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Breast cancer is a heterogeneous disease with a varying pronogsis. Today’s clinical factors provide some 

information about prognosis of a breast cancer patient; however there is a need for additional information 

to stratify patients for improved and more individualized treatment. Breast tumors are highly 

heterogeneous due to subpopulations of cancer cells that differ in genetic and phenotypic characteristics. 

Tumor heterogeneity has been associated with treatment resistance and relapse. Additionally, it can be 

questioned how representatice one biopsy is for the whole tumor. Tumor phenotypic heterogeneity cannot 

be solely attributed to genetic differences, as epigenetics and interaction with the tumor microenviorment 

also contribute. The aim of this study was to examine intra-tumor and inter.tumor heterogeneity through 

metabolic profiling in breast cancer tissue.  

 

Fresh frozen tissue slices from the middle of surgically removed breast tumors were used. Five cores 

throughout the slices were drilled out from 10 tumors, of which six IDC grade 2-3 and four 

fibroadenomas. Histological examination of each core was performed by HE staining, and metabolic 

profiling of intact tissue samples were performed by high resolution magnetic angle spinning (HR MAS) 

magnetic resonance spectroscopy (MRS). The relative concentrations of 23 metabolites were quantified. 

Metabolic heterogeneity was measured by coefficient of variation (CoV) and multivariate PCA was used 

for explain metabolic variance. 

 

The study showed that patients diagnosed with high-grades of IDC had higher metabolic differences 

compared to patients diagnosed with fibroadenomas. No evidences were found for metabolic intratumor 

heterogeneity associated with sample location within the tumor. Breast tissue samples examinations by 

pathologist provide important information in order to characterize intratumor metabolic variations, 

highlighting the strong role of histology evaluation. Overall, MRS metabolomics contributed to a 

valuable tool for further characterization of tumor heterogeneity and for identifying opportunities for 

imporving stratification of patients into clinically useful diagnosed groups. 

 

 

 



Symbols and abbreviations 

13C Carbon-13 nucleus 
1H Hydrogen-1 nucleus 
I Spin 
µ  Magnetic moment 
FID Free induction decay 
B0 External magnetic field 
RF Radio frequency  
Acetyl CoA Acetyl-coenzyme A 
ATP Adenosine triphosphate 
NADH Nicotinamide adenine dinucleotide 
PtdCho Phocphatidylcholine 
Cho Choline 
PCho Phosphocholine 
GPC glycerophosphocholine 
tCho Total Cholines 
TCA Tricarboxylic acid cycle 
LDH Lactate dehydrogenase 
CoV Coefficient of variation 
ER Estrogen receptor 
FN False negative 
FP False positive 
GLS Glutaminase 
GPC Glycerophosphocholine 
GSH Glutathione 
HCA Hierarchical cluster analysis 
HER2 Human epidermal growth factor receptor 2 
PgR Progesterone receptor 
HR High resolution 
MAS Magic angle spinning 
MRS Magnetic resonance spectroscopy 
MS Mass spectrometry 
PC Principal component 
PCA Principal component analysis 
ppm Parts per million 
FISH Fluorescence In Situ Hybridization 
TNBC Triple negative breast cancer 
B-glc1 B-glucose peak 1 

 
 
 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

asc Ascorbate 
Lac Lactate 
mI1, mI2, mI3 Myoinositol peak 1, 2 and 3 
tyr Tyrosine 
cr1,cr2 Creatine peak 1 and 2 
glu1, glu2 Glutamate peak 1 and 2 
y1 Unknown peak 
gly Glycine 
tau1, tau2 Taurine peak 1 and 2 
succ Succinate 
gluth1, gluth2 Glutathione peak 1 and 2 
glmine1, glmine2 Glutamine peak 1 and 2 
ala Alanine 
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1. Introduction 
 
The human body is made up by more than fifty billion of cells. Healthy cells are the basic building blocks 
of all tissue and organs in the body. Hence, cells are commonly referred to as the basic units of life. The 
division of a cell is governed by a series of tightly regulated events known as the cell cycle. 1 To ensure 
its proper development, when the cell cycle is impaired, a series of safety mechanisms are responsible to 
stop its progression or, if the damage is irreparable, to program cell death. Cancer cells exhibit 
uncontrolled growth and proliferation losing regulation of important cellular processes caused by 
mutations, which make them capable of avoiding these control mechanisms and reproduce without 
following pre-wired plans. Additional alterations enable cancer cells to invade surrounding tissue and 
invade distant locations from the cancer’s primary site, also known as metastasis. The accumulation of 
several errors and genetic alterations in the regulatory pathways over the years increases the risk of 
cancer. In some cases, genetic alterations are inherited giving a predisposition for cancer. As there are 
more than 100 distinct types of cancer, the term refers to a collection of diseases, typically classified and 
named by the organs or tissues where the cancer forms2. 
 
Although there is huge complexity and variety in characteristics among different cancer types, cancer 
cells exhibit common traits or capabilities known as hallmarks of cancer proposed by Hanahan et al. 
Cancer cells can become 1) self-sufficient of growth signals, be 2) insensitive to anti-growth signals, and 
3) avoid programmed cell death (apoptosis). In addition, cancer cells are able to 4) invade adjacent tissues 
or metastasize, have 5) limitless replicative potential and 6) induce the formation of new blood vessels 
sustaining angiogenesis (Figure 1.1a). Based on progression in cancer science the aforementioned 
hallmarks were extended with two additional capabilities: 7) the reprogramming of energy metabolism 
and 8) evading immune destruction owing to enabling characteristics named as genomic instability and 
mutation and tumor-promoting inflammation (Figure 1.1b)3. 
A)        B) 

 
 

 
 
 
 
 
 

 
 
 

Figure 1.1: Hallmarks and enabling characteristics of cancer. a) The six biological characteristics of cancers 
acquired during development of human tumors. b) The two emerging hallmarks and enabling characteristics of 
cancer. Reprinted from Hallmarks of cancer, Vol. 100, 57-70, January 7, 2000, Copyright © 2000 by Cell Press and 
Hallmarks of Cancer: The Next Generation, Vol. 144, Issue 5, 4 March 2011, Copyright © 2011 with permission 

from Elsevier Inc. All rights reserved. 
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1.1 Breast Cancer 
 

Breast cancer is the most frequently diagnosed cancer among women worldwide and in Europe, and it has 
been estimated that 8% of women will develop this disease by the age of 75. Although the survival in 
breast cancer patients is high, it is difficult to predict each patient’s outcome. Patients with the same 
diagnosis of breast cancer may have different response to treatment, supporting the need to further 
characterize breast cancer heterogeneity 4. 
 
The age is the principal risk factor in breast cancer, with an increased incidence by the age of 35 and 
stabilization by the age of 55, coinciding with menopause. An important risk factor is the family history 
of breast cancer, which increases the risk by about 50% compared to women who haven’t had blood 
relatives diagnosed with breast cancer56. About 10% of breast cancers are thought to be hereditary, caused 
by gene mutations. Most inherited cases are associated with two abnormal genes: BRCA1 (Breast Cancer 
gene one) and BRCA2 (Breast Cancer gene two). Women who have an abnormal BRCA1 or BRCA2 gene 
(or both) can have up to an 80% risk of being diagnosed with breast cancer during their lifetimes. Breast 
cancers associated with an abnormal BRCA1 or BRCA2 gene tend to develop in younger women and 
occur more often in both breasts than cancers in women without these abnormal genes.  
 
1.1.1 Anatomy of the breast 
 
The female breast consists of fatty tissue, connective tissue, lobes, ducts and lymph nodes (Figure 1.2)7. 
A healthy female breast is made up of 12-20 sections called lobes. Each of these lobes is made up by 
several small lobules, the gland that produces milk in nursing women. These lobes are connected to ducts 
that transport the milk from the lobule to the nipple. Lymph nodes and lymph vessels containing immune 
system cells surround the breast and contribute to removing waste products.  
 
The type of breast cancer is generally determined by the origin of the growth of cancer cell, which is 
almost always in the lobes, lobules, or ducts. Normally cancers originate from epithelial cells that cover 
or line the breast and are thus called breast carcinomas. However, in some rare cases (less than 1%) the 
cancer arises from stromal components (connective tissue) within the breast (i.e. sarcomas). The 
premalignant changes where the epithelial cells have not broken through the basement membrane are 
classified into hyperplasia or carcinoma in situ.  
 
Ductal carcinoma in situ (DCIS) is the most common type of non-invasive breast cancer, which is not 
life-threatening, but having DCIS can increase the risk of developing an invasive breast cancer later on8. 
If cancer cells have broken through the basement membrane and invaded surrounding tissue, it is 
classified as invasive or infiltrating carcinoma8. Invasive carcinoma is by far the most frequent type of 
breast cancer, where between 72-80% are invasive ductal carcinomas (IDC) and 5-15% are invasive 
lobular carcinomas (ILC)9.  
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Figure 1.2:  Anatomy of the female breast. Adapted with permission from National Cancer Institute © 2011 
Therese Winslow, U.S. Govt. 

 
Fibroadenomas are benign breast tumors that are commonly diagnosed in young women and are 
associated with a slight increase in the risk of breast cancer10. These benign breast masses are made up of 
fibrous and granular connective tissue which have grown more rapidly than usual and generally are 
presented as 2 to 3 cm in size. As they are affected by hormones and tend to fluctuate (or increase) in size 
during menstrual cycle, pregnancy and breast-feeding, they may increase to > 10 cm.  Fibroadenomas are 
a long-term risk factor for breast cancer as the risk of invasive breast cancer was assessed as 2.17 times 
higher among women with fibroadenoma than among women without fibroadenoma11. And the risk 
increases even more if women have complex fibroadenomas, proliferative disease or a family history 
cancer. 
 
1.1.2 Diagnosis and staging of breast cancer 
 
During the diagnostic process, breast cancer patients are examined by three main strategies: clinical 
examination, imaging tests (mammogram, ultrasound or magnetic resonance imaging (MRI)), and 
histological examination of needle biopsies. This approach has been found to be highly precise and 
accurate when all three modalities are in agreement12. It has been shown that early diagnosis of breast 
cancer improves prognosis, thanks to the public health campaigns which offers mammography screening 
to women, specially in ages from 50 to 74, when the incidence is higher6. 
 
Following the diagnosis, breast cancer stage is determined. The stage describes the extend of cancer, 
particulary the size of a tumor and its dissemination using the TNM- system, which is the most widely 
used. This classification stages cancer based on primary tumor size (T), the degree of spread to lymph 
nodes (N), and the existance of distant metastasis (M). Together this determines the patient’s stage of 
breast cancer. Increasing stage indicates a more aggressive disease, with Stage 0 referring to non-invasive 
breast cancer, Stages I through III describing invasive breast cancer and Stages IV indicating 
dissemination to other organs. In general, a lower grade number indicates a slower-growing cancer that is 
less likely to spread, while higher number indicates a faster-growing cancer that is more likely to spread. 
For instance, cells in IDC grade II breast tumor are moderately differentiated compared to grade I which 
are well differentiated. Moreover, IDC grade III cells are abnormal and they tend to grow and spread 
more aggressively than lower grades. 
 Based on the TNM classification, the tumor is defined as primary operable or inoperable13.  
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1.1.3 Predictive and prognostic factors 
 

Prognostic factors are those capable of predicting clinical outcome of patients irrespective of treatment 
while predictive factors intend to assess the outcome of patients receiving a certain systemic therapy and 
thus are intimately associated with sensitivity or resistance to the administrated therapy.  
 
