| TECNOLOGIA
UVIC-UCC

‘ V U SCIENCE TE\CH
FACULTATDE CIENCIES
Treball de Fi de Grau

Building a Smart Mirror

Josep Cumeras i Khan

Grau en Multimedia
Tutor: Raymond Lagonigro

Vic, juny del 2016

Table of Contents

A ACT ...
List of tables and figures.o.oiiii e
ACKNOWIEAgEmMENTS. ...

1. INtrOdUCHION. ...
2. Project goals.cccoiiiiii e
B T 0011 (=)« S P
3. Internet of ThiNgS. ..o
3.2 MaKer CURUIE. ... e,
3.3 Home automation........ ..o
3.4. Benchmarking. ...

3. 4.1 MagiC MIrrOr. ... o

342 HOMEMIITOr.o e

3.4.3 Evan Cohen’s Smart Mirror...........cooiiiiiiiiii e
3.4.4 Max Braun’s Smart Mirror...........ccoooiiiiiiiiiii e,

4.5 PANL . .o

4. Building @ SMart MIITOr.ouee e
4. HArAWare. ...
4.1.1 ONe-Way MIrror GlasS.ouiuiuieiiei e

412 DiSPlay. ... e
4.1.3RaSPDEITY Pi 2. .. i
4.1.4 MiCrOPhoNES.

4.1.5 URrasoniC SENSOIS.cuiiiiii it

4.6 Frame. ..o

4.2 SOfWAIE. ..o,
4.2.1 Development tools. ..o v

422 MirrorOS. ...

4.2.3 Developing Apps for MirrorOS...........cooiiiiiiiiiiiee
4.2.4 Default Apps in MirrorOS........ccooiiii e,

4,8 BUAGEL. .

5. Results and diSCUSSION....... ..ot
5. HArAWAre. ...
B2 SOfWANE. ... e

B. CONCIUSIONS ...t
7. FINal thoUGNtS. ...

R IO CESo e
Y o] 1= o | o7 T

FINAL YEAR PROJECT ABSTRACT
GRAU EN MULTIMEDIA

Title: Building a Smart Mirror

Keywords: smart mirror, Raspberry pi, internet of things, makers
Author: Josep Cumeras i Khan

Tutor: Raymond Lagonigro (UVic-UCC)

Date: June 2016

This project has been developed within the context of a time where every day we see more and
more connected devices. The Internet transformed our lives by connecting us more easily to
information and other people in the virtual world. Mobile phones then became smartphones and
since then this concept has erupted and morphed into the Internet of Things, things which
connect us to everyday objects. There are no end of objects that could be made “smarter”,
some being more suited to this than others. Mirrors, for example, provide a large surface ideal
for displaying information and interacting with. Most people have mirrors at home so the concept
of a smart mirror that you can interact with is attractive and has been fantasized in many

futuristic movies.

Smart mirrors, such as Magic Mirror and HomeMirror have recently started to be developed by
people in the Maker community, with varying degrees of interactivity. However, so far, the
features of these mirrors have been limited. This final year project describes how a smart mirror
was built from scratch using a Raspberry Pi for the hardware and custom software built on top of
Raspbian, a Linux distribution. The goal of the project was to create a Smart Mirror device that
people could interact with but also to further develop the technology so that it would let you

install and develop your own applications for it.

The Smart Mirror was developed in four months, starting with the software and finally integrating
it with the hardware. On the whole results were good because a higher level of interactivity has
been achieved by being able to use voice commands, gestures and smartphones. A few
problems arose in the construction and software side of the project, such as the glass not being
reflective enough and the gesture recognition being unreliable but these drawbacks can be

addressed by doing more tests and trials to further develop the Smart Mirror.

