and annotated.

One of the biggest projects created for the understanding and

annotation of regulatory elements is the ENCODE Project [4] (ENCy-

clopedia Of DNA Elements), which has created a catalogue of DNA

regulatory elements, including promoters, enhancers, silencers, and

transcription factors binding sites, among others.

Gene promoters, as well as gene-distal regulatory elements (en-

hancers), control the gene transcription by the interplay of regulatory

elements (Figure1.1). It is well known and described that promoters
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Figure 1.1: Regulatory regions and elements that interact in the regulation of
gene expression. Image credits from the ENCODE Consortium [4]

find a number of epigenomic features that are shared mostly in all of

them and which are well-known indicators of promoter function [6,

11, 12]. These features are histones modifications (HM), DNA methy-

lation DNase hypersensitivity and and transcription factors binding

sites.

The combination of the epigenomic features along with the tran-

scriptomics quantification provides a complete blueprint of the reg-

ulatory machinery and helps understand the downstream effect of

those regions. For this reason, four main marks are going to be deeply

studied in this project (Table 1.1).
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Table 1.1: Description of abbreviations for the features to study in the project.

Feature
Experimental

method *
Description

DNA Methy-

lation
WGBS

Addition (or lack) of the methyl

group in the 5C residue of cytosine

by DNA methyltransferase

Histone modi-

fication (HM)
ChIP-seq

Post-translational modifications of

nucleosomal histones consisting

mostly in the methylation and

acetylation of its amino acids

Chromatin

Accessibility
DNAse-seq

Regions of open chromatin (DNase

I hypersensitivity regions)

Transcriptomics RNA-seq
Depth of RNA reads for each posi-

tion in a given region

* (Detailed in BOX 1)

1.1.1. DNA Methylation

Methylation of the DNA is the process of addition of a methyl group

to the C5 carbon residue of cytosine by DNA methyltransferase (DNM

T3L) [13]. This process is more likely to happen in CpGs, and can

occur in both DNA strands to maintain methylation at CpGs during

replication. On the other side, most cytosines are non-methylated in

differentiated mammalian tissues.

Regulatory regions are mostly characterized by a state of hy-

pomethylation. Thus, in the promoter region of an active gene we

usually expect to see a pattern of hypomethylation, whereas in the

promoter of a repressed gene we will expect it to be highly methy-

lated [14].
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CpG islands

Many promoters coincide with regions of high CpG content.

These regions are called CpG islands (CGIs) and are regions of 300-

3000 pb long with a proportion of CG higher than 50% and a long

proportion of CpG sites (about 60 %).

CpG islands at promoter regions are usually highly unmethy-

lated when the gene is expressed [15]. Promoters can be divided in

’high CpG-content promoters (HCPs)’ or ’low CpG-content promot-

ers (LCPs)’. HCPs are usually regulating active genes, whereas LCPs

are inactive by default. Both promoters have similarities in other fea-

tures, which means that other features such as presence of HM or

DNA methylation are more precise in classifying high or low activity

at promoters [12].

1.1.2. Histone modification

Eukaryotic chromatin structure DNA is based in a series of organized

layers. DNA is wrapped in a region of 147 bp by nucleosomes, which

is formed by a histone octamer, and forming the primary structure

of chromatin in mammalian genomes [12]. In the nucleosome, his-

tones H2A, H2B, H3 and H4 can be modified by post-translational

modification.

There are more than 100 post-translational possible HM [16],

and those distinct marks act in combinatorial way to change the con-

formation of chromatin, interacting with the transcription machinery

and facilitating or repressing transcription. The HM are predictive of

gene expression and have been used to annotate regulatory regions

through predictive models and unsupervised methods, for instance,

the hidden Markov Models [17, 35].

The most useful HM for identification of functional elements

are methylation of H3K4 and acetylation of H3K27. Histones modifi-



cations H3K4me3 and H3K36me3 are associated with active genes.

The most predictive of promoter regions is the methylation mark

H3K4me3 (histone 3 lysone 4 trimethylation), which is well known

associated with the TSS regions of transcribed genes [11]. H3K36me3

might be well informative of transcription as well, occurring along

the gene body. Other HM related to gene activation are H3K27ac,

H3K9me1, H3K27me1, H4K20me1 and H2BAc. On the other hand,

HM H3K9me3 and H3K27me3 are markers of inactive transcription

[12].

Histone mark H3K4me1 is usually associated with enhancers,

which are helpers of promoters for the gene expression. Enhancers

are highly cell type-specific and are located far away from the tar-

get genes. Both promoters and enhancers can be flanked by nucle-

osomes with the modifications H3K4me3 and H3K4me1. Usually,

the ratio of those marks is used to differentiate promoters and en-

hancers, whether H3K4me3 or H3K4me1 is higher, respectively [19].

Although, high peaks the promoter-specific mark H3K4me3 has been

found in active enhancers, leading to ambiguity around this marker.

Therefore, the distinction between enhancers and promoters can be

difficult, and new models have de-constructed such distinctions and

created a unifying model for both regulatory elements [18].

1.1.3. Chromatin accessibility

Chromatin accessibility is a marker of regulatory regions in the DNA.

These are regions where chromatin is altered resulting in hypersensi-

tivity to cleavage by the DNAse I nuclease enzyme [4], thus the DNA

is exposed and accessible. DNase I is the endonuclease that catalyzes

the hydrolytic cleavage of DNA in order to digest the double-stranded

DNA.

As in the case of HM H3K4me3 peaks, the presence of DNase

hypersensitivity sites is a good method for identifying the location
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of regulatory elements, such as promoters, enhancers, silencers, and

replication origins [21]. Chromatin accessibility is highly related to

gene expression and there are evidences that is cell type-specific [20].

BOX 1 | Experimental methods

ChIP-seq (Chromatin immunoprecipitation). This method is based in selection

of DNA chromatin complexes by using antibodies to specific epitopes. After, the sample

is sequenced by high-throughput technologies to determine the regions in the genome

most often bound by the protein. There are different antibodies used (for transcription

factors, chromatin binding proteins, histone proteins, etc) [22].

DNAse-seq. Employs DNase I enzyme to cut live chromatin preparations at sites

where there are specific proteins. Those cut points are sequenced using high-throughput

technologies to determine open chromatin regions at genome-wide level [20].

RNA-seq. Analysis of the transcriptomics and expression profile of the sample to study.

Process based in isolation and purification, followed by high-throughput sequencing.

The abundance of RNA is calculated by the alignment to a sequence from the raw

reads.

WGBS (Whole Genome BiSulfite Sequencing). Consists in a treatment of the DNA

sequence with sodium bisulfite, which converts cytosines to uracils, whereas methyl-

citosines remain unmodified. Then, it is amplified by PCR and resultant sequences

will have methylated cytosines unmodified and unmethylated cytosines converted to

thymines. The comparison of the modified DNA with the original sequence allows to

infer the methylation state of each position of the original DNA [13].

Figure 1.2: Process of bisulfite treatment for whole genome methylation
sequencing. Adapted from Krueger F, et al.,2012.
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1.2 The Blueprint Consortium

Despite extensive studies of regulatory elements have successfully al-

lowed to create a start point in the study of the epigenome, there is

still a lot to discover and understand. This is why in the last years big

consortia and international projects are being set up for a better un-

derstanding of the epigenome and the regulation of gene expression.