The most powerful prognostic factor for early stage breast cancer is the axillary lymph node status, 
followed by the tumor size, which is the most significant prognostic factor in node-negative patients. 
These factors are represented in above-mentioned TNM staging system. In addition to finding anatomical 
features of the tumor, histopathological analysis also provides prognostic value as it gives information of 
the tumor cells degree of differentiation and include assessment of the tumor’s expression of estrogen 
receptor (ER), progesterone receptor (PgR), human epidermal growth factor (HER2) and, in some cases, 
proliferation (by the Ki67 marker).  The hormone receptors ER and PgR are transcription factors 
depending on binding of their ligand (the hormones estrogen and progesterone respectively) for activation 
of important proliferation processes and production of growth factors. An estimated 70% of human breast 
cancers are ER positive14. As ER activation also regulates the PgR-gene, less than 1% of PgR-positive 
(PgR+) cases are ER-negative (ER-). Hormone (estrogen and progesterone) receptor status is the main 
indicator of the response to endocrine therapy as the presence of ER and/or PgR receptors indicates that 
tumor progression is driven by these and other related reproductive hormones. 
 
HER2 receptors are proteins that help manage how a breast cell grows, divides, and repairs itself. 
However, in about a quarter of all breast cancer patients, the HER2 gene is not functioning properly. It 
makes an excess number of copies of itself in a process known as “HER2 gene amplification.” Then these 
extra genes instruct the cells to make too many HER2 receptors, which is called “HER2 protein 
overexpression.” The ultimate result is that breast cells grow and divide in an uncontrolled fashion15. 
Novel targeted therapies that inhibit HER2 have been developed and approved for clinical use, e.g. 
trastuzumab an antibody which binds to the extracellular domain of the HER receptor resulting in 
inhibition of cell growth.  
HER status is thus a predictive marker for treatment and in addition, has been suggested to play a role for 
predicting response to chemotherapy16 and endocrine therapy17. 
 
Triple negative breast cancer (TNBC) is a heterogeneous subgroup of breast cancer characterized by the 
absence of expression of estrogen receptor (ER), progesterone receptor (PgR) and human epidermal 
growth factor receptor-2 (HER-2). TNBC represents approximately 15-20% of all breast cancer cases and 
is generally considered as the most severe subgroup of breast cancer  18.   
 
1.1.4 Breast cancer heterogeneity 
 
Due to the fact that breast cancer is a heterogeneous and a complex disease, there is a high degree of 
diversity among patients with similar diagnosis (interheterogeneity). Within a tumor, subclonal 
population of cancer cells diversity differ in genetic and phenotypic characteristics (intratumor 
heterogeneity)19. Tumor heterogeneity has been associated with treatment resistance and relapse, possibly 
due to subgroups of cancer cells managing the evade treatment20. Previous studies have examined the 
intra-tumor genetic heterogeneity on breast cancers, however tumor phenotypic heterogeneity cannot be 
solely attributed to genetic differences, as epigenetics and interactions with the tumor microenvironment 
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also contribute21. Several molecular factors as genetic, transcriptomic, metabolic, proteomic etc further 
influence tumor heterogeneity and together determine the risk of disease progression and therapeutic 
resistance. 
 
At the genetic level, germline mutations in BRCA1 and BRCA2 genes account for most hereditary breast 
cancer cases. At transcriptomic level, five intrinsic subtypes of breast cancer based on gene expression 
profiles have been classified: luminal A, luminal B, basal-like, HER2 enriched and normal-like. Each of 
these subtypes has different risk factors for incidence, response to treatment, risk of disease progression 
and preferential organ sites to metastasize. Luminal tumors have the best prognosis as they are ER+ PgR+ 
and the majority respond well to hormonal treatments. On the other hand, basal-like tumors in general are 
deficient in hormone receptors and in HER2. Thus, the majority of these tumors are also called triple 
negative breast cancer (TNBC) and unfortunately only approximately 20% of these tumors respond well 
to standard chemotherapy, thus basal-like tumors have the worst prognosis and is considered the most 
aggressive subtype22. 
 
1.1.5 Breast cancer treatment strategies  
 
 After a breast cancer diagnosis, a treatment plan specific to patient situation is developed based on tumor 
size, histological characterization, grading, receptor status, axillary lymph node status, age of the patients 
etc. Surgery and radiation therapy are local treatments, which are directed to the tumor. Systemic breast 
cancer therapies include other tumor directed treatments as endocrine therapy and novel targeted therapy 
(inhibits angiogenesis growth factors, cell division, promoting cell death), as well as not tumor specific 
chemotherapies. Table 1.1 provides a simplified overview of breast cancer treatment in Norway23.  
Despite the fact that chemotherapy is more toxic than endocrine or targeted therapy, it is often a 
mandatory inclusion in the treatment plan when tumors are unresponsive to these treatments, especially in 
TNBC patients. Moreover, doctors can administrate chemotherapy before surgery, neoadjuvant 
chemotherapy, due to the size of tumor, since the drugs may shrink the tumor and give patient more 
surgical options. In contrast, adjuvant  (meaning “in addition to”) chemotherapy is administered after 
surgery to prevent recurrence of the disease, particularly distant recurrence, when cancer is invasive and 
has spread to nearby lymph nodes or patient has unfavourable prognostic factors24 25. 
 
Table 1.1. Overview of breast cancer treatment strategies in Norway.  

 Before surgery Surgery After surgery 

Treatment Neoadjuvant therapy Mastectomy or breast 
conserving surgery 
(tumor excision) 

Radiation Therapy 
Chemotherapy 
Endocrine Treatment 
Others 

Purpose Tumor reduction and 
down staging 

Remove primary tumor 
and lymph nodes 

Reduce recurrence 
probability 
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1.2 Tumor metabolism 
 
Downstream genomics, transcriptomics and proteomics is metabolomics, a relatively new field that 
studies small molecular compounds called metabolites. These compounds are end products or 
intermediates of chemical processes needed for cell viability, e.g energy production and cell signalling. 
The metabolic profile of a cell, tissue or organism depends on the ‘omics’ level as well as environmental 
factors like diet and drugs26, being an amplified output of on-going cellular activity of a biological 
system. Small alterations in gene expression levels or in the activity of enzymes could have large impact 
on the concentration of metabolites.  
Due to the accumulated alterations within the cancer cells that contribute to their characteristic of 
uncontrollable growth, they exhibit important metabolic differences compared to normal cells.  
As Hanahan et al. suggested, a crucial event of tumor development is deregulation of cellular energetics, 
characterizing an altered metabolic activity as a malignancy feature27. Metabolic deregulation provides 
cancer cells with three basic needs: 1) quickly generation of adenosine triphosphate (ATP) as a source of 
energy, 2) increase synthesis of the four types of macromolecules: lipids, carbohydrates, proteins, and 
nucleic acids, and 3) suitable redox stability. 
Metabolic results can be used to classify breast cancer on the basis of tumor biology, and identify new 
prognostic and predictive markers to discover new targets for future therapeutic interventions.  

1.2.1 Glucose metabolism 
 
Glucose is the major source of energy in living cells. During glycolysis, a small amount of adenosine 
triphosphate (ATP), the chemical energy transporter essential for cellular processes, is released when 
glucose is converted into pyruvate together with the reduced form of nicotinamide adenine dinucleotide 
(NADH).  Pyruvate then follows one of two pathways depending on the presence or absence of oxygen. If 
oxygen is present, pyruvate enters to the mitochondria where it is converted to Acetyl-coenzyme A 
(Acetyl CoA) and is oxidized in the tricarboxylic acid (TCA) cycle followed by the oxidative 
phosphorylation, also known as electron transport chain, to produce ATP. Glycolysis, the TCA cycle, and 
oxidative phosphorylation yield thirty-six molecules of ATP in total.  
In hypoxic conditions, i.e. low oxygen concentrations, pyruvate is quickly reduced in the cytoplasm to 
lactate via the enzyme lactate dehydrogenase (LDH). Through this reaction, the oxidized form of NAD 
feed glycolysis creating a positive feedback loop. Although the production of ATP via anaerobic 
glycolysis is 100 times faster than oxidative phosphorylation, it is less efficient as it yields only two ATP 
molecules per glucose from glycolysis compared to thirty-six in aerobic conditions (Figure 1.3). 
 
In most cancer cells and in proliferative normal cells, the majority of pyruvate produced during glycolysis 
is converted to lactate even if oxygen is present or not. This switch, discovered in the 1959’s, is referred 
to as the Warburg effect28. To compensate for the inefficient ATP production, which is less relevant than 
producing new nutrients in cancer cells, most tumors have an increased rate of glucose uptake and an 
increased glycolysis. It is suggested that the production of lactate stimulate tumor cells, making them 
more resistant to the immune system and also by generating an acidic microenvironment that is hostile to 
surrounding normal tissue and promotes metastasis29. 
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Figure 1.3. Glucose metabolism in proliferative normal cells (left) and in cancer cells (right). ATP adenosine 
triphosphate, O2 Oxygen, TCA tricarboxylic acid cycle. 

 
1.2.2 Lipid and choline metabolism 
 
In addition to glucose metabolism, several studies have shown that altered choline metabolism as well as 
altered lipid metabolism is associated with cancer 30. Choline is an essential organic compound, which 
works as a precursor for phosphatidylcholine (PtdCho), the most abundant phospholipid in eukaryotic 
cellular membranes31. Free choline (Cho) is transported into the cell and converted to phosphocholine 
(PCho) by the enzyme choline kinase in the first step of the Kennedy pathway, described by Kennedy and 
Weiss in 1956. PCho is then added a cytidyldiphosphate (CDP) group forming cytidine diphosphocholine 
(CDP-Cho), which combined with 1,2-diacylglycerol synthetize PtdCho. The breakdown products of 
PtdCho catabolism are glycerophosphocholine (GPC) and 1-acylglycerophosphocholine (Figure 1.4).  
 
 
 
 
 
 
 
 

 
 

 
 
 
 
Figure 1.4. Choline metabolism. GPC glycerophosphocholine, PtdCho phosphatidylcholine, CMP 
cytidylmonophosphate, CDP-Cho cytidine diphosphocholine, CTP cytidyltriphosphaye, ATP adenosine triphosphate, 
ADP adenosine diphosphate. 
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Choline compounds and lipids are considered essential to sustain cell proliferation since cancer cells need 
substrates for membrane multiplication for new cells. Increased levels of one or more of the metabolites 
constituting total cholines (tCho: the sum of Cho, GPC and phosphocholine) and an increased lipid 
biosynthesis have been detected in tumors and are associated with cancer aggressiveness, being an 
emerging metabolic hallmark of oncogenesis and tumor progression. A reduction in the concentration of 
tCho has therefore been suggested as a marker of tumor response to cancer treatment.  
 
1.2.3 Amino acid metabolism 
 
Amino acids are structural units to build up proteins in the human body. However, amino acids also have 
an important role as regulators or intermediate metabolites for several metabolic pathways necessary for 
the cellular maintenance and growth. Changed levels of different amino acids have been detected in 
cancers compared to normal cells, and may be a reflection of the high proliferation rate of cancers.  
Glutamine is the second principal substrate for cell growth in both normal and cancer cells. It is an 
essential amino acid, which not only contribute with carbon, but also with reduced nitrogen for de novo 
biosynthesis of a number of diverse nitrogen-containing compounds and nucleotides. Glutamine can be 
converted, by glutaminase, to glutamate, which further can be used for production of other amino acids or 
function as a precursor for the important antioxidant glutathione.  
Increased levels of the aminoacid taurine have been found in cancerous compared to normal tissue in 
studies of cervix32, prostate33, and colon34 tissues. For breast cancer, increased levels of taurine have been 
detected in cancer tissues 35while the levels were decreased in serum samples of cancer patients compared 
to healthy volunteers36. Taurine is the most abundant free amino acid in humans and has numerous 
potential heath benefits as it regulates intracellular calcium, homeostasis and maintain the cell membrane 
stability and protect cells. A study showed that Taurine is an inhibitor of tumor growth and a promoter of 
apoptosis in human breast cancer cells37. However, limited studies have assessed its effect on tumors and 
the antitumor mechanism remains unknown. 
 