2

List of tables and figures

Figure 1. MagicMirror2 (Source: GitHub/MichMich/MagicMirror, 2016)ccccvviiiiiieninnenne. 9
Figure 2. HomeMirror (Source: GitHub/HannahMitt/HomeMirror, 2016)............cccoeveerierinieennnn. 10
Figure 3. Smart Mirror by Evan Cohen (Source: http://smart-mirror.io/).........cccoecveeiieeerieeenieenne 12
Figure 4. Max Braun’s Smart Mirror (Source: Medium, 2016).........ccciiiiiiieriniieiieeee e 13
Figure 5. PANL display screen (Source: http://getpanl.com/).........cooueeiieiiiieiiiie e 15
Figure 6. Sketch of the hardware design required for the smart mirror...................ccooiiii, 16
Figure 7. Schematic diagram of light reflection on a one-way mirror............ccccocceiiiiieneincieee e, 16
Figure 8. Diagram of an ultrasonic sensor (Source: themakersworkbench.com)..............ccccoueee. 18
Figure 9. Layers of software stack of MirrorOS.............cooiiiiiiiiiiie e 21
Figure 10. User Interface for MIrrorOS..........oo.uii ittt s 22
Figure 11. MirrorOS boot sequence and basic operation..............c.coviiiiiiiiiiiiiiieeeen, 26
Table 1. Budget for the Smart Mirror parts........ ... e 30
Figure 12. Picture of the near-finalized Smart Mirror hardware..........................e. 31
Figure 13. Home App on the Smart Mirror...... ... e 32
Figure 14. YouTube App playing a video in response to the query “Shakira video” on the Smart Mirror....33
Figure 15. Image search App showing pictures in response to the query “Pictures of kittens”......... 34
Figure 16. Companion App running on a smartphone.............oooiiiiii e 34

http://smart-mirror.io/
http://getpanl.com/

Acknowledgements

| would like to express my gratitude to Ray, my family and my friends.

1. Introduction

Everyone knows what a mirror is. It is an object found in most people’s homes. In mirrors we
see our reflections. But what happens when you combine the idea of a mirror with technology?
What possibilities are there and how smart could a mirror be? These are some of the questions
that inspired my choice of final year project, a project which aimed to develop a smart mirror and
a small operating system to power it. The device was to go beyond an ordinary mirror, to have a
screen inside that you would be able to interact with by using voice commands, hand gestures

and smartphones or other devices.

This final year project was developed during my 4th year in the Multimedia degree at UVic-UCC.
Multimedia is a very broad area and | like every aspect of it so it was difficult to choose a
specific area and | had many ideas. However, | finally decided to build a smart mirror because it
is a great combination of many of the things we have studied: web technologies, electronics, Ul

design, etc.

The smart mirror is a popular project among DIY enthusiasts and it usually consists of a
one-way mirror with a screen attached to it that displays a static web page. However what |
wanted to achieve was something you could interact with. My goal was to learn how a
Raspberry Pi worked and to understand how to combine the software and the hardware

components to create a multimedia project.

| started by obtaining a Raspberry Pi and creating the software. At the same time | began
documenting everything and | also searched for a suitable one-way mirror and a computer
screen, as well as some sensors to physically interact with the device. | then spent a long time
calibrating the sensors to work with the software. Once the software was almost finished |

started designing the frame and finally | built the smart mirror and attached all the components.

Developing this project has been a great experience. | have learned a diverse range of skills in
different fields, such as DIY, Linux, electronics and web development. To obtain the final result
I've had to work with many different technologies. | used Photoshop and lllustrator for the Ul

designs, web development tools for the software and electronics for the hardware. Not sticking

to just one field has made this project a really fun one and | would recommend it to anyone who

is passionate about creating things.

2. Project goals

The main goal of this project was to develop a smart mirror device as well as an operating
system to run on similar devices. The device was to look like a regular mirror but would have a
screen inside and you would be able to interact with it using voice commands, hand gestures

and smartphones.

The operating system would support running apps and would provide a simple API for
third-party developers to create their own apps for the Smart Mirror. The main features the
Smart Mirror would have would be showing basic weather and time information, being able to
add alarms, reminders or notes in a similar way we stick post-it notes on a fridge. We would also
be able to play music in some way and see pictures through Instagram, for example. The

software needed to be designed to be modular and responsive in order to fit different hardware.

With the project | wanted to learn a lot about the Raspberry Pi as it was the first time | used it. |
also hoped to refresh my electronics knowledge as it had been quite some time since | did

something with electronics.

Up to now there have been many people who have built Smart Mirrors but in my opinion they
lack interactivity. The project aims to change this by letting the user interact using different
means. It will be one of the first Smart Mirrors you can interact with and also one of the first to

let you install apps.

3. Context

This project was inspired by a “Magic Home Mirror” device that | found while browsing the DIY
section in a popular website called Reddit. The “Magic Home Mirror” is a Nexus 7 Android tablet
attached to a one-way mirror. The device has a display with a webpage that shows time and
weather information and it looks very futuristic. | liked that project a lot and | thought I could
improve on it by adding some means of interaction to the device. | also found a similar project
that was built using a Raspberry Pi mini computer, but again it was a static panel with no

interaction.