One of those projects is the European Blueprint Database 1, which

started in 2011 and was aimed to study the epigenome of both healthy

and diseased hematopoietic cells [23, 24]. There are currently more

than 100 epigenomes and data from different blood cell types. There

are also available blood-based diseases, such as Acute Myeloid Leuke-

mia (AML), Acute Promyelocytic Leukemia (APL), B cell myeloma,

and Burkitt Lymphoma.

Hematopoiesis is the process by which blood cells are created

in all vertebrate organisms. The hematopoietic stem cells (HSCs) are

a pool of pluripotent cells which give rise to all the cells in blood,

including the lymphoid lineage (T and B cells) and myeloid lineage

(neutrophils, eosinophils, basophils, monocytes, macrophages, mega-

karyocytes, platelets and erythrocytes) [25].

Mutations and errors during hematopoiesis process are the cause

of leukaemia and myelomas, involving genetics and epigenetics. For

this reason it is of extreme importance the study of this process to bet-

ter understand the normal process, as well as providing a start point

to study the molecular basis that leads to blood malignancies and can-

cers. One of the best approaches to this study is in the epigenome, as

it plays a key function in the differentiation from HSCs to the different

cell types.

1www.blueprint-epigenome.eu

www.blueprint-epigenome.eu
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1.3 Objectives

The objective of this project is the exploration of regulatory regions

of the genome, and the development of a pipeline for whole-genome

discovery and identification of novel regulatory regions based in the

prediction of active regions from epigenomic data integration.

Pointed objectives of the master project are:

1. Exploration of the Blueprint Database

2. Characterization of differentially methylated regions at TSS re-

gions and CpG islands

3. Statistical approach for prediction of promoter functionality from

epigenomic features.

4. Creation of a pipeline for discovery of cell type-specific novel

promoters by integration of epigenomics and transcriptomics

data.
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2 Methodology

2.1 Blueprint Database

The Blueprint Database is one of the biggest databases worldwide

related to epigenomics. It contains a complete set of epigenomic in-

formation from blood cells samples and there are available many cell

types from bone marrow, peripheral blood, cord-blood, etc. Blueprint

data can be explored through the portal DDC Blueprint2 [26]. The

total number of samples in the dataset for this analysis was 104, of

those 92 are healthy donors and 12 from cancer donors.

2.2 Genomic and Epigenomic data

Blueprint data is open and free to download from the Blueprint ftp

Data portal 3. An index file was downloaded from Blueprint database

with all samples information related (sample_ID, donor_ID, labora-

tory, experiment type, cell type, tissue, etc), and sub-setted for the

data of interest (Appendix C script index_samples.R).

One donor with the full epigenome set available was selected to

perform the exploration of the data; "CD14+, CD16- classical mono-

cyte" with DONOR_ID C001UY. This donor was used to perform the

pipeline and for first results. In order to have a reproducibility of

the pipeline in more individuals, a series of samples were selected

which had as available data: methylome, Chip-seq data(H3K3me3

and H3K27ac), open chromatin data and RNA-Seq. Bash-based com-

mands were used for downloading the data, code is detailed in Ap-

pendix C script download_data.sh.

Reference genome used for annotated regions is assembly hg38/

2dcc.blueprint-epigenome.eu/#/home
3ftp://ftp.ebi.ac.uk/pub/databases/blueprint/

dcc.blueprint-epigenome.eu/#/home
ftp://ftp.ebi.ac.uk/pub/databases/blueprint/
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GRCh38. Annotated TSS regions were downloaded from the Blueprint

ftp site (gene annotation format from Ensembl Gencode v22 [27]), and

CpG islands regions were downloaded from the UCSC annotation

hg38. TSS regions were established by selecting a region from 500 pb

upstream to 500 pb downstream from the TSS (a total region length

of 1000 base pairs per TSS).

For gene expression data the Reference transcripts from Ensembl

Gencode was downloaded also from the Blueprint fpt data website.

The TPM (Transcripts per Million) for each gene was computed. TPM

is a metric of quantification of RNA-seq which is obtained from the

RPK (Reads Per Kilobase) of the transcripts divided by million scal-

ing factor. The TPM transcripts quantification method normalizes for

sequencing depth and gene length. The value of the gene expression

for one gene is the sum of the values of all the transcripts that map

within this gene.

2.3 Description of methylation

For the study of methylation between cell types, we studied 92 healthy

samples of 12 different cell types from both the myeloid and lym-

phoid lineages. The 5mC data from bisulphite sequencing (BS-seq) at

whole genome level was analyzed. For a given CpG position, methy-

lation value is calculated by the following estimation:

βi =
yi

xi + yi

where xi is the number of converted reads and yi is the number

of non-converted reads at position i. The β value statistics is a number

between 0 and 1, and reflects the methylation status of all the cells in

the sample. For instance, in ideal conditions a value of 0 indicates

that all copies in that CpG site in the sample are unmethlated and a

value of 1 indicates that all copies of the site are methylated.
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First, we created an algorithm called make_combine.py to re-

cover the methylation values for the CpGs per TSS region. This algo-

rithm is developed in Python language [28], code is detailed at Ap-

pendix B.1. Followed, we calculated the statistics per TSS ; median

number of CpGs per TSS, number of CpG sites which have methyla-

tion value, methylation values statistics and the standardized score (z

value) for neutrophils vs monocytes. Same statistics were performed

fo CpG islands. Statistics were calculated with R software [29].

2.4 Exploration of the data

As pointed above, for the discovery of new promoters the studied cell

type was a "CD14+, CD16- classical monocyte"(DONOR_ID C001UY).

We did the exploration of the data by using Bedtools software [30],

which was used to find the closest distances between two different

features, as well as to find intersections between features. Inter-

sections between features were performed for TSS against peaks of

H3K4me3, DNase hypersensitivity, and CpG islands.

2.5 Principal Components Analysis

We performed Principal Components Analysis (PCA) in order to see

the variability explained by median methylation in TSS regions at

whole-genome level. The Principal Components Analysis is unsu-

pervised method based in dimensional reduction of the correlated

variables to a small number of uncorrelated variables called principal

components, which will be used for data reduction and visualization.

Each of those resultant components is associated with a linear sum of

variables [31]. PCA was performed with R software [29] with function

prcomp from the package stats. Samples were coloured by lineage

and by cell type. The same proceeding was done for CpG islands

regions.
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In order to find out the functionality of genes that explain more

variability in the PCA, we performed annotation analysis for the to

p 5 genes (which explain more variability in PC1)with the biomaRt

package [32] from R software. In this step, the ENSEMBL_ID of each

transcript was used in order to get the chromosome, start position,

gene name and gene functionality.

2.6 Predictive model

We built a logistic regression model, which is a method to study the

association of a set of variables (covariates) X1,...Xk with a response

or dependent variable Y. The output variable in the logistic model is

a dichotomous factor [33]. Logistic regression model was built with

function glm from stats package [29].

With this model we want to predict if a gene is active or inactive

from the information of the regulatory marks in the regions. The co-

variables we are going to use as predictors are the epigenetic marks

of the promoter regions (TSS ± 500 bp region), and the output of

the model is the active (expressed) or inactive (repressed) state of the

gene. Predictors:

• DNase : Dichotomous variable for DNase hypersensitivity hotspot

intersection (coded 1) or no intersection (coded 0) in the TSS re-

gion.

• HM : Dichotomous variable for H3K4me3 peak intersection (coded

1) or no intersection (coded 0) in the TSS region.

• Meth : Continuous variable for methylation median value of

CpG sites at the TSS region.

• RNAseq : Continuous variable for median read counts in TSS

region.