 
1.3 Metabolomics 
 
Metabolomics is a newly emerging field of “omics” research concerned with the characterization of the 
small molecule metabolites and their intermediates present in a biological system.  In metabolomics, 
metabolite levels are measured to obtain the final downstream information of ongoing processes at a 
specific time (Figure 1.5). Compared to the other “omics” measures, which can be affected by post-
modifications and other regulatory mechanism, metabolomics is a powerful approach to directly reflect 
the final product of gene expression. Thus, metabolomics best represents the molecular phenotype. 
 
 

 
 

 
Figure 1.5. The omics cascade. From genomics, the study of DNA and genetic information within a cell, 
transcriptionist; the study of RNA and differences in mRNA expression and proteomics; the study of proteins, to 
metabolomics; the study the metabolism substrates and products, which are influenced by both genetic and 
environmental factors.  

Genomics	   Transcriptomics	   Proteomics	   Metabolomics	  
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Many reactions take place continuously within cells, so concentrations of metabolites are considered to be 
dynamic, and may change rapidly from one time point to the next. Current analytical techniques used to 
investigate metabolomics, provides a snapshot in a specific time under a defined condition. The two main 
techniques are magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). MS is a very 
sensitive technique, and can detect metabolites present in much lower concentrations than MRS. MRS, 
however, is highly quantitative and reproducible, suitable for samples in a broad range of conditions 
independent of acidity and hydrophobicity. In addition, tissue MRS can be performed in a non-destructive 
technique requiring a minimum of sample preparation38. 
 

1.3.1 MR spectroscopy 
 
MRS is a common tool for examining the metabolic state of a biological system. MR spectroscopy 
obtains information using the magnetic properties of certain atomics nuclei. These nuclei may possess a 
quantum mechanical property called spin (I), which can be compared to the rotation of a planet. This 
property depends on the number of neutrons and protons, and its different combinations giving distinct 
spin configurations. When a nucleus has the same number of protons and neutrons, they cancel each other 
and thus they experience no spin (I=0). When the number of protons or neutrons is different, nuclei 
posses non-zero spin (I≠0) and generate their own magnetic field, called the magnetic moment (µ), and 
thus giving a signal. 1H, 13C, 14N, 19F and 31P are used in MRS, of which 1H is the most commonly used 
due to his high sensitivity and high natural abundance in the body.  
 
When an external magnetic field (B0) is applied, the nuclei is oriented in 2I+1 different energy levels by 
equilibrium processes, and they precess with a frequency dependent on the type of nuclei and the strength 
of the magnetic field. 1H has spin I = ½, and will thus be present in two energy levels; oriented either 
parallel or anti-parallel to B0. If a radio frequency (RF) pulse is applied, the nuclei in a lower energy level 
will excite to a higher energy level and thereby disrupt the equilibrium. When the RF pulse is switched 
off, the excited nuclei will return to equilibrium and a signal called the free induction decay (FID) can be 
detected. The FID can be Fourier transformed into a frequency dependent spectrum where the frequencies 
are determined by B0 and the gyromagnetic ratio of the nucleous. 
 
 Nuclei in different magnetic environments will experience slightly different magnetic fields, and will 
therefore appear as peaks at different positions, or chemical shifts, of the spectrum. These chemical shifts 
are then converted into parts per million (ppm). The nuclei of a molecule will also be influenced by the 
spins of nuclei located closely, resulting in a division of the peak into multiplets.  

1.3.2 HR MAS MRS 
 
The molecules of solids and semi-solid materials (e.g. tissue) have a restricted mobility, which leads to 
static anisotropic (the property of being directionally dependent) interactions between nuclei.  
This characteristic results to broad peaks in MR spectra that may conceal relevant spectral information 
and lead to peak overlapping. After its discovery, the use of MRS experiments was limited to dissolved or 
extracted solid samples or liquid samples. Andrew and Lowe were the first to describe a solution to this 
problem in 1958: rapid spinning of the sample (typically 5 kHz) around an axis inclined of 54.7 grades 
(the magic angle) to the direction of the static magnetic field (B0) will impose motion on the nuclei and 
thereby reduce line broadening.  
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This method, called high resolution (HR) magic angle spinning (MAS) mimics a liquid solution state in 
which the anisotropy of the interactions is averaged to zero resulting in MR spectra of high resolution 
with narrow peaks39 (Figure 1.6). 
 

 
Figure 1.6. A representative HR MAS MR spectrum of breast cancer tissue with assigned metabolites. In 
frame: schematic representation of a sample in a MAS rotor, inclined in the magic angle (54.7º) to the direction of the 
static magnetic field B0. Glc glucose, Asc ascorbate, Lac lactate, mI myo-Inositole, Cr cretaine, Gly glycine, Tau 
taurine, GPC glycerophosphocholine, PCho phosphocholine, Cho choline, GSH glutathione, Gln glutamine, Succ 
succinate, Glu glutamate, Ala alanine. The figure is copied with permission from Giskeødegård et al. High-
Resolution Magic-Angle spinning NMR Spectroscopy of Intact Tissue40. 

 
HR MAS MRS is a non-destructive technique commonly used to obtain the metabolite profile of a tissue 
sample. The analysis of the intact tissue gives qualitative and quantitative metabolite measures with 
minimal sample preparation40. As the tissue is intact after analysis; it can be used for further analysis as 
tissue evaluation by histopathology, gene expression profiling or other methods; enabling direct 
comparisons between spectral and morphological characteristics. Although only a small volume of tissue 
sample is required for the assessment, it is important to handle the tissue with care and keep it frozen 
during storage and sample preparation to minimize degradation.  
 
1.3.3 MRS acquisition 
 
Biological tissues contain large amounts of water, and the water signals in an MR spectrum will be 
several orders of magnitude larger than metabolite signals. Sequences that suppress the water signal are 
therefore used to give focus to metabolites peaks in MRS acquisition. There are different sequences to 
suppress water, but the two most common in metabolomics experiments are Nuclear Overhauser Effect 
Spectrometry (NOESY) and Carr-Purcell-Meiboom-Gill (CPMG). These methods use a pre-saturation of 
water molecules by exposing the sample to low power continuous wave irradiation before the signal 
acquisition. Metabolite signals may also be affected by lipids and large molecules, which give broad 
peaks in the spectrum. CPMG sequences are additionally designed to decrease these signals and obtain all 
the important metabolites that could be overlapped.  
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1.4 Preprocessing of MR spectra 
 
HR MAS MR spectra must be preprocessed prior to statistical analysis to remove unwanted technical or 
biological variation. This procedure involves different computational steps and is carried out to convert 
the acquired data into a format that is usable to extract the useful information and obtain spectra with high 
quality, removing irrelevant and unwanted variation such as instrumental or experimental artifacts. The 
main steps necessary in the preprocessing of HR MAS MRS data are described below. 

 
1.4.1 Baseline correction 
 
Baseline corrections can be applied to correct baseline distortions of the spectra. The baseline consists of 
broad regions between peaks that do not contain signal of interest. Without correction, baseline will cause 
errors when performing statistical tests and during quantification and metabolite concentrations. A simple 
way to correct it is to set the lowest value of each spectrum to zero by subtracting the minimum point 
(Figure 1.7). This is a safe way of baseline correcting, as it does not change the shape of the spectra41.  
  A) 

 
  B) 
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Figure 1.7. Baseline correction based on breast metabolic data. A) Figure shows HR MAS MR region spectra 
before baseline correction. B) Figure shows the same region spectra after baseline correction. The baseline is clearly 
less distorted. Yellow spectrum was removed before following procedures. 

 
1.4.2 Peak alignment 
 
The peaks of the MR spectrum can be shifted by differences in pH, temperature, ion-concentrations, 
molecular interactions or instrumental factors. Peak alignment has the intention to correct these chemical 
shift differences. Different approaches can be used: either align the entire spectra (global alignment) or 
separate segments (local alignment). Icoshift is one of the alignments recommended for HR MAS MRS 
data42. The user choose the regions of optional sizes to align, which are shifted to the same segment of a 
selected reference spectra using Fast Fourier Transformation. This reference spectrum can be a spectrum 
from the original data set (e.g. the one with the highest correlation to the remaining spectra of the data 
set) or can be generated by the user (e.g. mean or median spectra of the data set). 
 
1.4.3 Scaling and normalization 
 
After peak alignment, normalization ensures the comparison between spectra, correcting the differences 
in amount of sample, dilutions (for fluids) or sample weights (for tissue). Several normalization 
algorithms exist for MR spectra. One frequently used is area normalization, where each variable of the 
samples is divided by the average of all its variables. This normalization can be considered as a standard 
normalization approach for MRS metabolic data.  
 
Preprocessing of the variables, or scaling, is performed to bring all the variables into the same range, and 
regulate the relative importance of each variable to make them finally more comparable. Scaling methods 
are thus based on variables, not sample-based as normalization. 
Mean-centering is a method often applied before other scaling methods. It divides each variable by its 
own mean resulting in values that fluctuatearound zero. Further scaling approaches can be performed, 
depending on the nature of the data; for instance, autoscaling is a method that divides each variable on its 
standard deviation. Although autoscaling is commonly used, it may not be optimal for MR spectra 
because all variables, including noise, are given the same potential to influence the model.  
Another approach that focuses to the stable variables of the dataset is variable stability (VAST) scaling 
method, which divides each variable on its standard deviation and coefficient of variation (CoV)43.  
Additional preprocessing operations such as variable selection might also be done. Since decisions on 
what variables or samples to include will affect the result of multivariate analysis, each step should be 
carefully evaluated and optimized for the specific data. 
 
 
1.5 Multivariate analysis 
 
MR spectra consist of a vast amount of variables, making the data sets quite complex to analyse. 
Additionally, many of these variables are collinear, i.e. an approximate linear relationship exists between 
some of the variables in X-matrix. Moreover, many peaks can represent one single metabolite and in 
addition, a high number of variables often exceed the number of samples. Multivariate analysis methods 
can handle several variables simultaneously and are commonly used for the analysis of MR spectra. Two 
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approaches are defined based on the purposes they are used for. Unsupervised methods, or clustering, are 
exploratory and useful tools to identify the data set in terms of possible groupings, patterns and outliers, 
without taking a response variable into account. Examples of common unsupervised methods are 
principal component analysis (PCA) and hierarchical cluster analysis (HCA). Supervised multivariate 
methods are used to classify the data based on a specific property (class membership or a measured 
variable) and predict this property for new data. These methods model the relationship between 
independent variables (e.g. spectral data) and a response variable (e.g. clinical characteristics) by 
identifying patterns in the input data that can be following applied to new data44.  
 

1.5.1 Principal component analysis (PCA) 
 
Principal component analysis explains the variance structure of a data set making linear combinations of 
the variables. Thus, PCA simplifies the data calculating new variables, or latent variables, called principal 
components (PCs), and they form a new coordinate system of reduced dimensionality. PCs are 
orthogonal, independent from each other, which is graphically translated as being perpendicular between 
them. Each new PC explains less variation than the previous one, with the first PC describing the 
direction of the maximum variation. Thus, the first few PCs usually describe the relevant data variation 
and the interesting aspects of the data, revealing possible relationships previously hidden in the data.  
 
 
 
 
     
 
 

 
 
 
Figure 1.8. Principal components representation Three variables represented: x1, x2 and x3. PC1 explain the 
maximum variance and PC2 is orthogonal to PC1. 
 

Mathematically, a PCA can be described by equation 1.1: 
 

                    X = TPT + E           (1.1) 
 

Where X is the original data set, T is the score matrix, P is the loadings matrix and E is the matrix of 
residuals. Scores define the position of the samples in the new PC coordinate system and loadings 
describe how important each of the original variables have been in construction of the specific PC (Figure 
1.8). The variation not explained by the PCA model, or matrix of residuals (E), decreases, as more PCs 
are included.  
The combined use of scores and loadings plots, which can be plotted together as a biplot, allows the 
association or dissociation of samples with variables, observing the positions in the new coordinate 
system to detect natural clusters and outliers (Figure 1.9). 
 