This inspired me to begin this project and develop a Smart Mirror with an operating system that
would let you install apps that anyone could develop just like on Android or iOS. The project has
a very broad scope covering some current popular topics in the IT sector such as the Internet of

Things, Maker culture and home automation.

3.1 Internet of Things

The Internet of Things is a concept defined as a network of connected physical objects (Internet
of things, 2016). It’s often viewed as the next step for the internet. Recently it has gained a lot of
popularity predicting that in the future most everyday objects will be connected to each other
and will be able to interact in smart ways. The Smart Mirror will eventually become one of these
connected objects in our households and if we think about it being able to communicate with

other objects the possibilities become endless.

3.2 Maker culture

The maker culture is a contemporary culture derived from DIY culture and hacker culture (Maker
culture, 2016). It focuses in the creation of new devices as well as modifying existing ones. It
often supports and embraces open-source hardware and software. This culture has been
growing rapidly thanks to tools and technology like the Raspberry Pi, 3D printers and other

hardware that have become increasingly affordable and accessible. The Internet also plays a

big part in the community as it enables people to share their ideas, blueprints and code. The

Smart Mirror is a good example of a Maker culture project.

3.3 Home automation

Home automation has been around for a long time and it is all about turning the house into an
intelligent unit with the goal of increasing comfort and efficiency at home. Some of the typical
applications are automatic lights, intelligent thermostats, alarms, window blinds (Home

automation, 2013).

In my project | will not be focusing on home automation since | don't have access to any smart
home devices. However it would be very easy to write an application to turn on and off the lights
using voice commands or gestures on the mirror or even an application to change the
temperature of the room, for example. These examples are just the tip of the iceberg as there

are new connected devices emerging everyday that could interact with the mirror.

3.4 Benchmarking

There are thousands of people building devices with one-way mirrors. It's a very popular project
within the Maker community and you can find many interesting creations. Five projects relevant
to this work are described in this section. Magic Mirror was one of the first known projects in this
area, Home Mirror was a development of Magic Mirror and easier to build, Evan Cohen’s Smart
Mirror incorporated several extra features to the smart mirror concept, Max Brau’s Smart Mirror,
developed at Google included interactivity and PANL is the latest smart mirror with a touch

screen device. These projects have acted as benchmarks for the smart mirror | built.

3.4.1 Magic Mirror

Magic Mirror, created by Michael Teeuw, is a mirror device built with a wooden frame, a
flat-screen TV, a Raspberry Pi 2 and software running on a web browser (Magic Mirror, 2014). It
was initially revealed in 2014 in a blog post by Michael and it quickly gained lots of attention
reaching up to more than 2.5 million views. The source code for the software and a step-by-step
guide to building the hardware was also posted in Michael’s blog. It was one of the first, if not

the first popular project of its kind.

Figure 1. MagicMirror2 (Source: GitHub/MichMich/MagicMirror, 2016)

The open-source software that powers the mirror, MagicMirror2, is still currently in development
and it was completely rebuilt in March 2016 using Electron, the same tool that | used for my
own project. MagicMirror2 supports small widgets called “modules” and anyone can write one.
The default installation comes with some basic widgets for time, calendar, weather and news

and there are about 20 third-party modules available.

Magic Mirror is a great device that looks very good and has a clean Ul. It also has a big
community behind it. There’s a specialised MagicMirror forum helping people build their own
hardware and write modules, a blog where Michael posts his progress and an active GitHub
repository (GitHub/MichMich/MagicMirror, 2016) where anyone can contribute to the code.
Overall it is a very similar project to my own. Nevertheless, unlike my own device, with the
current hardware and software implementation on Magic Mirror you cannot physically interact

with the device and so it only acts as a simple information panel.

9

3.4.2 HomeMirror

HomeMirror (GitHub/HannahMitt/HomeMirror, 2016) is a device created by Hannah Mittelstaedt
that was initially revealed in a post on Reddit in 2015 gathering millions of views. It was the
main inspiration for my project. In this case there’s a Nexus 7 Android tablet behind the mirror

so there’s no need for a separate computer board and screen.

Saturday the 218t
6:35

9° Mostly Clo!