Output: A dichotomous outcome variable to indicate active gene
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(coded 1) or inactive gene (coded 0).

The data was randomly split in two sets, one set of training data

and another set of testing data. Thus, half of the TSS were used to

fit the model, and the other half were used to test it. The training

set of TSSs (28,688 TSS regions) was used to build the model. To do

so, we first transformed the gene expression data in TPM values to

dichotomous variable by choosing as cut-off the third quartile (q3).

Once we had all the information of the covariates and the output for

each TSS, we built the model formulated as:

logitP(Y = 1) = β0 + β1 ∗DNase+ β2 ∗HM+ β3 ∗Meth+ β4 ∗RNAseq

After the model was fitted, we tested its predictive power. To do so,
we used the testing data for prediction of the outcome. The probabil-
ity of y=1 is:

P(Y = 1) =
1

1 + exp{−(β0 + β1 ∗ DNase + β2 ∗ HM + β3 ∗Meth + β4 ∗ RNAseq)}

where π is the probability of y being 1, β0 is the basal value, β1 to βk

are the covariates to fit the model. In this case, we chose a threshold

of 0.5, so whenever P(Y)>0.5 we will predict it as P(Y = 1). A confu-

sion matrix was constructed then with the real data and the predicted

data, and classification accuracy was estimated with calculation of

precision and recall:

precision =
TP

TP + FP
; recall =

TP
TP + FN

2.7 Target regions pipeline

The pipeline is Bash command-line and uses programming languages

GNU awk, GNU datamash, Bedtools software and R software. (Appendix

B.2). We use BEDTools software [30] for defining intersected regions.

The methodology used for my purpose was closestBed, which re-
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turns the closest feature to each entry in a BED/GFF file.

For performing closestBed, two input files in BED (Browser Ex-

tensible Data) format must be given. A BED file consists of a tab-

delimited columns with three required fields: (1) chromosome, (2)

Start Position, (3) End Position, and it is usually followed by (4)

unique ID for each region. Given two BED format inputs files A and

B, BEDTools closest returns the regions where file A has its closest

feature in file B and the genomic distance to it (Figure 2.1). The result

is in form of standard output.

Usage: $ closestBed [OPTIONS] -a <BED> -b <BED>

To visualize the code for the Target regions pipeline refer to Ap-

pendix B.2.

Figure 2.1: Graphical explanation of usage of closestBed. In this case, feature B2
would be reported as the closest feature to feature A. With the parameter -d the
output will tell us the distance to that region in base pairs. Adapted from Aaron
R. Quinlan et al., 2010.

The selected regions were explored and visualized using sev-

eral software and tools, such as the Integrative Genomics Viewer, the

UCSC Genome Browser and the Gviz package from R. The Blueprint

Consortium has provided a Data Track Hub in UCSC 4 browser in or-

der to visualize the data from samples in the genome browser. New

tracks can be uploaded from the local and be integrated with the data

in the Hub. This way, I could integrate and visualize my target re-

gions with the other elements available in UCSC (CpG islands, genes,

transcripts, regulatory marks, etc)
4Blueprint data set Track Hub

http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg38&lastVirtModeType=default&lastVirtModeExtraState=&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr9%3A133252000-133280861&hgsid=512607635_fE80PZ7dMrND8G6eGyIAEZbpyP9Y
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2.8 Exploration of the transcriptomics

We estimated transcripts values per region by checking the number

of reads in each region (1,000 bp). RNA-seq is estimated by recover-

ing values of raw reads from the bam file for the regions of interest,

with an algorithm called check_rna_seq.pl created in advance by

the group. This script uses SAMtools to take the coverage values in

a region of the genome that has to be indicated. The algorithm is

written in Perl language and pipeline is written in command line.

RNA-seq was estimated for TSS regions (i), list of all target regions

(ii) and random regions (iii) for comparison of results.

For each of those regions, we carried out a summary of the RNA-

seq values per region. Because of the fact that median values could

be drag by the potentially high number of zeroes, we took the third

quartile (q3) per region for further analysis and plots. For instance,

statistic analysis output is a summary with minimum, q1, median,

mean, q3 and maximum per each TSS. For a given TSS i I would take

the q3i. This value was estimated for all regions and plotted using R.

To visualize the code used refer to Appendix B.3.
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3 Results

3.1 Methylation analysis of Blueprint Samples

DNA methylation can give important clues about the cell differen-

tiation of the cells during hematopoiesis [3]. The methylation state

of the TSS at whole-genome was analyzed for 92 samples. For this

analysis, the number of TSS taken for the analysis is 57,376, which

are all annotated TSS regions from chromosome 1 to chromosome 22

(autosomic chromosomes).

After filtering the regions with "Not Available" methylation val-

ues the number of TSS goes down to 39,949 TSS. Median values

methylation per sample are in a range of 0.60-0.95, and a median

of 0.91. Therefore, TSS are highly methylated at whole-genome level.

The PCA was performed with 92 samples of 12 different cell

types. Plot of the PCA results is shown in Figure 3.1. It shows the

clustering of the cell types mostly by PC1 (36% of the variance) and

by PC2(15%). First principal component separates populations by me-

dian methylation value; all myeloid cells are aggregated whereas ery-

throcytes, HUVEC cells and lymphoid lineage (CD4 T cells, CD8 T

cells, B cells and NK cells) are more segregated. B cells are known to

differ in their methylation level during maturation, having a demethy-

lation at the late stages [3]. In this PCA we can clearly see that they

follow this pattern.

The second component separates the cells by lineage, as we can

see that a the left all myeloid are aggregated (monocytes, neutrophils,

macrophages, eosinophils and dendritic cells) and lymphoid at the

right. Finally, PC3 clusters HUVEC cells very away from the rest of

cell types. HUVEC cells (Human Umbilical Vein Endothelial Cells)

are used in order to see if they act as outlier cell types and check that

the experiments are correct and we can confirm it in this analysis.
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Figure 3.1: PCA of 92 healthy samples TSSs methylation mean clustered by cell
type.
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Table 3.1: Annotation of top 5 genes of first principal components. These five
TSS are the most explanatory of the variability between both lineages.

Chr TSS position Gene name Description

1 28,579,764 SNORA61 small nucleolar RNA,
H/ACA box 61

1 12,065,002 Metazoan_SRP Metazoan signal recog-
nition particle RNA

11 9,578,028 snoU13 Small nucleolar RNA
U13

14 22,507,666 TRAJ34 T cell receptor alpha
joining 34

16 30,471,587 Y- RNA -

The annotation of the "top 5" genes of first principal component

is shown in Table 3.1. T cell receptor alpha gene is a protein-coding

gene related to the molecular signalling process of T cells. It is clearly

changing its methylation pattern between myeloid cells and lymphoid

cells. The other genes which explain more of the variability explained

by first component are RNA and snRNA.

For the CGIs a total of 17,356 regions were used for Principal

Components Analysis in the 92 healthy samples. As we can see in

Figure 3.2, samples are clustered by PC1 and PC2 following the same

pattern than with the TSS methylation medians. One possible reason

could be that TSS and CGIs overlap because promoters are regions

CpG island-rich. In this case, explained variability by first component

is 41% and explained variability by second component is 13%.