X1 

X2 

X3 

PC2 
PC1 



 21 

 
 
Figure 1.9. Hypothetical example of PCA A) The scores plot shows the three sample classes clearly separated, with 
scores on PC1 increasing with increasing class number. The arrow indicates a potential outlier. B) The loadings plot 
shows lactate (Lac), creatine (Cr), taurine (Tau), and alanine (Ala) having lower values for PC1 (i.e. higher in Class 1 
samples) while glycine (Gly), glycerophosphocholine (GPC), phosphocholine (PCh), and choline (Cho), have higher 
values for PC1 (i.e. higher in Class 3 samples). C) Scree plots with arrow indicating the bend in the curve (optimal 
dimensionality) at four principal components. The figure is copied from Leslie W. Euceda’s PhD thesis with 
permission. 
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2. Hypothesis 
 

Are breast tumors metabolically heterogeneous, with cancer tumors having larger intra-heterogeneity than 
non-malignant fibroadenomas? 
Have high-grade tumors larger intra-tumor heterogeneity than lower grade tumors? 
 
 

3. Main objectives 
 
3.1 Overall aim 
 
The main aim of the research presented in this project is to characterize intra- and inter-heterogeneity of 
breast cancer biopsies by metabolic profiling through HR MAS MRS analysis.    
 
3.2 Specific Objectives 

 
Ø Optimize a sample handling protocol for metabolic studies of breast tumor tissue to HR 

MAS MR analysis 
 

Ø Investigate metabolic differences between different located tumor samples from the same 
patient and determine if a needle biopsy examination is representative for the whole breast 
tumor 

 
Ø Examine metabolic differences between patients with IDC grade 2 and IDC grade 3 with 

regard to benign disease (fibroadenoma) 
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4. Materials & Methods  
 
4.1 Patients 
 
4.1.1 Tissue collection  
 
Table 4.1: Patients included in the study  

 
Breast tissue samples were collected from the period 2012-2014 during surgeries at St Olav’s Hospital 
(Trondheim, Norway) (Table 4.1). A tissue slices from each patient was obtained from the middle of the 
tumor: three fibroadenoma, three ductal carcinoma grade 2 and three ductal carcinoma grade 3 diagnosed 
patients, in total nine patients aged between 25 and 71 (mean = 44,2). Tumors were between 13.00 and 
40.00 mm of size and were examined to conclude free tumor cells resection margins and negative 
metastasis diagnose. One breast cancer slice was taken from each patient, except for two slices which 
were taken from the same patient (left breast and right breast). Therefore, ten breast tissue slices were 
initially collected for the study. Subsequently, five tissue samples were randomly drilled from each 
sample slice, concluding with fifty frozen tissue sample to analyse by HR MAS MRS.  
 
Information on the expression status of estrogen receptor (ER) and progesterone receptor (PgR) was 
obtained from previous sample examinations, as well as HER2. Samples from patients 1 and 7 had zero 
per cent of ER receptor status while samples from patients 2, 4 and 8 had high percentage values between 
95.0 and 100.0 %. Human epithelial grow factor receptor was analysed by Fluorescence In Situ 
Hybridization (FISH) test. FISH find out if there are increased copies of HER2 gene in cancer cells. 
HER2 results were concluded as negative in all samples, i.e. no HER2 gene amplification was in any IDC 
diagnosed samples (Table 4.2). 
 

Patient Operation 
Date 

Age Diagnose Histological 
diagnose  

Grade Surgery 

1 2013.06.27 56 Malignant breast 
tumor 

IDC 3 Breast conservering|Sentinel 
node + Axillary clearance 

2 2013.04.04 71 Malignant breast 
tumor 

IDC 2 Axillary 
clearance|Mastectomia 

3 2012.11.13 40 Fibroadenoma   

4 2013.07.23 48 Malignant breast 
tumor 

IDC 2 Axillary 
clearance|Mastectomia 

5a 2014.01.23 26 Fibroadenoma (left)  Tumor excision 
5b 2014.01.23 26 Fibroadenoma (right)  Tumor excision 
6 2012.11.01 25 Fibroadenoma  Tumor excision 

7 2012.06.28 56 Malignant breast 
tumor 

IDC 3 Axillary 
clearance|Mastectomia 

8 2012.06.12 43 Malignant breast 
tumor 

IDC 2 Axillary 
clearance|Mastectomia 

9 2012.05.15 51 Malignant breast 
tumor 

IDC 3 Axillary clearance | Breast 
conserving | Sentinel node 
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Table 4.2: ER, PgR percentage and HER2 examination provided by clinical data 
Patient ER status % PgR status % HER2 HER2 method 

1 0.0 0.0 Negative FISH 

2 95.0 75.0 Negative FISH 

4 95.0 95.0 Negative FISH 

7 0.0 0.0 Negative FISH 

8 90.0 0.0 Negative FISH 

9 100.0 100.0 Negative FISH 

 
Diagnose details and additional clinical information of IDC diagnose patients are showed in table 4.3. 
Tumor sizes and types of treatment the patient was given are also showed in table 4.2. Patient’s number 1, 
2, 3, 8 and 10 were treated with adjuvant chemotherapy, while patient’s number 4 and 9 were treated with 
neoadjuvant chemotherapy as well. 
 
Table 4.3: Additional clinical information  

  
4.1.2 Sample storage 
 
Breast samples slices were frozen in -80 degrees immediately after dissection during surgery and stored 
until further sample handling. To perform an HR MAS MRS analysis and provide a snapshot of tissue 
metabolism at the time of sampling it is important to preserve the sample in correct temperature 
conditions as robustly as possible during sampling and storage. As degradation starts immediately once 
the blood circulation to the tissue is cut, keeping the sample cold reduced both chemical and enzymatic 
degradation (Figure 4.1). 
 

Patient Metastasis  
Diagnose 

Resection 
Margins 

Tumor 
Size (mm) 

Treatment 

1 Negative Free 23.0 Adjuvant chemotherapy, Adjuvant radiation therapy 

2 Negative Free 40.0 Adjuvant Endocrine Therapy | Adjuvant Chemotherapy | 
Adjuvant Radiation Treatment 

4 Negative Free 20.0 Adjuvant Endocrine Therapy | Adjuvant Radiation 
Treatment | Neoadjuvant Chemotherapy 

7 Negative Free 23.0 Adjuvant chemotherapy | Adjuvant radiation therapy 

8 Negative Free 13.0 Adjuvant Endocrine Therapy | Adjuvant Radiation 
Treatment | Neoadjuvant Chemotherapy 

9 Negative Free 20.0 Adjuvant Endocrine Therapy | Adjuvant Chemotherapy | 
Adjuvant Radiation Treatment 
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Figure 4.1. Breast tumor slices. Left: Breast tumor slice sample 3 placed on dry ice to preserve cold temperature. 
Right: breast tumor slice sample 3 over the workstation prepared to drill. 
 

4.1.3 Sample drilling 
 
With the purpose of describing metabolic heterogeneity within a tumor sample, metabolic profiles of 
different slice positions had to be done. To minimize tissue degradation, the samples should preferably 
not be thawed during sample preparation. In order to achieve it, frozen samples were prepared on a 
cooling workstation filled with liquid nitrogen (Fig 4.2). The preparation time did not exceed five 
minutes, and consisted in drilling randomly five different tissue samples spots of each tissue slice (see 
figure 4.3) to examine if location may play an important role in metabolic profile.  
 

 
Figure 4.2. Workstation and drill (left) The workstation was filled with nitrogen (top right), ensuring the samples 
to be kept frozen throughout sample preparation. The tissue was cut to fit into an insert using a drill with a hollow 
core drill bit (bottom right). (a) Plexiglas for minimizing nitrogen evaporation, (b) cooling block, (c) metal plate. The 
figure is copied with permission from Guro et al.  High-Resolution Magic-Angle_spinning NMR Spectroscopy of 
Intact Tissue. 
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Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 

	        
Slice 6 Slice 7 Slice 8 Slice 9 Slice 10 

     
Figure 4.3. Breast tumor slices samples drilled. Numbers indicates the number of slices spots. Slice 3 was broken 
during drilling. Area marked by a triangle in slice 10 was too thin to drill. Slices 1, 2 and 10 were stained with 
cytokeratin for histologic examination of sentinel lymph nodes (SLN). 

 
4.1.4  Histopathology and clinical diagnosis 
 
After drilling, the resulting tissue samples were cryosectioned for histological analysis by the CMIC core 
facility, NTNU. A cryosection from each HR MAS MRS sample was HES stained for measuring relative 
amounts of tumor tissue, fat, connective tissue etc in each sample. To ensure the content of tumor cells 
within the spot, histological slides were scored by an experienced pathologist. Twenty-one spots were 
excluded after being diagnosed as not containing tumor cells.  
 
 

4.2 HR MAS MRS experiments 
 

After cryosectioning, the tissue samples were cut to fit leak-proof disposable 30 µL inserts  (Bruker, 
Biospin Corp, USA) containing 3 µL cold buffer solution of sodium formate (HCOONa) in D2O at a 
concentration of 24.29 mM. The insert was weighed before and after the sample was put into it. This step 
was carried out very carefully as air bubbles might have caused problems with line shape in MR analysis 
and made the samples difficult to shim in the magnet. The insert was transferred in a 4-mm diameter 
zirconium MAS rotor and kept at -20ºC until spectral acquisition (Figure 4.4). The insert should have not 
be able to rotate inside the rotor. To avoid it, the screw cap was adjusted by tightening or loosening up it 
before to put on the rotor cap. All procedures were done under RNAse free conditions using RNAse 
decontamination solution (RNaseZap) for future RNA experiments. 
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Figure 4.4 HR-MAS equipment (a) Filling funnel, (b) rotor cap remover, (c) blunt-ended screwdriver, (d) forked 
screwdriver, (e) extraction screw, (f) rotor packer, (g) tweezers, (h) scalpel, (i) rotor with spinning cap, (j) insert with 
taper and screw cap, (k) a narrow pipette tip for placing D2O with formate into insert. The figure is copied with 
permission from Guro et al.  High-Resolution Magic-Angle-spinning NMR Spectroscopy of Intact Tissue. 

 
4.2.1 Acquisition protocol 
 
Samples were analysed on a Bruker Avance DRX600 spectrometer (Bruker, Biospin, GmbH, Germany) 
equip with a 1H/13C MAS probe with gradient. Before acquisition, samples were spun for 5 minutes to 
allow for temperature acclimation. 1H spectra were acquired using a water and lipid suppressing spin-
echo CPMG (Bruker) sequence through standard acquisition parameters. Two additional experiments, 
namely NOESY and two-dimensional J-resolved pulse sequences were acquired, but were not used for 
the purposes of this thesis. Magic angle adjustment and temperature calibration were performed regularly, 
especially after maintenance, e.g. after changing the NMR probe. HR MAS protocol (Version October 
2016, Generated by Tonje Haukaas and Maria Dung Cao, NTNU, ISB, MR Cancer Group) used in the 
study is attached in the appendix. 
 
 
4.3 Spectral preprocessing and data analysis 
 
The acquired spectral data was Fourier transformed into 64k real points after modification by an 
exponential line-broadening factor of 0.30 Hz. Each spectrum was both automatically and manually phase 
corrected using TopSpin 3.5 pl6 (Bruker Biospin). Subsequent preprocessing was performed in Matlab 
R2017a (The Mathworks, Inc., USA). Chemical shifts were referenced to the creatine peak at 3.03 ppm. 
The spectral region between 1.11-4.67 ppm, containing the majority of low-molecular weight metabolites, 
was selected as the region of interest. Additional baseline correction was achieved by subtracting each 
spectrum with the lowest value. Peak alignment was performed using icoshift and normalization was 
carried out by mean normalization. 
 