Water Plants Today E“Taﬁ

Figure 2. HomeMirror (Source: GitHub/HannahMitt/HomeMirror, 2016)

The HomeMirror's visual interface runs on an Android app and it shows useful information such
as weather, time, date and reminders. As for the Magic Mirror, HomeMirror is only intended to
be used as an information panel. The software doesn’'t support custom widgets but it is
open-source so anyone can modify it and create a different version. The code is available on

GitHub where Hannah also provided a step-by-step guide on how to build the device.

HomeMirror is a device that also looks great and it is also easier to build than other devices as it

only requires two main parts, the tablet and the mirror. However it lacks any kind of interaction.

10

3.4.3 Evan Cohen’s Smart Mirror

The Smart Mirror by Evan Cohen (http://smart-mirror.io/) is a device inspired by both

MagicMirror and HomeMirror. This project focuses mainly on the software part and offers a wide
range of voice commands to interact with the mirror. The voice commands support weather,
time and date information, adding reminders, showing maps, showing pictures and even

controlling the lights in a house.

Figure 3. Smart Mirror by Evan Cohen (Source: http://smart-mirror.io/)

The hardware requirements for this project is the usual one-way mirror, display and Raspberry
Pi setup but with a USB microphone to support voice commands. For the mirror to interact with
the house lights Evan uses Phillips Hue light bulbs. The software is open-source, built on
Electron and can be found on GitHub. Although it is recommended to run it on a Raspberry Pi it

can also run on other systems.

11

http://smart-mirror.io/
http://smart-mirror.io/

As described, this smart mirror is more advanced and feature-packed than most others,
however the software has been approached as a single app that can do many things and this

makes it difficult to write your own apps for the system.

3.4.4 Max Braun’s Smart Mirror

On January 30th Max Braun, an engineer working at Google, made a blog post on Medium

(https://medium.com/@maxbraun/my-bathroom-mirror-is-smarter-than-yours-94b21c6671ba#.q

4932hjfc) showing his own smart mirror and explaining briefly the parts he used and how he
created it. In his post he argues that he built it because there’s no one selling this kind of device
and that he wanted to feel as if he was in the future. Although there is nothing particularly new
or innovative about this device, the news about it was reported by major news outlets around

the world because it was built by a Google engineer.

Figure 4.Max Braun’s Smart Mirror (Source: Medium, 2016)

12

https://medium.com/@maxbraun/my-bathroom-mirror-is-smarter-than-yours-94b21c6671ba#.q4932hjfc
https://medium.com/@maxbraun/my-bathroom-mirror-is-smarter-than-yours-94b21c6671ba#.q4932hjfc

Technically, the device is very similar to the others. It uses a one-way mirror, a 15 inch USB
powered display panel and it runs on an Amazon Fire TV stick, which is an HDMI Android

device.

The software running on the device is an Android app displaying useful information similar to
what Google Now offers. The author says that you are not meant to interact with the Ul, instead
it will update with new useful information automatically. However, the device does have voice

commands to perform a Google search.

Max Braun’s Smart Mirror is another great mirror device. In this case Max introduces a small
level of interactivity,compared to the previously mentioned devices, by being able to use voice
commands to search Google. However, the device is still basically a static information panel
and as of now, the software running on it has not been made open source, so there are not

many details available about it.

3.4.5 PANL

PANL (http://getpanl.com/) is one of the first touchscreen smart mirrors. It was created by Ryan

Nelwan and it was revealed as a startup in California on April 26th 2016. Ryan initially posted a
video of the device on Reddit where it went viral and it was reported by all major technology

blogs.

13

http://getpanl.com/

Sunday, April 24

1:00 PM

Figure 5. PANL display screen (Source: http://getpanl.com/)

The only information we have about this project is the video Ryan posted on YouTube so we do
not know much about it. He has not said anything about the hardware setup or the kind of
software he is using but from the video we can see that the device is fully multi-touch and it can
display useful information such as weather, time and date. It can play music, youtube videos
and it has apps for Photos, DropBox, Messages, AirDrop, Reddit, Nest and Uber. The software

also comes with a fully functional on-screen keyboard.

The lack of information provided meant that some people believed the video to be a fake but it
was later confirmed by journalists that is indeed real
(https://twitter.com/ProductHunt/status/729893082112483328) and that Ryan is not releasing

any more information because he plans to sell these devices.