The methylation retrieval and PCA in CGIs is ought to be re-

peated with a new set of CGIs coordinates from the hg38/GRCh38

genome because we suspect that analysis were performed using the

CGIs from hg19 and, as a consequence, median methylation values

we have been using for this analysis would be from random genomic

regions instead of from CGIs. In any case, the results obtained would

suggest that methylation values are cell type-specific whereas we look

at TSS regions or other regions.
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Figure 3.2: PCA of 92 healthy samples CGIs methylation mean clustered by cell
type.
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3.2 Epigenomic analysis of sample to study

First of all, we have performed a description of the epigenomic fea-

tures of sample "CD14+, CD16- classical monocyte" (DONOR_ID C001

UY), in order to have a clear view of the sample to study. Features are

described in Table 3.2. Epigenomic features are calculated taking the

whole genome of the sample; autosomic chromosomes (chr 1 to chr

22), mitochondrial DNA (chr M) and sexual chromosomes (chr X and

chr Y).

Table 3.2: Epigenomic features of sample C001UY. Number in whole genome,
region median length and fraction of the genome covered.

Epigenomic Feature Number
Median

length

Fraction of

genome

5mC methylation 31,289,743 1 0.97 %

DNase hypersensitivity

hotspots
224,435 297 2.06 %

H3K4me3 peaks 31,580 741 0.72 %

First approach is to characterize the epigenomic features in TSS

in order to have a start point on the characteristics of regulatory re-

gions in the genome. Total number of TSS regions for analysis in this

sample is 57,376 whole-genome. In average, there is a mean of 16

CpG sites per TSS region. The intersection between TSS regions and

CGIs is of 17,267, which is the 30.1% of TSSs. The median distance of

TSS to CGIs is 12,820 base pairs Figure 3.3.

Data from previous studies describe that the number of promot-

ers that have CpG islands is near 40% [6, 11], so the results in this

analysis are quite good taking into account that we have selected re-

gions of 1000 base pairs around the TSSs, but CGIs could be located

in a wider region around the promoters.
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Figure 3.3: Histograms of distance distribution between features and genomic
elements. 1) Distance TSS with CGIs. They intersect in a high density; 2)
H3K4me3 peaks with CGIs. Distances are mostly in the 10 e4; 3) Distance TSS
and H3K4me3. High density of intersection; 4) Distance H3K4me3 with genes.
High density of intersection (marker of active regions); 5) Distance TSS and
DNase hotspots. 6) Distance H3K4me3 and DNAse. High percentage of inter-
section.
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Epigenomic signature has been reported in first exon regions [8],

with a strong association of HMs with the regulation of splicing at

first exon [14]. Thus, we have intersected data of H3K4me3 peaks

with genes to see how many overlap. The median distance between

genes and peaks is of 3,700 base pairs, and the number of intersec-

tions at whole genome level is 18,873 (87.6 %) (Figure 3.3). This high

percentage indicates that HM H3K4me3 is a good indicator of active

regions.

We have also studied the intersection of TSSs with epigenomic

features (Table 3.3). The median distance from features to TSS region

is much larger for H3K4me3 than that for the DNase, probably be-

cause of the total number of regions in the genome is much lower.

This result indicates that in a great percentage of promoters we can

find those epigenomic features and those could be the active promot-

ers.

After this exploration of distances, we want to see the implica-

tion of regulatory elements in the gene expression. For that purpose

we checked the gene expression of genes whose TSS regions intersect

with regulatory regions versus genes whose TSS regions do not in-

tersect with regulatory regions. For this analysis we used a total of

21,539 genes from chromosome 1 to 22. This analysis was performed

for H3K4me3 peaks as well as for DNase hotspots.

In Figure 3.4 we show the differences between both in the log10

scale expression. Gene expression is about 10 times higher in genes

Table 3.3: Epigenomic features in TSS regions

Epigenomic
Feature

Number of
Intersections

Fraction of
TSS

Median dis-
tance
feature to TSS

DNase hotspots 19,095 39.5 % 3,625
H3K4me3 peaks 16,847 27.8 % 17,940
Both features 15,425 26.9 % -
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where its TSS has intersection with the selected marks. This observa-

tion indicates that open chromatin and HM could be good predictors

of transcriptionally active promoters and that they it could be accurate

to choose such features to start genome-wide identification of active

regulatory regions.
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Figure 3.4: Boxplots of values of gene expression for genes whose TSS have
intersection with epigenomic features versus genes which TSS have no intersec-
tion. a) Gene expression differences for TSS and HM peaks b) Gene expression
for intersections of TSS and open chromatin regions.
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3.3 Prediction model for promoter function

To give an statistical power to the observations above, supervised

analysis based in logistic regression model was performed (deeply

described in the Section 2.6). The TPM values varies between active

and inactive TSS so this analysis is aimed to test the predictive power

of regulatory elements and RNA-seq in promoters to predict the ac-

tivity of genes. As we can see in the Table 3.4, best predictors of gene

expression are DNase hypersensitivity and H3K4me3 peaks intersec-

tions. Thus, those features are the ones to have into account for doing

prediction of novel unannotated promoters with more robustness.

Table 3.4: Logistic Regression Analysis of 28,688 TSSs based in regulatory ele-
ments. Notice that methylation value and RNA-Seq are not statistically signifi-
cant in explaining the output value, whereas H3K4me3 peaks and DNase hyper-
sensitivity are strongly significant.

Predictor Variable type β SE β p-val

5mC methylation Continuous -2.5972 0.0952 0.895

DNase hypersen-

sitivity hotspots
Dichotomous 1.4455 0.0568 < 2e-16

H3K4me3 peaks Dichotomous 1.981 0.0808 < 2e-16

RNA-Seq Continuous -0.0001 0.0002 0.430

For testing the predicting model we tried to predict whether the

testing TSSs were active or inactive based in the input variables. Of

all testing TSSs, when the probability given by the model was higher

of 0.5 we transform it to 1 and we would consider it as predicted to

be expressed.

The results of the prediction are compared with the observed

value, shown in Table 3.5. The measure we used to validate the pre-

dictive model are precision (positive predictive value) and recall (sen-

sitivity) [33]. Precision of the model is 0.25 and Recall is 0.27. This

values would be due to the fact that we are using only one histone
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Table 3.5: Observed and predicted frequencies for prediction of gene expression
TPM by logistic regression model.

Predicted

Expressed(1) Repressed(0)

Observed Expressed(1) 1,670 4,390
Repressed(0) 4,872 13,166

mark and the DNAse hotspots to predict the gene expression. Other

studies using a higher number of histone marks [35] have been able

to predict gene expression levels based on the model with a larger

number of predictors.

3.4 Discovery and identification of novel promoters

3.4.1. Target regions pipeline

The pipeline for finding novel promoters was created using sample

C001UY epigenomic features, by looking at regions of intersection be-

tween peaks of H3K4me3 and DNase hypersensitivity hotspots which

fall more than 10,000 base pairs far from the nearest annotated TSS

(Figure 3.5). The pipeline was first carried out for chromosome 1 and

then to whole genome level (chromosomes 1 to 22, Chr M , Chr X

and Chr Y). This pipeline is purposed to be carried out in any sam-

ple to study in order to have a big dataset of target regions along the

genome for multiple samples to compare.

In the first approach of the pipeline on sample C001UY, we se-

lected a total of 24,492 regions from chromosome 1 to chromosome Y.

From these regions, 12,572 intersect with annotated TSSs. So, 51.3%

of the regions with those features correspond to annotated promoters.

This number is similar to expected, as we explored the number of TSS

which intersect with those features previously in Section 3.2 and this

number corresponds to expectations.
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Figure 3.5: Simplified graphic of pipeline for target regions.