4.3.1 Analysis of individual metabolites 
 
Metabolite peaks were assigned based on previous identification in HR MAS MR spectra of human breast 
tumor tissue and by identifying each metabolite in Chenomix software. As breast tissue is composed of 
high lipid concentrations due to normal adipose tissue, HR-MAS spectra show strong lipid contributions 
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that usually overlap metabolite regions and minimize metabolite signals caused by its high peaks in the 
spectra, which hamper metabolite estimation. In order to take it into account, relative quantification was 
calculated in data before and after removing lipid peaks, by integrating fixed spectral regions 
corresponding to the metabolite of interest in Matlab R2017a. Concluding with two different dataset: first 
one with lipids and second one without lipids. In order to identify an unknown peak in spectra, STOCSY 
script was run and subsequently a Heteronuclear Single Wuantum Coherence experiment was performed. 
HSQC is a highly sensitive 2D-NMR experiment which resulting spectrum is two-dimensional (2D) with 
one axis for proton (1H) and the other for a heteronucleus (usually 13C or 15N) so further information 
was provided.  
Using in vivo MRS, signals from GPC, PCho and Cho are gathered as a single peak termed total choline 
(tCho).  Due to overlapping lipid peaks in most spectra in the first creatine peak (3.928-3.914 ppm) and in 
the second glutamine peak (2.177-2.114 ppm), the regions to quantify were creatine 2 peak (3.045-3.024) 
and glutamine 1 peak (2.485-2.430 ppm). And since there was more than one peak for some metabolites 
(Glucose, Myo-inositol, Taurine and Glutathione), means of integrated peaks were calculated.   

 
4.3.2 Statistical analysis 
 
Interclass correlation for each metabolite was calculated between samples originating from the same 
tumor slice in R studio (2009-2015 RStudio, Inc.) and adjusted from multiple testing by the Benjamini 
Hochberg methods for future analysis. Coefficient of variation (CoV) was calculated in Matlab R2017a to 
compare metabolites quantification integration between patients and cancer diagnoses. CoV represents 
the ratio of the standard deviation to the expected value shown in the equation 1.1, in this case, the mean 
of each metabolite; thus, the amount of variability relative to the mean is described.    

(1.1) 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡  𝑜𝑓  𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛
 

 
4.3.3 Multivariate analysis 
 
Multivariate analysis on spectra was performed in Matlab R2017a and PCA was employed using PLS 
Toolbox 8.2.1 (Eigenvector Research Inc., U.S.A) to explore naturally occurring differences in data. 
Spectra were mean-centered prior to multivariate model building. The number of PCs for PCA was 
selected based on visual inspection of residual explained variance plots. Principal component analysis 
was performed in both data, with lipids and without lipid data, comparing sample’s location and clinical 
diagnosis.  
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5. Results & Discussion 
 
 

5.1 Histopathology and clinical results 
 
All breast cancer cores were pathologically diagnosed and tumor percentage scored from cryosections 
acquired before HR MAS analysis. Figures with histology detailed results and additional pathologist’s 
comments of following percentages: tumor tissue (divided into tumor epithelial tissue and tumor stromal 
tissue), connective tissue, normal breast tissue, fat, necrosis and an overall assignment of the sample 
classified as either cancer, normal tissue or fibroadenoma, are included in the appendix. After histology 
results, statistical analysis were repeated after removing samples without tumor cells marked in Table 5.1 
to investigate how including samples without tumor cells were affected the results.  
 
Table 5.1: Overview of histology diagnose of patients. Samples without tumor content are marked in blue. 
Sclerosing adenosis (SA) is a benign breast lesion, which demonstrates increased numbers of distorted lobules 
accompanied by stromal fibrosis.  

 
As metabolite quantification and multivariate analysis were performed before and after histology results, 
four final datasets were obtained (Table 5.2): Dataset 1 (with all samples and lipids), dataset 2 (with all 
samples but with lipid removal), dataset 3 (with only twenty-nine included samples and lipids) and 
dataset 4 (with only final included samples and with lipid removal). 
 
 
 
 
 

Patient 
1IDC3 

1 X Patient 5a 
Fibroad 

1 Fibroad 
2 Cancer 2 Sclerosing adenosis 
3 Fat 3 Sclerosing adenosis 
4 Not diagnostic 4 Fibroadenoma  
5 Cancer 5 Sclerosing adenosis 

Patient 2 
IDC2 

1 Cancer Patient 6 
Fibroad 

1 Normal 
2 Cancer 2 Fibroad 
3 Cancer 3 Normal 
4 Fat 4 Normal 
5 Normal 5 Fibroad 

Patient 
3Fibroad 

1 Fibroad Patient 7 
IDC3 

1 Cancer 
2 Fibroad 2 Normal 
3 Fibroad 3 Cancer 
4 Fibroad 4 X 
5 Fibroad 5 X 

Patient 4 
IDC2 

1 Cancer Patient 8 
IDC2 

1 Normal 
2 Tumor tissue 2 Fat 
3 Tumor cells infiltration in 

connective tissue 
3 Normal 

4 Normal 4 Normal 
5 Normal 5 Normal 

Patient 5a 
Fibroad 

1 Fibroad Patient 9 
IDC3 

1 Cancer 
2 Fibroad 2 Fat+connective tissue 
3 Normal 3 Fat+connective tissue 
4 Fibroad 4 Cancer 
5 Fibroad 5 Cancer 
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Table 5.2: Datasets classification 
Dataset 1 With lipids 

All initial samples included 
Dataset 2 Without lipids 
Dataset 3 With lipids 

Only final 29 samples included  
Dataset 4 Without lipids 

 
 

5.2 Analysis of individual metabolites results 
 
Metabolite quantifications were perfomed integrating 26 metabolites peaks and 3 lipid peaks: B-glc1, asc, 
lac, mI1, tyr, cr1, glu1, glu2, y1, mI2, gly, mI3, tau1, sI, tau2, gpc, pcho, cr2, gluth1, lipid 12, gluth2, 
glmine1, succ, glmate, acetate, lipid 9, ala, lipid 7 and lactate. Quantification data was used to calculate 
CoV. 
 
In addition to HR MAS MRS experiments of all samples, additional running experiment was made only 
with RNAse zap free content mixed with buffer (Figure 5.1), in order to obtain a single spectrum and 
compare it to the spectra ensuring that any contamination occurring from RNAse kit were not present in 
the spectra.  
 

 
Figure 5.1 RNAse zap free spectrum mixed with buffer.  
 

 
Figure 5.2 General spectra of all samples.  
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Highest green peak at 2,22 ppm (Figure 5.2) corresponds to a contamination peak from acetone and was 
removed in pre-processing procedures before statistical and multivariate analysis; it was caused by 
acetone contamination after cleaning the rotors, and was only present in one sample. Moreover, an 
additional unknown peak was observed at 3,7 ppm (Figure 5.3). It was significantly high in one sample 
but it appeared in most of the samples, with greater or less intensity.  It could not be identified by 
Chenomix or searching it in bibliography, so correlation between this peak and all metabolite spectra 
peaks was performed by STOCSY script, which confirm that unknown peak did not belong to other 
metabolite and it was independent from other metabolites, there was not correlation (Figure 5.4).  

 
Figure 5.3 Unidentified contamination peak at 3,7 ppm.  

 

 
Figure 5.4 STOCSY graph indicating no correlation was between unknown peak and metabolites.  

 
Subsequently, HSQC was performed to identify it. Although this experiment provided more information, 
the unknown peak could not be identified, and it was preprocessed and integrated as other metabolites, 
called y1. 
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5.3 Statistical analysis results 
 
Metabolite quantifications and coefficient of variation calculations (CoV) were first performed with 
dataset 1 corresponding to dataset containing lipids and dataset 2 corresponding to removed lipid peaks 
dataset. After histology results, CoV calculations were done with dataset 3 and dataset 4 (without lipid 
peaks removal and with lipid peaks removal respectively). To remove the effect of lipid signals after 
removing the lipid peaks, mean normalization was repeated for datasets 2 and 4. 
 

Ø Dataset 1 

 
Figure 5.5 Dataset 1. CoV of all metabolites from normalized spectra, including the lipid peaks., presented in 
boxplots. The central red mark corresponds to the median, the edges of the box are the 25th and 75th percentiles, the 
whiskers extend to the most extreme datapoints the algorithm considers to be not outliers, and the outliers are plotted 
individually.          

 
Figure 5.6 Dataset 1. CoV of all metabolites from normalized spectra, including the lipid peaks, colored by cancer 
diagnose.  Blue triangles correspond to IDC 3 patients, green diamonds to IDC2 patients and magenta stars to 
fibroadenoma patients. Red crosses correspond to patient 8 with IDC2. X axis numbers correspond to: 1 asc, 2 lac, 3 
tyr, 4 y1, 5 gly, 6 sI, 7 gpc, 8 pcho, 9 cho, 10 cr2, 11 lipid 12, 12 glmine1, 13 succ, 14 glmate, 15 acetate, 16 lipid9, 
17 ala, 18 lipid7, 19 glucmean, 20 mImean, 21 taumean, 22 gluthmean.  
 
Dataset 1 with lipids shows high CoV in the majority of metabolites, except for lipid 12, lipid 9 and lipid 
7 which coefficient variation was significantly lower. Several metabolites as ascorbate, glycine, 
phosphocholine, GPC, and taurine had the high CoV values compared to the remaining metabolites 
(Figure 5.5). Figure 5.6 show CoV values colored depending on clinic diagnose (magenta stars: 
fibroadenoma, green diamonds: IDC2, blue triangles: IDC3 and red crosses: IDC2 Patient 8).  
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Three main groups of different CoV were exhibited corresponding to three clinical diagnoses. It can be 
appreciated that IDC3 patients had higher CoV than IDC2, and these higher CoV values than 
fibroadenomas. Patient 8 diagnosed with IDC2 had higher CoV values than others IDC2 patients, similar 
to patients diagnosed with IDC grade 3. Patient 8 received nenoadjuvant therapy before surgery and all 
samples were excluded after pathologist examination owing to non-tumoral cells content. These results 
did not correspond to expected results, as metabolic heterogeneity should be lower after neoadjuvant 
treatment. 
 
After lipid removal, dataset 2 showed less metabolic variation compared to dataset 1, thus, less metabolic 
heterogeneity. Prior to lipid elimination, metabolites from dataset 1 had an interval of CoV between 0.1 
and 2, and in dataset 2 the CoV were between 0.1 and 1.2, which indicate more metabolic differences if 
lipids are included than if they are removed from the spectra. But still three main groups were described 
depending on which clinical diagnose the patients belonged to, supporting that malignant tumors (IDC2-
3) had higher CoV than benign tumors (fibroadenoma). Figures of CoV for dataset 2 are attached in 
appendix. 

 
Figure 5.7 Dataset 3. CoV of all metabolites from normalized spectra, including the lipid peaks, presented as 
boxplots. Samples without tumor content have been removed from the data. The central red mark corresponds to the 
median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme datapoints the 
algorithm considers to be not outliers, and the outliers are plotted individually.  
 

 
Figure 5.8 Dataset 3. CoV of all metabolites from normalized spectra, including the lipid peaks, colored by cancer 
diagnose. Samples without tumor content have been removed from the data.  Blue triangles correspond to IDC 3 
patients, green diamonds to IDC2 patients, magenta stars to fibroadenoma patients, red hexagram to IDC3 patient 1 
and yellow stars to Fibroadenoma patient 6. X axis numbers correspond to: 1 asc, 2 lac, 3 tyr, 4 y1, 5 gly, 6 sI, 7 gpc, 
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8 pcho, 9 cho, 10 cr2, 11 glmine1, 12 succ, 13 glmate, 14 acetate, 15 ala, 16 glucmean, 20 mImean, 21 taumean, 22 
gluthmean.  
 