Summing up, these five projects (Magic Mirror, Home Mirror, Evan Cohen’s Smart Mirror, Max
Brau’s Smart Mirror and PANL) illustrate the step-by-step progression in technological advances
with smart mirrors right up to the present, which have accompanied the decision-making
process during the development of my own project. There has been a clear progression in how

smart these mirrors are, with the first smart mirror simply providing information, then easier

14

http://getpanl.com/
https://twitter.com/ProductHunt/status/729893082112483328

programming and construction was created, a small level of interactivity was added and finally a
touch screen incorporated. This brings me to the rationale for this project, as although some

interactivity has been developed in smart mirrors there is a clear need to further develop this

aspect.

4. Building a Smart Mirror

4.1 Hardware

For the hardware | used a 24" LG computer monitor, a 50x90x0.5cm one-way mirror a
Raspberry Pi 2, two USB microphones and two ultrasonic sensors. Everything was put together

in a wooden frame. These are the final sketches for the hardware design:

Frame is hung to the back support

&

] 0
E =
£ :
=

@ @ 'E

® . Display support =1

Sensors Sensos

COne-way mirror

Display

Figure 6. Sketch of the hardware design required for the smart mirror

The device has two wooden parts. The back part holds the display and the Raspberry Pi and is

used to support the device so that it can be hung on a wall. The frame is attached to the glass

15

by two small wooden slats and it has four holes, two on each side, that contain the ultrasound
sensors. The frame can be attached and detached from the back part so it's easy to change the

glass or even the whole frame. See appendices 1 and 2.

A breakdown of each of the main parts of the smart mirror (the one-way mirror glass, display,
Raspberry Pi 2, microphones, ultrasonic sensors and frame) and how they were used is

described in the following sections:

4.1.1 One-way mirror

This is probably the most important part of the hardware because it's responsible for creating
the futuristic effect and is the biggest part of the smart mirror. Wikipedia provides the following

definition:

A one-way mirror, sometimes called two-way mirror, is a mirror that is partially reflective and
partially transparent. When one side of the mirror is brightly lit and the other is dark, it allows viewing

from the darkened side but not vice versa (Loy, 1999).

One-way mirror

¥
-
Vision —_
-~
P Reflected Light
-
Dark Side ull Bright Side

Figure 7. Schematic diagram of light reflection on a one-way mirror
In the case of this project this essentially means that the dark or black parts of the screen will be

seen as a reflection and the light parts will be seen normally. So if there is white text over a black

background the white text will be seen as an overlay with the user reflected in the background.

16

This was the most difficult component to find because of these technical requirements, but a
one-way mirror was eventually found at a nearby glass store. The one that was bought was
unfortunately not very reflective so sometimes you can see the interior of the device. This is not
ideal but in the right conditions it works well and it can always be replaced with better quality

glass in the future.

4.1.2 Display

For the display a 24 inch LG monitor was bought, which also has built-in speakers and comes
with a remote control which is useful to easily turn off the device’s screen. The monitor is much
smaller than the mirror so a black sticker was used to cover the parts of the glass which are not
covered by the display. An HDMI cable was used to connect the display to the Raspberry Pi for

video and audio.

4.1.3 Raspberry Pi 2

The Raspberry Pi is a single-board computer developed by the Raspberry Pi foundation in the
UK. It has become the most popular computer of it's kind thanks to great support and a big

community behind it as well as an inexpensive price.

The Pi does not work out of the box. It lacks a hard drive and it does not come with a
preinstalled operating system. To install an OS you need a microSD card prepared with an OS
image. And because the software that will be running on the mirror will be coded on the same

device at least a screen, a keyboard and a mouse are required.

4.1.4 Microphones

One mode of interaction with the smart mirror is through microphones. Two microphones were
used to power the voice recognition capabilities of the device. USB microphones had to be used
because the Raspberry Pi does not have a regular microphone input. The first microphone is a
cheap simple one connected through a USB sound card to the Pi. The second microphone is
actually a PS3 Eye camera that | had at home and that connects directly through the USB.
However, only the microphone part of the PS3 Eye is being used. The voice recognition system
works by listening for someone to clap with the first microphone and once that happens the

second, higher quality microphone is triggered to listen for a voice command.

17

4.1.5 Ultrasonic sensors

The ultrasonic sensors are the second way to interact with the smart mirror. An ultrasonic
sensor has two main parts, a speaker and a microphone. It works by sending an ultrasound with
the speaker and returning the time it takes to capture the echo with the microphone. With the
time it takes and the speed of sound we can then calculate the distance of an object from the

Sensor.