From this list of target regions, we select the ones that are at least

10,000 base pairs away from already annotated promoters, whether

they would fall in intragenic or intergenic regions. The number of

regions according to those features filtered is 6,538. So, we could

say those are the total number of regions which find described epige-

nomic features and are not annotated, thus could be specific regula-

tory regions of the monocyte we are studying.

3.4.2. Exploration of target regions

Methylation values of the selected regions were studied. From the list

of target regions, only 510 regions have available methylation data.

The median methylation value for target regions is 0.056. This value

agrees with the low methylation values that we could find in active

regulatory regions [6].
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In order to visualize how a target region would look like in the

genome, I have plotted the first region in my list of target region

(Figure 3.6). Each track represents one of the features to study. This

region is found in the second intron of the gene AGRN, a protein-

coding gene related to development of neuromuscular junction.
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Figure 3.6: Representation a of target region. Track 1) Ideogram of chromosome
with a red line in the position of the target region; Track 2) Zoom in the 2000
pb region (1.0325 Mb-1.0345 Mb); Track 3) Region selected as novel regulatory
region (1000 bp) ; Track 4) H3K4me3 Peaks at the region; Track 5) DNAse hy-
persensitivity hotspots; Track 6) CGs methylation values in a range from 0 to 1.
Track 7)RNA-seq values per base (depth).

3.4.3. Exploration of the transcriptomics

Transcripts quantification is expected to be high around active regula-

tory regions, for example in active promoters [11,35]. For the purpose

of checking the transcripts level around given regions, the RNA-seq

pipeline was performed. This pipeline was carried out for annotated

promoters (i); target regions list (ii); and random regions (iii).
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Total number of TSSs analyzed for RNA-seq is 33,443 (58.2%)

after removing the regions where there was Not Available RNA-seq

data. Number of target regions with available RNA-seq data is 5,057

(77.5%). In order to compare to random RNA-seq values, the pipeline

was also performed in 10,000 random positions of 1000 base pairs

length from Chr 1, for which only 4,172 (41.2%) had RNA-seq reads.

Distribution of the q3 of the values in the region was computed and

plotted in the log10 scale and is shown in Figure 3.7. Notice that

the RNA-seq median value of target regions is higher respective to

TSSs with low TPM gene expression, as well as higher than random

regions.

Comparison between target regions and random regions was

performed with a test for equality of means for impaired data. Re-
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Figure 3.7: Boxplots of comparison of RNA-seq quantification between regions.
Transcripts are calculated as the Log10 of the q3 value of reads per region. Tran-
scripts distribution for: 1) TSS with gene expression >1 TPM, 2) TSS with gene
expression <1 TPM, 3) Target regions regions 4) Random regions in chr 1.
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sults of the test shows that, with a p-value of < 2e-16, the differences

between the means are statistically significant. This observation indi-

cates that the selected regions in our pipeline have significantly higher

transcripts abundance than it would be expected by chance.

On the other hand, TSSs RNA-seq distribution was compared

with the gene quantification (TPM) for protein-coding genes. This

correlation is performed to visualize the association between tran-

scripts abundance in our data with the gene expression profiles. This

is important to know because in the list of the target regions they have

not genes associated to see if there is gene expression as we did in the

TSS regions, then we have to use the RNA-seq data as a quantification

of the gene expression.

Figure 3.8 shows the correlation between RNA-seq we found

around the promoter region and the gene expression of related genes.
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Figure 3.8: Correlation plot of gene expression (TPM) and RNA-seq at TSS
regions.
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Data was also fitted in a linear regression model with the RNA-seq

as predictor and the TPM values as outcome. The p-value of the test

is < 2e-16 and the adjusted r-squared of the regression is 0.04. With

these results we can say that RNA-seq can be a good quantification

predictor of gene expression at the target regions.

3.4.5. Subsetting target regions

After the performed transcriptomics analysis, we filtered the target

regions list to those which find a high gene expression around, as

transcripts are expected to be found next to promoters and regulatory

regions. The threshold for selection is 10 reads per site as a median

in the region of the target region. After carrying out the filtering, we

obtain a total of 1,616 regions out of 6,538 (24.7 %) which have high

transcripts expression around.
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3.5 Reproducibility of the pipeline

3.5.1. Description of samples to study

For reproducibility of the pipeline a first approach was the description

of samples to study. Not all donors have the full set of data available,

and most of them have only a few.

For what concerns to DNase hotspots, only 28 samples of Ve-

nous Blood donors had availability for this sort of data. Table of

DNase description is refereed in Appendix D. As we can see in Figure

3.9, there is few variation between cell types for the median length of

the regions (270 to 300), whereas for the number of regions, the range

is wider, being the higher number for three samples of macrophage

that act as out layers.

Figure 3.9: a) Number of regions of open chromatin per cell type. Range from
100 K to 350 K regions at whole genome level. b) Median length of open chro-
matin regions. Range from 250 to 350, and means at 290. Available cell types for
DNase info are macrophages, megakaryocyte, monocyte, T cell. Cancer samples;
Acute Mieloid Leukemia (AML), B cells lymphoma (includes Sporadic Burkitt
Lymphoma samples), Multiple Myeloma
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Same analysis was performed for H3K4me3 peaks. From venous

blood donors, there was a total of 80 samples with available ChIP-seq

data. The descriptive table of the feature description per sample is in

Appendix D. In the boxplots Figure 3.10 we can see that the num-

ber of peaks along the genome is higher in lymphoma and myeloma

samples (up to 70,000 peaks along the genome) than that for the rest

of samples (20,000-50,000 peaks).

Figure 3.10: a) Number of regions of H3K4me3 peaks per cell type. Range from
20000 to 70000 peaks in a whole genome scale. b) Median length of H3K4me3
peaks regions. Range from 400 to 800 base pairs long approximately. Cell types
with HM peaks are: lymphoid lineage(B cells, T cells, thymocites), myeloid lin-
eage (erytroblasts, macrophages, megakaryocyte, monocytes, mononuclear cells,
natural killers, neutrophils), and cancer samples cells (B lymphoma cells and one
multiple myeloma sample)

From the results about number of regions we can see that there

is a high variability in the number of regions between samples, even

for the same cell type (i.e the number of DNase hotspots regions of

macrophages), leading to suggestions that there could be a batch ef-

fect.

The Blueprint consortium has many different laboratories asso-
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ciated which sequence the data of the varying types of experiments.

Thus, there could be a batch effect that affect the results of samples

that are extracted and sequenced in the different laboratories. To

assess whether there is batch effect that would affect the biological

variability, we have described the data for different laboratories and

visualized it in box-plots by laboratory.

Figure 3.11: a) Number of regions of H3K4me3 peaks by lab. b) Number of
regions of open chromatin by lab.

In Figure 3.11 it is represented the number of both epigenomic

features at the whole-genome level in the different laboratories. Lab-

oratory DSMZ is the one with more difference, and taking a look at

the sample this laboratory has provided we see that the cell types are

Sporadic Burkitt lymphoma, Mantle cell lymphoma, Germinal centre

B cell and Multiple myeloma. The same for laboratory Bergmann,

whose only one sample is Multiple myeloma type.

Thus, this observation leads to deduce that differences in those

laboratories cold be not due to a batch effect, as biological variability

is confounded with the change of laboratory. From this graph we

could also infer that cancer samples differ from healthy cell types in
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the number of H3K4me3 peaks rather than in the number of open

chromatin regions.