After removing non-tumor samples, CoV values of all metabolites in dataset 3 went down due to less 
heterogeneity between samples from the same patient (Figure 5.7). This initial high CoV range was 
caused by intrapatient metabolic differences that were present before sample removing, as one patient 
could have several spots with tumor cells and other without tumor content.  
Despite this reduction in metabolites CoV, still three distinct groups could be distinguished depending on 
clinical diagnose: IDC3 patients with the highest CoV values, then IDC2 patients and finally 
fibroadenoma patients with the lowest CoV values (Figure 5.8).  
 
Interestingly, patient 6 diagnosed with fibroadenoma (colored with yellow stars) had high values of CoV 
and Patient 1 with IDC3 (red hexagrams) had lower CoV values similar to fibroadenoma patients. 
Samples 1,3 and 4 were excluded from both patients for not containing tumor cells. Samples 2 and 5 from 
patient 1 were examined with Tumor content: 80%, Epithelial tissue: 80%, Stromal: 20% and Tumor 
content: 60%, Epithelial tissue: 80% and Stroma:20% respectively. As histology results were similar, this 
could be the cause of not high resulting CoV.  On the other hand, sample 2 from patient 6 was analysed 
with Tumor content: 25%, Epithelial: 5, Stromal: 95% and Fat: 20% and sample 5 from patient 6 with T: 
75%, Epithelial: 25% and Stromal: 75%. Tumor percentage had 40% of difference between samples from 
the same patient, and thus could explain the high coefficient of variation showed in results. 
 

 
Figure 5.8. Dataset 4. CoV of all metabolites from normalized spectra, with lipid peaks removed, colored according 
to clinical diagnose. Magenta stars correspond to fibroadenoma patients, green diamonds to IDC2 Patient 2, cian 
diamonds to IDC2 Patient 4, red hexagram to IDC3 Patient 1, blue triangle to IDC3 Patient 7 and inverted blue 
triangle to IDC3 Patient 9. X axis numbers correspond to: 1 asc, 2 lac, 3 tyr, 4 y1, 5 gly, 6 sI, 7 gpc, 8 pcho, 9 cho, 10 
cr2, 11 glmine1, 12 succ, 13 glmate, 14 acetate, 15 ala, 16 glucmean, 17 mImean, 18 taumean, 19 gluthmean. 
 
Comparing the CoV values among datasets, dataset 4 had the lowest CoV value range (Figure 5.8). The 
three main CoV groups were not as clear as identified in previous datasets, but still patients diagnosed 
with fibroadenomas had the lowest metabolic CoV.  
Patient 4 diagnosed with IDC2 was the patient that showed highest CoV values compared to other 
patients. Samples 4 and 5 from patient 4 were excluded after histology results while samples 1, 2 and 3 
were included. Sample 1 had Tumor content of 70%, Epithelial: 40%, Stromal: 60% and Fat: 30% but 
sample 3 had only 10% of Tumor content, 10% of epithelial, 5% of fat and none of stromal. This 
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histology discrepancy answers why patient 4 showed high CoV values after lipid peaks removal and 
excluding its non-tumor samples. 
Generally, coefficient of variations values were expressed depending on which clinical diagnose the 
patient had, showing IDC patients a higher CoV compared to fibroadenoma patients, but to an extent of 
this difference in CoV between clinical diagnoses could be explained by the histologic composition of the 
samples analysed. 
 

5.4 Multivariate analysis results 
 

 
Figure 5.9. Dataset 1 loadings including lipid peaks.Principal component 1 explains 93.38% of variation. 

 
Figure 5.10. Dataset 1 loadings including lipid peaks.Principal component 2 explains 2,37% of variation. 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

Figure 5.11. Dataset 1 loadings including lipid peaks.Principal component 3 explains 1,81% of variation. 
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Variance captured was plotted against number of PCs in order to decide the number of principal 
components for the study. PC1, PC2 and PC3 from dataset 1 explained 93.38%, 2.37% and 1.81% the 
data variance respectively, and three PCs were considered sufficient to represent the data. Principal 
component 1 was positive for lactate and lipid peaks (Figure 5.9). PC2 was positive for cholines and 
lipids and negative for lactate (Figure 5.10). And PC3 was positive for lactate, taurine, cholines and 
lipids, and negative for glucose (Figure 5.11).  Loadings of dataset 2 were positive for the same PC1, PC2 
and PC3 metabolites as dataset 1. Loadings plots of dataset 2 are included in the appendix.  
 
Scores plot of all datasets were colored according to first, cancer type (blue: fibroadenoma, green: IDC2 
and yellow: IDC3) and secondly according to tumor location (green: core of the tumor, yellow: tumor 
margin and blue: intermediate region).  
 

 
Figure 5.12. Dataset 1. PC1 vs. PC2 scores plot. Colored by cancer type (blue: Fibroadenoma, green: IDC2 and 
yellow: IDC3). 
 

 
Figure 5.13. Dataset 1. PC1 vs. PC3 scores plot. Colored by cancer type (blue: Fibroadenoma, green: IDC2 and 
yellow: IDC3). 
 
When PC1 was analysed versus PC2, two distinctly groups were shown. The majority of fibroadenomas 
(17 samples of 20) were had lower levels of lipid compared to the remaining samples (a negative score on 
PC1), and the majority of IDC (24 of 30) were positive on PC1 (Figure 5.12). These results give support 
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to the tumor metabolic characteristic of containing high lipids in order to sustain cell proliferation and 
tumor progression. Conversely, there were not shown clearly groups depending on PC2 metabolic 
variance.  
Fibroadenomas were mostly negative (13 of 20) for PC1 as well as PC3, i.e. had lower levels of lactate, 
taurine, cholines and creatine (Figure 5.13) compared to the remaining samples. The majority of IDC had 
positive values for PC1 but neither extremely positive nor extremely negative. Sample 10_1 
corresponding to sample 1 from patient 9 was extraordinarily positive of PC3 metabolic variance. The 
slice from that sample analysed by pathologist was concluded with 100% tumor cells content. As 
increased cholines and lactate have been identified as malignant cancer traits, these metabolic differences 
confirm previous studies results. 
 

 
Figure 5.14. Dataset 1. PC1 vs. PC2 scores plot. Colored by location (green: core, yellow: margin and blue: 
intermediate region). 

 
Figure 5.15. Dataset 1. PC1 vs. PC3 scores plot. Colored by location (green: core, yellow: margin and blue: 
intermediate region). 
 
Results of PC1 versus PC2 (Figure 5.14) and PC1 versus PC3 (figure 5.15) scores plots did not reveal 
metabolic variance differences between samples taken from the core and samples taken from the margins. 
For example, samples taken from the margins (yellow) were as positive as negative for PC1, PC2 and 
PC3. The same happened with samples taken from cores and samples taken from intermediate locations.  
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Metabolic differences from all patients were showed between samples taken from the same location e.g. 
core, confirming an existence metabolic interpatient heterogeneity between samples from the same 
location.  

 
Figure 5.15. Dataset 1. PC1 vs.. PC2 trajectory plot. Samples from the same patient are joined by straight lines. Each 
colour represents one patient.  
 

 
Figure 5.16. Dataset 1. PC1 vs.. PC3 trajectory plot. Samples from the same patient are joined by straight lines. Each 
colour represents one patient.  
 

In order to facilitate metabolic comparisons between patient’s samples, trajectory plots were performed. 
Figure 5.15 comparing PC1 and PC2 metabolic differences from dataset 1 show how some samples from 
the same patient are well grouped while other patient’s samples are metabolically distant.  
Samples from patients 3, 5a and 5b (fibroadenoma) and patient 4 (IDC2) were grouped while samples 
from patients 1, 2, 6 and 9 were notoriously separated. Samples 4 and 5 from patient 6, who was 
diagnosed with fibroadenoma, were negative for PC1 and quite positive for PC2. Even so, these samples 
were totally metabolic different from samples 1, 2 and 3 taken from the same patient. After histology 
results (skive 7 in appendix), samples 1, 3 and 4, were concluded as not containing tumor cells. In spite of 
samples 2 and 5 (from patient 6) were concluded as fibroadenoma, the percentage of tumor cells were 
25% and 75% respectively, which can be attributed to these distant metabolic variation in trajectory plot. 
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A clear example of metabolic intrapatient heterogeneity is clearly showed in Figure 5.16. All samples 
from patient 9 (diagnosed with IDC3) were positive for PC1 except sample 1, which was negative for 
PC1 and extremely positive for PC3. Pathologist classified samples 2 and 3 as not tumor content and 
samples 1, 3 and 5 as positive for tumor content. Even though the samples 1 and 5 had the same clinical 
diagnose (malignant cancer), the metabolic variation content was completely different. This metabolic 
difference could be partly explained by the fact that sample 1 had 100% of tumor content in the entire 
sample and sample 5 had 70% of tumor content in a half of the sample.  
 

 
Figure 5.17. Dataset 3. Loadings including lipid peaks .Principal component 1 explains 90,30% of variation. 
 
 

 
Figure 5.18. Dataset 3. Loadings including lipid peaks. Principal component 2 explains 3,61% of variation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.19. Dataset 3. Loadings including lipid peaks. Principal component 3 explains 2,66% of variation. 

1.522.533.544.5
Variable

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

PC
 1

 (9
0.

30
%

)

1.522.533.544.5
Variable

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

PC
 2 

(3.
61

%)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Variable

-0.1

-0.05

0

0.05

0.1

0.15

PC
 3 

(2.
66

%)



 40 

 
PC1, PC2 and PC3 loadings from dataset 3 (lipid removal and non-tumor samples removed) were 
different from dataset 1 and 2. PC1, PC2 and PC3 from dataset 3 explained 90,30%, 3,61% and 2,66% of 
the data variance respectively. Principal component 1 was positive for lactate and lipid peaks (Figure 
5.17). PC2 was positive for lactate, taurine, cholines and lipids, and negative for glucose (Figure 5.18). 
And PC3 was positive for cholines and lipids (Figure 5.19). The loadings were similar for dataset 4 
(attached in appendix). 

 
Figure 5.20. Dataset 3. PC1 vs. PC2 scores plot including lipid peaks. Colored by cancer type (blue: Fibroadenoma, 
green: IDC2 and yellow: IDC3). 

 
Figure 5.21. Dataset 3. PC1 vs. PC3 scores plot including lipid peaks. Colored by cancer type (blue: Fibroadenoma, 
green: IDC2 and yellow: IDC3). 
 
The same PCA analysis results were obtained in both non-tumor samples removed datasets: dataset 3 and 
dataset 4. However lipid peaks removal was done for dataset 2 and 4, some lipid peaks after alanine peak 
(1.5 ppm) were not eliminated. All figures from dataset 3 and dataset 4 are attached in appendix. 
As seen from the above discussion of dataset 1, two distinctly main groups were shown in PC1 versus 
PC2 scores plot (Figure 5.20). Fibroadenomas had a negative score on for PC1 (15 patients from 16) as 
well as negative for PC2 (12 patients from 16), while IDC patients were divided between positive PC1 
and positive PC2.  
These two groups negative and positive for PC1 were flagrant showed in Figure 2.21. Nevertheless, a 
group of samples positive and a group of samples negative for PC3 were not distinguished such as 
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positive and negative samples for PC1. Sample named as 7_2 corresponded to sample 2 from patient 6, 
who was diagnosed with fibroadenoma. Sample 2 and 5 from patient 6 were the ones included in the 
second analysis after histology results. Sample 2, which was extremely negative for PC3 (negative for 
lactate, taurine, cholines and lipids), had a tumor percentage of 25 % and sample 5, which was positive 
for PC3, had a tumor percentage of 75%. This contrast metabolic variation between samples 2 and 5 
would be explained by histological tumor content cells difference. 
 

 
Figure 5.22. Dataset 3. PC1 vs. PC2 scores plot including lipid peaks. Colored by location (green: core, yellow: 
margin and blue: intermediate region). 