Start Pulse

Echo Time Pulse

GND

Figure 8. Diagram of an ultrasonic sensor (Source: themakersworkbench.com)

This component needed two resistors to work correctly so | soldered them on a metal plate to
and joined the cables to be able to easily attach and detach it. See appendices 2, 3 and 4.
In my device there is one ultrasonic sensor on each side of the frame and they can be used to

detect different gestures and navigate through interfaces.

4.1.6 Frame and support

The frame is made of wood and it provides the support for the mirror and all the other
components. It frames the glass and provides a way for hanging the mirror on a wall.

It has two parts: the front is painted white and has four holes for the ultrasonic sensors. The
back has two wooden bars on the sides that are used to hang the front part. In the center there

is a support for the display and at the bottom there is the Raspberry Pi. See appendix 5.

18

4.2 Software

All the software runs on the Raspberry Pi 2 and there are many operating systems to choose
from. | chose to use Raspbian which is the official Linux distribution from the Raspberry Pi

Foundation because it has a lot of support and documentation.

To install it, | downloaded Raspbian from the official Raspberry Pi website and | copied it on a
microSD card. Then | inserted the card on the Raspberry Pi, | started it and followed the setup
instructions which are quite simple. Once Raspbian was installed, the first thing | did was to
update the distribution with the latest packages, | configured the basics of the OS as for

instance the keyboard layout to match my keyboard and everything was ready to go.

4.2.1 Development Tools

Taking advantage of the fact that | already had an operating system running on the Pi, | gave
myself the challenge of writing all the code for the Smart Mirror on the same device. | installed
Geany, which is a very lightweight IDE, and | used it to write all the HTML, Javascript, CSS and
Python code.

In the end, the entire coding for the software was done on the Raspberry Pi and | only used my
Windows laptop to create icons and designs with lllustrator and Photoshop. It turned out to be

very convenient to be able to easily test the software directly on the Smart Mirror.

Electron

Electron is a software based on Chromium, the open source version of Google’s Chrome, that
includes NodeJS and several improvements to make it easy to develop web-based software for

desktop computers. The OS was built on top of Electron using web technologies.

NodedS

NodedS is a Javascript engine for server side applications. It comes included with Electron and |
used it to launch processes to control things that are not available in web APIs such as the
ultrasonic sensors for gesture input and microphones for voice recognition. | also use it to

access the filesystem and read the app files.

19

Python

Python is a high-level, general purpose, interpreted programming language. It's very popular in
the Raspberry Pi community and it has lots of support and libraries. In my case | used it with the
microphone to detect claps and | also used it to control the ultrasonic sensors and detect

gestures.

4.2.2 MirrorOS

MirrorOS is the software | created for the Smart Mirror’s interface and it runs on top of Raspbian

and on top of Electron. In the following figure you can see the layers of the software stack.

Electron

Raspbian (Linux)

Figure 9. Layers of software stack of MirrorOS

Architecture and features

The OS was designed to be very simple and lightweight as it already runs on top of many layers
of software. It's written in HTML, JavaScript and Python and it is basically a framework for web
apps that provides APIs for listening for gestures, voice input and smartphone interaction and

for displaying messages to the user in a consistent way.

Almost everything in the OS is an app, even the home screen. Each app has to define some
keywords to respond to voice input so when a keyword is recognized the OS knows which app
to launch. All apps run on a different process so if an app crashes the OS continues to work as

usual.

20

Currently, MirrorOS includes 3 apps by default and the idea is that you will be able to download
more from the companion smartphone app. It's also possible to define a different default home

screen app.

MirrorOS has three main services:
e The voice input service, used to handle all the voice recognition process using.
e The gesture input service, used to handle gesture recognition using the ultrasonic
sensors.

e A socket server which is in charge of communicating with smartphones or other devices.

User Interface

The user interface for the OS is clean and simple. It has an overlaid status bar on the top with
the time on the right corner, the IP address of the socket server on the left corner and a status
message in the center. The status bar is dynamic and changes depending in the context: it can
be hidden in case we want watch something in fullscreen or expanded to show important

information.