3.5.2. Pipeline reproducibility on other cell types

To perform the pipeline in other cell types we selected four samples

that have all dataset of information for DNase hotspots, H3K4me3

peaks, H3K27ac, DNA methylation, and RNA-seq. The target regions

pipeline was carried out for all the samples selected and the number

of regions is described with the samples description in Table 3.6. To

notice is the high number of regions selected with the pipeline for the

macrophage N00031319896021, which is not due to a batch effect as it

was seen earlier.

Table 3.6: Description of samples to study with information of donor ID, cellular
type, laboratory where it comes from and number of target regions

DONOR_ID Cell type Laboratory # target

regions

C001UY monocyte NIHR

Cambridge

6,538

C005VG macrophage NIHR

Cambridge

2,374

C0066P T cell NIHR

Cambridge

4,697

S001MJ macrophage NIHR

Cambridge

2,660

N00031319896021

untreated
macrophage Sanquin

Netherlands

12,300
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4 Discussion

The methylation state of the genome is an indicator of the cell state

in differentiation during development in early life, and is indicator as

well of the hematopoiesis stage. The hematopoiesis process entails a

wide range of cell types with very different functions, molecular prop-

erties and lifespan, thus is a great opportunity to study the methyla-

tion differences along the genome between cell types. One large scale

study carried out by the CNAG group, among others, studied widely

the methylome in B cell differentiation. They found changes in the

methylation state in 30% of CpG sites [3].

In this project, I have looked for methylome changes in TSS re-

gions and CpG islands, instead of all CpG sites.Unsupervised anal-

ysis segregated cell types according to methylation state. Principal

Component Analysis of methylation level across TSS and CpG sites

clustered cell populations in a similar way, clustering by lineage. First

principal component separates by methylation value, probably from

higher methylation state to lower methylation state. B cells differ-

entiation is characterized by high variation of their methylation state

from naive B cells to plasma B cells, with a demethylation at the late

stages [3], thus the first component is clearly segregating the sub pop-

ulations of B cells.

The study of the epigenome of the sample to study has given

important information in order to have a global view of the features at

a whole genome level. The number of open chromatin regions covers

the 2 % of the genome, very similar to studies performed in immune

cell types in open chromatin assays for DNase I and FAIRE [9]. The

great number of open chromatin regions (224,435) indicates that it

is a good marker of functional elements, although it provides few

information on the role of those regions (i.e it is not distinctive). For

being able to identify the promoters from the DHS regions, we would

have to look for TFBS within those regions, as well as knowing the
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nucleosomes position map by MNase-seq [34].

Epigenomic features have a high density of intersection with

TSSs, in both cases around the 30 % of TSS intersect with the features.

This information along with the box-plots of gene expression at in-

tersected TSSs show the implication of both features in activation of

transcription at promoter level. Supervised analysis based in logistic

regression with epigenomic features and RNA-seq confirmed the pre-

dictive power of H3K4me3 peaks and DNAse hotspots as predictors

of mRNA transcript abundance. Thus, with all of the analysis per-

formed we could suggest that HM and DNase are good predictors of

gene expression, as reported in previous studies [17,19–21,35,36]. On

the other hand, we have observed that the prediction model should

be improved by integrating more marks.

After all the analysis performed on exploration of regulatory

regions and all information obtained above, we have been able to

stablish a pipeline for novel promoters discovery, in which we use

the chromatin signature and histone modification data to select target

regions. Methylation data was not taken for the pipeline, as methy-

lation state information is redundant to the chromatin state features.

The same case is for RNA-seq transcripts, as p-value for both predic-

tors is not statistical significant in the model created based in a logistic

regression model.

The study of the RNA-seq in the regions has allowed us to con-

firm the list of target regions as possible new regulatory elements.

Comparisons with random regions results in significant differences ,

so we can say that the transcripts found at target regions regions are

higher that those for random region of the same length, thus they are

not due to chance.
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4.1 Further work

One first approach to further work is the analysis of the target re-

gions in the samples selected for reproducibility. By comparing the

results of the pipeline among different cell types from the hematopoi-

etic branches we could have a better characterization on the regula-

tory machinery of the different lineages and cell types. It is also nec-

essary to look at the locations where those regions are, whether they

are in gene bodies (introns or exons), intergenic regions or repetitive

regions, among others.

It would be of consideration to integrate more marks of histone

modifications to the pipeline. For example, the HM H3K27me3 to

differentiate whether the promoters are active or poised [12]. As well,

it would be interesting to add the HM H3K36me3 which is found in

high levels in the gene body of the active genes.

One last mark which would be interesting to integrate is the HM

H3K4me1 to differentiate enhancers from promoters,as usually higher

peaks of HM H3K4me1 correspond to enhancers. Enhancers are more

dynamic and less conserved among cell types than promoters, so we

would expect that many of the novel regulatory regions defined in

this project could be enhancers [18].
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5 Conclusions

The work we have carried out in this project is a first approach to

characterization of promoters and provides comprehensive informa-

tion which can be useful for novel cell type-specific regulatory region

discovery from the Blueprint database.

Methylation analysis have shown that methylation values at TSS

and CpG islands are good markers of differentiation between hemato-

poietic cell types. With the analysis of HK4me3 and DNase hotspots

we have been able to demonstrate the role of epigenomic features

in gene expression, and to predict the functionality of those regions

based in the epigenomic features.

We have created a pipeline based in defining regions of intersec-

tions between the two epigenomic features studied that could predict

regulatory regions, and further we have looked at the transcripts at

selected regions. The strength of this strategy is that epigenomic fea-

tures are combined with RNA-seq data in the definition of putative

novel regulatory regions, in order to have a complete outline of the

regions.

This work could be a start point in the study of cell type-specific

promoters in hematopoietic cells from the Blueprint database.
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Histone modification levels are predictive for gene expression.

PNAS. 2010 February; 107(17): 2926–2931.

[36] Budden DM, Hurley DG, Joseph Cursons JFM, Davis MJ,

Crampin EJ. Predicting expression: the complementary power of

histone modification and transcription factor binding data. Epi-

genetics and Chromatin. 2014 November; 7(1).

http://www.python.org/
http://www.R-project.org/
http://www.R-project.org/
http://www.biomart.org/


Chapter A . List of software and languages used in pipeline 50

A List of software and languages used in pipeline

Language Tool/Package Process

Bash

BedTools

SAMtools

wget

datamash

awk

Target regions pipeline

RNA-seq pipeline

Download data

Simple statistics

Parse files and outputs

R

biomaRt

ggplot2

stats

Gviz

Gene annotation

Visualization of results

Statistical models and analysis

Target region diagram

Python, Perl

Parse files

Extract methylation

pipeline
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B Scripts for workflow

B.1 Methylation retrieval

a) The script parse_combine.py retrieves the fields where the methy-

lation value for CGs is found.

1 #!/usr/bin/python

2 import sys

3 infile = sys.stdin

4

5 cl=0

6 for line in infile:

7 line=line.strip()

8 fields=line.split("\t")

9 cl+=1

10 if (cl==1):

11 sys.stdout.write("%s\t%s\t"%(fields[0],fields[1]))

12 for i in range(8,len(fields)-1):

13 sys.stdout.write("%s\t"%(fields[i]))

14 sys.stdout.write("%s\n"%(fields[len(fields)-1]))

Listing 1: parse_combine.py

b) Script make_combine.py needs that I give it my list of samples

and the list of regions. For each region will perform parse_combine.py

script and the combine_cpg algorithm. The output for each region is

stored in a file with the positions of each CG and the methylation

values.