 
Figure 5.23. Dataset 3. PC1 vs. PC3 scores plot including lipid peaks. Colored by location (green: core, yellow: 
margin and blue: intermediate region). 
 
Also in dataset 3, metabolic variations results were not associated directly with sample location as 
previously discussed for in dataset 1. Two main groups were clearly showed in Figure 2.22 checking 
metabolic variation on PC1 and PC2, but these differences were not associated on wherein samples were 
collected. The same results were obtained in Figure 5.23, which PC1 versus PC2 scores were plotted.   
 
Although location of the samples were not an important role in the metabolic heterogeneity, it can be 
observed that after eliminating samples that did not contain tumor content, the intrapatient heterogeneity 
was smaller than intrapatient heterogeneity of all samples included, since samples were more grouped in 
PC1 vs. PC2 and PC1 vs. PC3 dataset 3 scores plots. This could understood by the histologically 
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differences between samples in dataset 1 and 2, that the same patient could contain samples with tumor 
cells and samples without tumor content. Although the intrapatient heterogeneity was smaller in datasets 
3 and 4, there was still a metabolic difference, thus, metabolic heterogeneity between samples from the 
same patient. 
 

 
Figure 5.24. Dataset 3. PC1 vs. PC2 trajectory plot including lipid peaks. Samples from the same patient are joined 
by straight lines. Each colour represents one patient.  
 

 
Figure 5.25. Dataset 3. PC1 vs. PC3 trajectory plot including lipid peaks. Samples from the same patient are joined 
by straight lines. Each colour  represents one patient.  
 
Trajectory plots of PC1 versus PC2 from dataset 3 show high metabolic variation between samples from 
patients: 2, 6, 7, 9 and low metabolic variation between samples from patients 1, 3, 4, 5a and 5b (Figure 
5.24).  
For instance, two samples (1 and 3) those were included after histology results from patient 7. Sample 1 
was negative for PC1 and positive for PC2, contrary to sample 3, which was negative for PC1 and 
negative for PC2. Sample 1 was concluded by pathologist as cancer tissue with 80% of tumor content, but 
sample 3 was not certainly concluded due to cells were in poor conditions and it could might be tumor 
epithelium or tumor associated lymphocytes. Thus, this metabolic differences could be explained by 
histological tissue content differences. 
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PC1 vs. PC3 trajectory plot from dataset 3 show the same samples patients with a higher metabolic 
variation as PC1 vs. PC2 plot (Figure 5.25).  
For example, samples 2 and 3 from patient 4 were truly closed compared to sample 1 from the same 
patient. The samples 2 and 3 were negative for PC3 but sample 1 was positive for PC3. Sample 1 was 
examined by the pathologist and was concluded with 70% of tumor content and samples 2 and 3 with a 3 
and a 10 per cent of tumor content.  
Thus, it can be said again that, this metabolic variations could be explained by results on histological 
tissue content examinations.  
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6. Conclusions and future perspectives 
 
 
In this thesis, MR-based metabolomics was used to examine metabolic features contributing to breast 
cancer heterogeneity and to assess the existence of intra-tumor and inter-tumor metabolic differences 
depending on sample tumor location. After evaluate the statistical and multivariate results, the data from 
this project suggest that: 
 

Ø Sample handling protocol of breast cancer tissue by HR MAS MRS analysis was correctly 
optimized for further studies, as we achieved high-quality MR spectra. 
 

Ø MR spectrometry is a promising tool for stratification of patients into clinically useful treatment 
groups. 
 

Ø Higher intra-tumor heterogeneity has been characterized in high-grade IDC tumors compared to 
non-malignant tumors (fibroadenomas). 

 
Ø Metabolic content variation within a tumor was associated with histology tissue results.  

 
Ø Tumor location (if samples were targeted to the tumor core, margin or in between) matters less 

than histology examination for characterization of tumor heterogeneity. 
 

Ø Breast tumors are metabolically heterogeneous; however a needle biopsy may be representative 
for a patient’s tumor as long as tumor histology is taken into account.  

 
 
Further studies will try to identify if larger intratumor heterogeneity is linked with resistance to treatment. 
To achieve it, tumor samples heterogeneity from patients treated with chemotherapy will be analysed and 
larger patient cohort will be included in study.  
 
Metabolic results will be combined with other platforms (e.g. transcriptomics and proteomics) to further 
provide targets for investigation of new treatment strategies at different molecular levels. 
 
The results performed in this final Bachelor Thesis will be included in a future publication. 
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Appendix 
 
1. HR MAS protocol  
 
Version October 2016 
Generated by Tonje Haukaas and Maria DC   
NTNU, ISB, MR Cancer Group 
 
1.Insert sample 
 First: make sure there is no sample inside the magnet: 
 <sx ej ↵ 
 >sx (position of the sample)↵ 
2. Turn on the spin in MAS display 
 Check the spin rate (5000 Hz) 
 Click GO 
3.Set the temperature in Temperature control suite 
 Check temperature and wait until it is green 
 Click ON 
4.Tune & match: 

Open a zgpr experiment. Wait for the spinning speed and temperature to stabilized before acquiring one 
spectra 
 >zg 
Adjust tune and match: 
>woob ↵ 
Adjust with yellow screws under the magnet until woob-signal is sharp and centered. 
>stop ↵  

5. Lock: 
 >lock ↵ 
 Choose: D2O_TISSUE_new 
6. Shim: 

I. Acquire a zpg- spectrum and perform automatic phase: 
>zgpf ↵ 
>apk ↵ 
>absn ↵ 

II. Evaluate the shape and half width of a selected metabolite peak e.g. formate or lactate 
To check the half width using build-in commands: 
 Zoom in on the selected peak 
 >pps ↵ 
>hwcal ↵ 
To check the half width manually: 
 Zoom in on the selected peak. 
 Click on the left side of the peak at half height and drag the pointer to the right 
side of the peak to measure the distance. 

III. Perform shim in GS mode if the half width is larger than 1.5 Hz or the shape of the peak is not 
optimal: 

>gs ↵ 
ADJUST E.G Y, YZ, YZ2 and Z4 using BSMS Control Suite 
>stop ↵ 



	  

>zgfp ↵ 
>apk ↵ 

IV. Control the shape and half width. Repeat step III if necessary. 
7.Determine P1 (90º pulse): 

I. Open a zg experiment and enter P1 from previous experiment (should be ≈ 10 µsec): 
>P1 ↵ 

II. Acquire and phase the spectrum to make sure that the signals are positive at 90º pulse: 
>zgfp ↵ 
>apk ↵ 

III. To find the optimal P1, change the value to P1 x 4 instead of P1: 
>P1 (enter the calculated value) 
>zgfp ↵ 

IV. Try out different P1 x 4 values to find the optimal P1 where the signal is equal to zero at 360º 
pulse. Repeat step III if necessary. 

 
V. Note down P1 (90º pulse), P2 = P1x2 (180º pulse), and P4 = P1x4 (360º pulse). 

8.Determine O1: 
I.   Open a zpg experiment, 

II.        Set in the P1 value from the previous step and acquire a spectrum: 
III.        Find the optimal O1 value for good suppression of the water signal: 

>O1 (try different values for O1) 
> zgfp ↵ 

 
9. Acquire standard spectrum 

I. Chose and experiment folder you want to copy and make sure you have the correct values for NS, DS 
etc. 

II. Open each experiment you want to copy from the folder and change the name: 
>edc ↵ 
Type new name, OK 

III. Open the first experiment in your new folder and define P1 and O1: 
>O1 (enter O1 value from step 8) 
>getprosol 1H P1 -6.60 (enter P1 value from step 7) 
 
Open the next experiment and type: 
>O1 (enter O1 value from step 8) 
>getprosol 1H P1 -6.60 (enter P1 value from step 7) 
Repeat this step for all experiments in the folder 

IV. To run all experiments in the same folder, open the first experiment and write: 



	  

>multizg ↵ (check if you have the correct total acquisition time) 
Fill the number of experiments (3) 

V. To stop the experiment during acquisition: 
> kill ↵ 
Click on your experiment and KILL 
Perform kill again if the acquisition is still running 

10. Eject sample 
  Stop spin in MAS display by clicking HALT 
  Wait until the spin is below 100 Hz 
  > sx ej ↵ 
11. Post processing 

I. Post processing commands for 1D experiment: 
II. Post processing commands for 2D experiment (e.g. JRES): 

III. If you want to post process several spectra simultaneously: 
>qmulti ↵ 
Select experiments for processing in the window. 
Insert the commands you want to perform separated by semi colon 
e.g. epf;apk;abs;xfb 

12. Clean the workstation and all equipment after use 
I. Twezzers, scapel: Ethanol baths 

II. Rotors, caps: In acetone baths 

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	  

2. Histology results in Norwegian 
 
T Tumor tissue, which is either E epithelial or S stromal tissue. Bidevev means connective tissue, Norm 
Normal cells, Fett Fat, Nekrose Necrosis and Diag Diagnosis. 
	  
	  

 

 

 

 



	  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	  

2. Statistical analysis & figures 

 
Ø Dataset 1 

 

 
Dataset 1. CoV of all metabolites from normalized spectra, including the lipid peaks, presented in boxplots. The 
central red mark corresponds to the median, the edges of the box are the 25th and 75th percentiles, the whiskers 
extend to the most extreme datapoints the algorithm considers to be not outliers, and the outliers are plotted 
individually. 
 
A)            B)   

 
Dataset 1. CoV of all metabolites from normalized spectra, including the lipid peaks, colored according to clinical 
diagnoses: A) Blue triangles correspond to IDC 3 patients, green diamonds to IDC2 patients and magenta stars to 
fibroadenoma patients. B) Red crosses correspond to patient 8 with IDC2. X axis numbers correspond to: 1 asc, 2 lac, 
3 tyr, 4 y1, 5 gly, 6 sI, 7 gpc, 8 pcho, 9 cho, 10 cr2, 11 lipid 12, 12 glmine1, 13 succ, 14 glmate, 15 acetate, 16 lipid9, 
17 ala, 18 lipid7, 19 glucmean, 20 mImean, 21 taumean, 22 gluthmean. 
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Dataset 1. CoV of all metabolites from normalized spectra, including the lipid peaks, colored according to clinical 
diagnoses: Red diamonds correspond to IDC patients and cian stars to fibroadenoma patients. X axis numbers 
correspond to: 1 asc, 2 lac, 3 tyr, 4 y1, 5 gly, 6 sI, 7 gpc, 8 pcho, 9 cho, 10 cr2, 11 lipid 12, 12 glmine1, 13 succ, 14 
glmate, 15 acetate, 16 lipid9, 17 ala, 18 lipid7, 19 glucmean, 20 mImean, 21 taumean, 22 gluthmean. 
 

Ø  Dataset 2 
 

 
Dataset 2. CoV of all metabolites from normalized spectra, not including the lipid peaks, presented in boxplots. 
Colored according to clinical diagnose: The central red mark corresponds to the median, the edges of the box are the 
25th and 75th percentiles, the whiskers extend to the most extreme datapoints the algorithm considers to be not 
outliers, and the outliers are plotted individually. 

 

 
Dataset 2. CoV of all metabolites from normalized spectra, not including the lipid peaks, colored according to clinical 
diagnose: Blue triangles correspond to IDC 3 patients, green diamonds to IDC2 patients and magenta stars to 
fibroadenoma patients.   X axis numbers correspond to: 1 asc, 2 lac, 3 tyr, 4 y1, 5 gly, 6 sI, 7 gpc, 8 pcho, 9 cho, 10 
cr2, 11 lipid 12, 12 glmine1, 13 succ, 14 glmate, 15 acetate, 16 lipid9, 17 ala, 18 lipid7, 19 glucmean, 20 mImean, 21 
taumean, 22 gluthmean. 
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Dataset 2. CoV of all metabolites from normalized spectra, not including the lipid peaks, colored according to clinical 
diagnoses: Red diamonds correspond to IDC patients and cian stars to fibroadenoma patients. X axis numbers 
correspond to: 1 asc, 2 lac, 3 tyr, 4 y1, 5 gly, 6 sI, 7 gpc, 8 pcho, 9 cho, 10 cr2, 11 lipid 12, 12 glmine1, 13 succ, 14 
glmate, 15 acetate, 16 lipid9, 17 ala, 18 lipid7, 19 glucmean, 20 mImean, 21 taumean, 22 gluthmean. 
 