192.168.1.3

Welcome! Clap to begin

Status bar

13:10

20%C, Mostly cloudy

Current app

\oice bar

21

Figure 10. User Interface for MirrorOS

The center of the screen shows the current running app and there currently are no guidelines for

Ul so developers can show anything they want there. In the example we see the Home app.

Finally, In the bottom part of the screen there’s an overlaid microphone icon that pops up when

the voice recognition is triggered.

This user interface is completely responsive so it's possible to have different sized mirrors and
the OS will adapt to it automatically. The included default apps are also responsive but It's up to

app developers to implement this feature.

Voice Input

The voice recognition feature in MirrorOS uses an online APl made by Google. The API is not
officialy supported and it has a 50 query a-day limit but it is the best one available. To use the
API you need to make an HTTP POST request to the API’s url with a mono FLAC audio file with

a 16000 bit-rate. To integrate the service with the OS | created the following bash script:

#1/bin/bash
timeout 3 arecord -D "plughw:0,0" -q -f cd -t wav | avconv -analyzeduration 1 -y -i - -ar
16000 -acodec flac file.flac

wget -q -U "Mozilla/5.0" --post-file file.flac --header "Content-Type: audio/x-flac;
rate=16000" -0 -
"http://www.google.com/speech-api/v2/recognize?lang=en-us&client=chromium&key=Al
zaSyCXResRGQcGCQhXChLksKdsOOBN7NO_aH8" >out.json

cat out.json

rm file.flac

The script records a 3 second sound file using the main microphone, converts it to FLAC, sends

it to the API and then prints the result as a JSON string to a file. This was done using a separate

22

script instead of doing it in JavaScript because access to the Microphone using the Web APIs
was not possible in the Raspberry Pi. | also created another script that listens for claps and
triggers the other script. This time | wrote it with python because it was a bit more complicated.
To call the two scripts from MirrorOS | use the spawn method that NodeJS provides. It works
like this:

The OS starts.
The python script that listens for claps starts.
If a clap is heard, the bash voice recognition script is run.

The query is processed by the OS and an app is chosen to launch.

o kM w0 DN =

The app launches and the query is sent to it.

Two months after developing this feature the API stopped responding. As | didn’t know how to
fix it, | switched to a different APl made by IBM which was almost identical in the way it is used.
The results, however, were not very good compared to Google’s API. It often misunderstood

words.

| searched again to find a solution for Google’s API but | was not successful. After some testing
| discovered that the FLAC file needed to be sent as mono and | was sending it as a stereo file.
Changing this fixed it but as the API is not officially supported so things could change without
warning and this could happen again. That’'s why | looked for a better solution and | found an
official Web Speech API that works very well and has no usage limits. However, the Web
Speech API only works when launching the OS as root to access the microphone so | will not

implement it until | can make it work without root.

Gesture Input

The initial idea was to implement this feature using a camera. There were two options a regular
USB webcam or the dedicated Pi Cam board which has direct access to the Pi’'s hardware and
provides much higher frame-rate than a USB Cam. However, after doing some tests with
OpenCV | found that it was not trivial to detect hands and gestures and it depended a lot on the
lighting of the room so | decided to look for alternatives. The first thing that popped up was a
board called HOVER specially designed for the Raspberry pi. The board, however, detected

gestures from a very small distance so it wasn’t ideal for my project.

23

Finally | decided that | would put two ultrasonic distance sensors on each side of the mirror. This
would allow me to detect holding a hand in front of the mirror and hopefully detect left and right
swipes. | bought the two sensors and once | got them | wrote a python script (see appendix 8) to

detect the different gestures.

The resulting program was quite good although swipe gestures are not very reliable. To
integrate the program with the OS | used the same NodeJS spawn child process feature that |

used with the voice recognition scripts.

Smartphone Interaction

The smartphone is not a mandatory accessory for the Smart Mirror but it's a very convenient

way to interact with the it because it can act like a remote control.

| created a companion app for MirrorOS that works through a web browser so technically it can
be used in any device that has a web browser, not only a smartphone. The app connects to the
socket server created by the Smart Mirror and it can send and receive messages through it.

To connect to the device the user must enter the IP Address that’s shown in the Smart Mirror’s

status bar. The server and client code is powered by Socket.io, a NodeJS module.

Once connected, the user can see a list of apps to launch and he can interact with the mirror in
different ways depending on the app. The app and the API for this are still in early stages of

development but the core concept works perfectly.