1 #!/usr/bin/python

2 import sys

3 infile=sys.stdin

4

5 cmd="/home/devel/heath/code/combine_cpg/combine_cpg sample.

txt -r "

6 dir="/scratch/devel/sgarcia/put_prom_meth/"

7 cl=0

8 for line in infile:



Chapter B . Scripts for workflow 52

9 line=line.strip()

10 fields=line.split("\t")

11 cl+=1

12 sys.stdout.write("%s\t"%(cmd))

13 sys.stdout.write("%s:%s-%s\t"%(fields[0], fields[1], fields

[2]))

14 cmd1="%s | python parse_combine.py > dir%s.txt\n"

15 sys.stdout.write(cmd1%(" -M ",fields[3]))

Listing 2: make_combine.py

c) For retrieval of methylation values at target regions, I call the two

scripts explained above in the script extract_meth_pp.sh. As in-

put it needs the list of target regions. From the files obtained I do the

statistics of methylation values using R and GNU ’datamash’ utility.

1 #!/bin/bash

2

3 ### EXTRACTION OF METHYLATION VALUES AT GIVEN REGIONS ###

4

5 # example: /home/devel/heath/code/combine_cpg/combine_cpg

sample.txt -r chr1:11369-12369 -M | python parse_combine.

py > /scratch/devel/sgarcia/put_proms_meth/*.txt

6

7 # 1. Extract methylation

8 PP=$1

9 head ${PP}

10 cat ${PP} | python make_combine_pp.py > make.combine.pp.sh &

chmod +x make.combine.pp.sh

11 ./launch.py mkcomb "./make.combine.pp.sh"

12

13 # obtain a file per region with all CGs and its methylation

state

14

15 # 2. Statistical description of methylation state

16 Rscript put_proms_meth_means.R

17 cat put.prom.meth.means.txt | sed '1d' | awk -F'\t' 'BEGIN{

OFS="\t"}{print $2}' | datamash median 1

Listing 3: extract_meth_pp.sh
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B.2 Target regions pipeline

The pipeline needs three files as standard input: i) H3K4me3 peaks in

.bed format, ii) DNase hotspots in .bed format, iii) regions of TSSs

from gencode annotation in gtf format. Given these three files, the

script intersects and creates a file with the list of target regions in bed

format (tab-separated columns file; chr start end peak_ID).

1 #!/bin/bash

2 PEAKS=$1

3 DNAse=$2

4 TSS=$3

5 CMD="bedtools closest -d"

6 CURRENT=$(pwd)

7

8 #1. Intersect H3K4me3 peaks and DNase hotspots

9 ${CMD} -a ${PEAKS} -b ${DNAse} | awk -F'\t' 'BEGIN{OFS="\t"}{

if ($NF==0) print $1,$2,$3,$4}' | sed -e "s/[0-9]*.

macs2_peak_call_//" | uniq > tmp

10

11 #2. Intersect target regions with annotated TSSs

12 ${CMD} -a tmp -b <(awk -F'\t' 'BEGIN{OFS="\t"}{print $1,$5,$6

,$7}' ${TSS})| awk -F'\t' 'BEGIN{OFS="\t"}{print $1,$2,$3,

$4,$8,$9}' > $(basename $CURRENT).closest.tss.putative.

promoters.txt

13

14 #3. Select target regions >10k far from annotated tss

15 cat closest.tss.putative.promoters.txt | awk -F'\t' 'BEGIN{

OFS="\t"}{ if ($NF>10000) print $1,$2,$3,$4}' > $(basename

$CURRENT).putative.promoters.txt

16

17 #4. Message if file is created with exit

18 echo "List of Putative promoters file for DONOR_ID "$(

basename $CURRENT)" created and saved at: " $CURRENT/$(

basename $CURRENT).putative.promoters.txt

Listing 4: target_regions_pipeline.sh
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B.3 RNA-seq retrieval

From the Bam file data is accessed with a script created previously

by my group called check_rna_seq.pl. Target regions given as

input in format chr1:start-end. The output of each region is saved in

a file named as the region name. R scripts are then used to plot the

distribution of the values across regions.

1 #!/bin/bash

2 ### LOOK RNA SEQ AT GIVEN REGIONS ###

3 PP=$1

4 for chrom in $(seq 1 22) ; do n=chr$chrom; echo $n; awk -v c

=$n '{if ($1==c) print $0}' ${PP} > $(basename $1 .txt).$n

.txt ;done

5 mkdir /scratch/devel/sgarcia/low_dim/

6

7 #1. Look at rna-seq coverage

8 for f in $(seq 1 22); do ./launch.py chr$f "./check_rna_seq.

pl < ./putative_promoters/$(basename $1 .txt).$n.txt" ;

done

9

10 #2. Do a summary of the rna seq data files obtained from rna

seq

11 for f in /scratch/devel/sgarcia/low_dim/*/*.txt; do echo -n

$f $'\t'; cat $f | datamash min 3 q1 3 median 3 q3 3 max 3

; done > summary.rna.seq.*.txt

12

13 #3. Run R script to take the q3 from file created and plot

14 Rscript summay_put_proms.R

15

16 #4. Select regions with nreads>10

17 Rscript rna_seq_10k_putative_promoters.R

18 head 10k.putative.promoters.rna.expr.txt

Listing 5: rna_seq_target_regions.sh
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C Data retrieval

Download the data needed for the analysis.

a) Index file is the Blueprint metadata file with all available informa-

tion for each sample. Select by DONOR_ID the wanted samples to

download and create a sub-setted table.

1 #!/usr/bin/env Rscript

2

3 ### SELECT THE DATA I WANT TO DOWNLOAD ###

4

5 # Open Blueprint data index file

6 index <- read.delim("20150820.data.index",sep="\t", header=

TRUE,stringsAsFactors = F)

7

8 # Subset donors I want to study

9 my_donors <- c("N00031319896021","C0066P", "C005VG","C001UY",

"S001MJ")

10

11 my_samples_index <- index[which(index$SAMPLE_BARCODE %in%

my_sample_barcodes | index$DONOR_ID %in% my_donors),]

12

13 # Subset columns I am interested in

14 my_samples_index <- data.frame(my_samples_index$SAMPLE_NAME,

my_samples_index$SAMPLE_DESCRIPTION, my_samples_index$

DONOR_ID,

15 my_samples_index$LIBRARY_STRATEGY, my_samples_index$

EXPERIMENT_TYPE, my_samples_index$FILE, my_samples_index$

TISSUE_TYPE)

16

17 colnames(my_samples_index) <- gsub("my_samples_index.","",

colnames(my_samples_index))

18

19 my_samples_index <- my_samples_index[order(my_samples_index$

SAMPLE_DESCRIPTION, my_samples_index$LIBRARY_STRATEGY),]

20 my_samples_index <- my_samples_index[grep("*.bed.gz",

my_samples_index$FILE),]

21
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22 # Subset data I am interested in

23

24 my_samples_index <- my_samples_index[which(my_samples_index$

EXPERIMENT_TYPE=="Chromatin Accessibility" |

25 my_samples_index$EXPERIMENT_TYPE=="H3K4me3" |

26 my_samples_index$EXPERIMENT_TYPE=="H3K27ac" |

27 my_samples_index$EXPERIMENT_TYPE=="DNA Methylation" |

28 my_samples_index$EXPERIMENT_TYPE=="mRNA-Seq"|

29 my_samples_index$TISSUE_TYPE=="Venous Blood"),]

30

31 # Write table in which last column is the link of file to

download

32 write.table(my_samples_index,"./indexes/my_index_files.txt",

sep="|", col.names = T, row.names=F, quote=F)

Listing 6: index_samples.R

b) From the table created, use the last column (link information) to

download from the ftp site the files using GNU ’wget’ utility.