Ø Dataset 3 
 

 
Dataset 3. CoV of all metabolite from normalized spectra, including the lipid peaks, presented in boxplots. Samples 
without tumor content have been removed from the data. The central red mark corresponds to the median, the edges 
of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme datapoints the algorithm 
considers to be not outliers, and the outliers are plotted individually. 
 
A)      B) 

 
Dataset 3. CoV of all metabolite from normalized spectra, including the lipid peaks, colored according to clinical 
diagnose. Samples without tumor content have been removed from the data. A) Blue triangles correspond to IDC 3 
patients, green diamonds to IDC2 patients and magenta stars to fibroadenoma patients. B) Blue triangles correspond 
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to IDC 3 patients, green diamonds to IDC2 patients, magenta stars to fibroadenoma patients, red hexagram to IDC3 
patient 1 and yellow stars to Fibroadenoma patient 6. X axis numbers correspond to: 1 asc, 2 lac, 3 tyr, 4 y1, 5 gly, 6 
sI, 7 gpc, 8 pcho, 9 cho, 10 cr2, 11 lipid 12, 12 glmine1, 13 succ, 14 glmate, 15 acetate, 16 lipid9, 17 ala, 18 lipid7, 
19 glucmean, 20 mImean, 21 taumean, 22 gluthmean. 
       

 
Dataset 3. CoV of all metabolite from normalized spectra, including the lipid peaks, colored according to clinical 
diagnose. Samples without tumor content have been removed from the data. Red diamonds correspond to IDC 
patients and cian stars to fibroadenoma patients. X axis numbers correspond to: 1 asc, 2 lac, 3 tyr, 4 y1, 5 gly, 6 sI, 7 
gpc, 8 pcho, 9 cho, 10 cr2, 11 lipid 12, 12 glmine1, 13 succ, 14 glmate, 15 acetate, 16 lipid9, 17 ala, 18 lipid7, 19 
glucmean, 20 mImean, 21 taumean, 22 gluthmean. 
 
 

Ø Dataset 4 
 

 
Dataset 4. CoV of all metabolite from normalized spectra, with lipid peaks removed, presented in boxplots. Samples 
without tumor content have been removed from the data. The central red mark corresponds to the median, the edges 
of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme datapoints the algorithm 
considers to be not outliers, and the outliers are plotted individually. 
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A)        B) 

 
Dataset 4. CoV of all metabolite from normalized spectra, with lipid peaks removed, colored according to clinical 
diagnose. Samples without tumor content have been removed from the data. Blue triangles correspond to IDC 3 
patients, green diamonds to IDC2 patients and magenta stars to fibroadenoma patients.  B) Magenta stars correspond 
to fibroadenoma patients, green diamonds to IDC2 Patient 2, cian diamonds to IDC2 Patient 4, red hexagram to IDC3 
Patient 1, blue triangle to IDC3 Patient 7 and inverted blue triangle to IDC3 Patient 9.  X axis numbers correspond to: 
1 asc, 2 lac, 3 tyr, 4 y1, 5 gly, 6 sI, 7 gpc, 8 pcho, 9 cho, 10 cr2, 11 lipid 12, 12 glmine1, 13 succ, 14 glmate, 15 
acetate, 16 lipid9, 17 ala, 18 lipid7, 19 glucmean, 20 mImean, 21 taumean, 22 gluthmean. 
 

 
Dataset 4. CoV of all metabolite from normalized spectra, with lipid peaks removed, colored according to clinical 
diagnose. Samples without tumor content have been removed from the data. Red diamonds correspond to IDC 
patients and cian stars to fibroadenoma patients. X axis numbers correspond to: 1 asc, 2 lac, 3 tyr, 4 y1, 5 gly, 6 sI, 7 
gpc, 8 pcho, 9 cho, 10 cr2, 11 lipid 12, 12 glmine1, 13 succ, 14 glmate, 15 acetate, 16 lipid9, 17 ala, 18 lipid7, 19 
glucmean, 20 mImean, 21 taumean, 22 gluthmean. 
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4. Multivariate analysis figure 
 

Ø Dataset 1 
 

 
Dataset 1. Variance captured vs Principal component number plot. PC1, PC2 and PC3 were chosen for PCA 
multivariate analysis.  
 

	   	    
Dataset 1. Loadings including lipid peaks: Principal component 1 explains 90.30% of variation, principal component 
2 explains 3.61% of variation and principal component 3 explains 2.66% of variation. 
 
A)                   B)    C) 

	   	    
Dataset 1. PC1 vs. PC2 scores plot including lipid peaks. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (Green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. 
 
A)                   B)    C) 
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Dataset 1. PC1 vs. PC3 scores plot including lipid peaks. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. 
 
A)                   B)    C) 

	   	    
Dataset 1. PC2 vs. PC3 scores plot including lipid peaks. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. 
 
 

Ø Dataset 2 
 

 
Dataset 2. Variance captured vs Principal component number plot. PC1, PC2 and PC3 were chosen for PCA 
multivariate analysis.  
 

	   	    
Dataset 2. Loadings with lipid peaks removal: Principal component 1 explains 93.39% of variation, principal 
component 2 explains 2.40% of variation and principal component 3 explains 1.78% of variation.  
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A)                   B)    C) 

	   	    
Dataset 2. PC1 vs. PC2 scores plot with lipid peaks removal. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. 
 
 
A)                   B)    C) 

	   	    
Dataset 2. PC1 vs. PC3 scores plot with lipid peaks removal. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. 
 
 
A)                   B)    C) 

	   	    
Dataset 2. PC2 vs. PC3 scores plot with lipid peak removal. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. 
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Ø Dataset 3 
 

 
Dataset 3. Variance captured vs Principal component number plot. PC1, PC2 and PC3 were chosen for PCA 
multivariate analysis.  
 

 
Dataset 3. Loadings including lipid peaks: Principal component 1 explains 90.30% of variation, principal component 
2 explains 3.61% of variation and principal component 3 explains 2.66% of variation. Samples without tumor content 
have been removed from the data. 
 
A)                   B)    C) 

 
Dataset 3. PC1 vs. PC2 scores plot including lipid peaks. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. Samples without tumor content have been 
removed from the data. 
 
 
A)                    B)    C) 

	   	   	  

2 4 6 8 10 12 14 16 18 20
Principal Component Number

0

10

20

30

40

50

60

70

80

90

100

Va
ria

nc
e 

C
ap

tu
re

d 
(%

)

1.522.533.544.5
Variable

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

PC
 1

 (9
0.

30
%

)

1.522.533.544.5
Variable

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

PC
 2

 (3
.6

1%
)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
Variable

-0.1

-0.05

0

0.05

0.1

0.15

PC
 3

 (2
.6

6%
)

-500 -400 -300 -200 -100 0 100 200 300 400 500
Scores on PC 1 (90.30%)

-100

-50

0

50

100

150

Sc
or

es
 o

n 
PC

 2
 (3

.6
1%

)

   10_1'

   10_4'

   1_2'
   1_5'

   2_1'

   2_3'

   3_1'
   3_4'

   3_5'

   4_2'
   4_3'   5_2'

   5_5_2'

   6_1'

   6_3'

   6_4'

   6_5'

   7_2'

   7_5'

   8_1'

   8_3'

1-1.06667
2-2.06667
2.93333-3
95% Confidence Level

-500 -400 -300 -200 -100 0 100 200 300 400 500
Scores on PC 1 (90.30%)

-100

-50

0

50

100

150

Sc
or

es
 o

n 
PC

 2
 (3

.6
1%

)

   10_1'

   10_4'

   1_2'
   1_5'

   2_1'

   2_3'

   3_1'
   3_4'

   3_5'

   4_2'
   4_3'   5_2'

   5_5_2'

   6_1'

   6_3'

   6_4'

   6_5'

   7_2'

   7_5'

   8_1'

   8_3'

0-0.0666667
0.933333-1
1.93333-2
95% Confidence Level

-200 -100 0 100 200 300 400
PC1

-100

-50

0

50

100

150

PC
2

1

4 5

2
5

1 2

3

12

3

4

5

1
2

31 2

45

1

23

4

5

2

5

1

3

data
p1
p2
p3
p4
p5a
p5b
p6
p7
p9

-500 -400 -300 -200 -100 0 100 200 300 400 500
Scores on PC 1 (90.30%)

-150

-100

-50

0

50

100

Sc
or

es
 o

n 
PC

 3
 (2

.6
6%

)

   10_4'
   10_5'

   1_2'

   1_5'

   2_1'

   2_2'
   2_3'

   3_3'   3_5'

   4_1'

   4_2'

   4_3'

   5_1'
   5_5_2'

   6_1'

   6_4'
   6_5'

   7_2'

   7_5'
   8_1'

   8_3'

1-1.06667
2-2.06667
2.93333-3
95% Confidence Level

-500 -400 -300 -200 -100 0 100 200 300 400 500
Scores on PC 1 (90.30%)

-150

-100

-50

0

50

100

Sc
or

es
 o

n 
PC

 3
 (2

.6
6%

)

   10_4'
   10_5'

   1_2'

   1_5'

   2_1'

   2_2'
   2_3'

   3_5'

   4_1'

   4_2'

   4_3'

   5_1'
   5_4'

   5_5_2'

   6_1'

   6_4'
   6_5'

   7_2'

   7_5'
   8_1'

   8_3'

0-0.0666667
0.933333-1
1.93333-2
95% Confidence Level

Decluttered

-200 -100 0 100 200 300 400
PC1

-150

-100

-50

0

50

100

PC
3

1

4

5

2

5

1

2
3

1
2
345

1

2

3

1
2

4

5

1

234
5

2

5
1

3

data
p1
p2
p3
p4
p5a
p5b
p6
p7
p9



	  

Dataset 3. PC1 vs. PC3 scores plot including lipid peaks. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. Samples without tumor content have been 
removed from the data. 
	  
	  
A)                B)        C) 

	   	    
Dataset 3. PC2 vs. PC3 scores plot including lipid peaks. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. C) Trajectory plot showing all of each 
patient’s spots united. Samples without tumor content have been removed from the data. 
 
 

Ø Dataset 4 
 

 
Dataset 4. Variance captured vs Principal component number plot. PC1, PC2 and PC3 were chosen for PCA 
multivariate analysis.  
 
A)                B)        C) 

	   	    
Dataset 4. Loadings with lipid peaks removal: Principal component 1 explains 90.36% of variation, principal 
component 2 explains 3.56% of variation and principal component 3 explains 2.67% of variation. Samples without 
tumor content have been removed from the data. 
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A)                B)        C) 

 
Dataset 4. PC1 vs. PC2 scores plot with lipid peaks removal. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. Samples without tumor content have been 
removed from the data. 
 
A)                B)        C) 

	   	    
Dataset 4. PC1 vs. PC3 scores plot, with lipid peaks removal. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. Samples without tumor content have been 
removed from the data. 
 
A)                B)        C) 

	   	    
Dataset 4. PC2 vs. PC3 scores plot with lipid peaks removal. A) Colored by cancer type (blue: Fibroadenoma, green: 
IDC2 and yellow: IDC3). B) Colored by location within the tumor (green: core, yellow: margins and blue: other 
regions). C) Trajectory plot showing all of each patient’s spots united. Samples without tumor content have been 
removed from the data. 
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