1 INDEX=$1

2 cat ${INDEX} | awk $'{print "ftp://ftp.ebi.ac.uk/pub/

databases/"$NF}' | while read item; do echo $item; wget -i

$item; done

Listing 7: download_data.sh



Chapter D . Description of the data 57

D Description of the data

Table D.1: DNAse hotspots description. Information of sample, cell type, num-
ber of open chromatin regions along the genome, and median length of the re-
gions for 28 samples with available data of open chromatin regions.

Sample Cell_type Number_regions Median_length

C0010K46 Monocyte 194691 289

C001UY46 Monocyte 224435 297

C004084E Monocyte 131956 275

C005PS4E Monocyte 123652 281

C005VG45 Macrophage 82446 264

C0066P44 T cell 104198 286

C006NS47 CD42+ megakaryocyte 103659 274

C006UE47 Macrophage 375005 304

DG-75_d01 Bcell Lymphoma 93476 290

KARPAS-

422_d01
Bcell Lymphoma 90741 285

S005FH41 AML 231471 289

S00BXV41 Macrophage 178108 287

S00BYT41 Macrophage 144526 286

S00C0J41 Macrophage 343325 300

S00CR241 Macrophage 243457 295

S00CS041 Macrophage 210165 295

S00CTZ41 Macrophage 284094 296

S00EPZ41 Monocyte 81454 284

S00HRJ41 Macrophage 74632 273

S00HSH41 Macrophage 111908 285

S00HTF41 Macrophage 123328 276

S00JPF41 Monocyte 211288 294

S00JQD41 Macrophage 100614 282

S00JRB41 Macrophage 101774 276

S00JS941 Macrophage 167006 275
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SU-DHL-

5_d01
Bcell Lymphoma 141531 288

U-266_d01 Multiple myeloma 221105 293

Z-138_d01 Bcell Lymphoma 232077 296

Table D.2: H3K4me4 peaks feature description. Sample, cell type, number of
regions and median length of peaks for 80 samples vailable ChIP-seq data

Sample Cell type Number_peaks Median_length

BL-2_c01
Sporadic Burkitt lym-

phoma
56095 550

C000S5H2 monocyte 41097 532

C0011IH1 monocyte 42247 533

C001UYH2 monocyte 31580 741

C00264H1 monocyte 27533 702

C002Q1H1 T cell 25377 629

C002TWH2 central memory T cell 20867 407

C002YMH1 T cell 37296 616

C003UQH1 effector memory T cell 18866 565

C004GDH1 neutrophil 44475 380

C00504H1 Natural Killer 19512 446

C0054XH3 effector memory T cell 23448 636

C005DFH1 T cell 27125 539

C005VGH1 macrophage 32554 668

C0062XH1 Natural Killer 21024 632

C0066PH1 T cell 35255 595

DG-75_c01
Sporadic Burkitt lym-

phoma
45302 640

JVM-2_c01 lymphoma 68432 540

KARPAS-

422_c01
lymphoma 34447 714

S000RDH1 T cell 24993 551

S000RDH2 monocyte 37338 649
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S0018AH1 T cell 26154 488

S0018AH2 macrophage 34367 556

S00198H2 macrophage 27419 486

S002R5H1 erythroblast 24145 768

S002S3H1 erythroblast 19778 723.5

S005CNH1 myeloid cell 29841 716

S005EJH1 myeloid cell 15718 360

S005FHH1 myeloid cell 18982 352

S005YGH1 Natural Killer 24249 616

S007SKH1 macrophage 32966 593

S008QKH1 myeloid cell 44417 322

S00BHQH1 macrophage 26872 685

S00BJMH1

endothelial cell of um-

bilical vein (proliferat-

ing)

28010 784

S00BJMH2
endothelial cell of um-

bilical vein (resting)
33205 639

S00BXVH1 macrophage 46690 478

S00BYTH1 macrophage 46419 491

S00C2FH1 T cell 28105 623

S00DCSH1

endothelial cell of um-

bilical vein (proliferat-

ing)

29848 721

S00DCSH2
endothelial cell of um-

bilical vein (resting)
24987 882

S00DFMH1 lymphocyte of B lineage 36041 804

S00FXFH1 neutrophil 26409 1078

S00FYDH1 neutrophilic myelocyte 36505 564

S00G11H1 neutrophil 40556 497

S00G3YH1 neutrophil 40679 463

S00JGXH1 neutrophil 41451 779

S00JHVH1 neutrophil 40246 401
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S00JJRH1 neutrophilic myelocyte 35259 514

S00JMLH1 neutrophil 27680 525

S00JNJH1 neutrophil 32023 470

S00K5EH1 neutrophil 40730 544

S00K6CH1 neutrophil 36380 806

S00K7AH1 neutrophil 38884 694

S00K88H1 neutrophil 35429 731

S00NJBH1 monocyte 36240 993.5

S00NK9H1 macrophage 46395 825

S00NM5H1 macrophage 42403 874

S00NN3H1 macrophage 40881 970

S00T2LH1 macrophage 43327 574

S00VDSH1
neutrophilic metamye-

locyte
33937 821

S00VEQH1 neutrophil 34474 798

S00VFOH1 neutrophil 33661 696

S00VHKH1 megakaryocyte 36255 848

S00VKEH1 B cell 41084 579

S00W0DH1 B cell 23281 941

S00W1BH1 B cell 36488 808

S00X9SH1 B cell 37124 783

S00XAQH1 B cell 42596 702

S00XCMH1 B cell 50483 755

S00XDKH1 B cell 53791 484

S00XXHH1 myeloid cell 34640 739

S00Y7SH1 B cell 36021 790

S00Y8QH1 B cell 45159 593

S00Y9OH1 B cell 44360 679

S010NDH1 thymocyte 22971 720

S010R5H1 thymocyte 26370 908.5

S013N1H1 mononuclear cell 42110 603
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SU-DHL-

5_c01
lymphoma 45955 573

U-266_c01 Multiple myeloma 65314 538

Z-138_c01 lymphoma 46931 493

Table D.3: Information of Donor ID, sample name, description of the cell type,
and the epigenomic feature for five samples with all the information needed.

DONOR ID SAMPLE NAME LIBRARY STRATEGY

C001UY (CD14-positive,

CD16-negative classical monocyte

)

C001UYB4 DNA-Seq

C001UYA3bs Bisulfite-Seq

C001UY46 DNase-

Hypersensitivity

C001UYH2 ChIP-Seq

C005VG (Macrophage)

C005VG11 RNA-Seq

C005VG45 DNase-

Hypersensitivity

C005VG51 Bisulfite-Seq

C005VGH1 ChIP-Seq

C0066P (CD8-positive, alpha-beta

T cell)

C0066P44 DNase-

Hypersensitivity

C0066P51 Bisulfite-Seq

C0066PH1 ChIP-Seq

S001MJ (inflammatory

macrophage)

S001MJ12 RNA-Seq

S001MJ48 DNase-

Hypersensitivity

S001MJ51 Bisulfite-Seq

S001MJH1 ChIP-Seq

N00031319896021 (macrophage -

T=6days untreated)

S00BXV11 RNA-Seq

S00BXV41 DNase-

Hypersensitivity

S00BXVH1 ChIP-Seq
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