Workflow

MirrorOS boots on top of Raspbian. To achieve this | modified the Raspbian boot sequence so it
immediately starts MirrorOS after booting. After the initialization, the voice recognition service,
gesture recognition service and a socket server are all started. Then the software looks for all

the installed apps in a folder and it starts the default home app.

24

Chromium Process Chromium Process

RO Default Home App Other App

Voice Input Service _>
Gesture Input Service >
>

Chromium Process

LI
Raspbian

Figure 11. MirrorOS boot sequence and basic operation

Once the home app is open, the OS waits for user input through the voice input service or the
socket server. If a user sends a query through one of the possible inputs, the OS processes it

and decides which app to open based on the keywords defined by each app.

4.2.3 Developing Apps for MirrorOS

A typical MirrorOS app should have the following file structure:

index.html

Main html file for the app. Contains references to js and css.

jslapp.js
Main js loigc file

cssistyle.css

styles for the app
25

manifest.json

App description. Defines the name, version, icon and voice input keywords.

icon.png

App icon

API

MirrorOS provides a simple API for developers to perform actions in a consistent way. The API
works by making use of the inter process communication (IPC) system provided by Electron.

This system enables you to communicate through processes using Javascript.

Developers can call these functions in Javascript to perform different actions consistently:

MOS.showToast(message, duration)

Shows a small message on the bottom part of the screen during the indicated duration.

MOS.showAlert(title, message, alertid)
Shows an alert message with two options that the user can select using gesture input.
The alertld parameter is used to obtain the user’s input with the onAlertPositive Option

and onAlertNegative Option callback methods.

MOS.setMicrophoneEnabled(enable)
Setter to enable or disable the microphone’s clap detection. Useful for apps that play

audio so they don’t trigger the microphone.
MOS.setGestureRecognitionEnabled(enable)
Setter to enable or disable gesture input. Gesture input is disabled by default. Any app

that wants to use gesture input must call this function.

MOS.setTitle(title)

Sets the status bar message.

26

Developers can override these functions in Javascript to obtain information from the different

inputs that the mirror has:

function onNewQuery(query)
Is called whenever a user uses the voice input and says one of the app’s keywords. The

parameter query contains what the user has said.

function onGesture(gesture)

Is called when a user makes a gesture. The parameter gesture contains one of the 4
types of gestures the user can perform.
GESTURE_SWIPE_LEFT,GESTURE_SWIPE_RIGHT,
GESTURE_HOLD_LEFT,GESTURE_HOLD_RIGHT)

function onAlertPositiveOption(alertid)
Is called when a user responds positively to an alert message. The parameter is used to
identify which alert the user is responding to because it contains the id that was originally

sent with the showAlert method.

function onAlertNegativeOption(alertid)
Is called when a user responds negatively to an alert message. The parameter is used to
identify which alert the user is responding to because it contains the id that was originally

sent with the showAlert method.

4.2.4 Default Apps in MirrorOS

At the moment, | have developed 3 apps for the MirrorOS but the possibilities are endless.

These are the apps included so far:

Home

Home acts as a home screen for the Smart Mirror and is the first app to start once MirrorOS

boots.

It contains time, weather and reminder information. It responds to voice queries to get

weather information, set timers and reminders and create notes. The weather information is

obtained using the API provided by Forecast.io.

27

YouTube app

The YouTube app lets you watch YouTube videos on the mirror. You can ask the mirror what
video you want to watch or you can send a video from your phone if you have the companion
app installed. It responds to the following keywords: “youtube”,”video”.

To be able to play YouTube videos on the Smart Mirror | used a NodeJS module called
node-ytdl-core. This module downloads the video on the device and streams it at the same time
through an HTMLS5 video tag.

Image search app

The image search app creates a gallery of pictures from different sources including Bing and

Instagram. It responds to the following keywords: “pictures”, “pictures of”, “images”, “photos”.

Using the companion app or gestures you can navigate through the gallery.

The app gets the content from the Bing image search API as well as the Instagram API.

28

Budget

The following table shows an approximation of the total cost of the project and each of the
components that were used. The biggest part of the budget was the display, followed by the
frame, the mirror and the Raspberry Pi.

This information could be useful for other people that want to build their own Smart Mirror.

Table 1. Budget for the Smart Mirror parts

One-way mirror 47€
LG Monitor TV 24” 179€
TV support 12€
Raspberry Pi 2 40€
Power adapter for Raspberry Pi 5€
MicroSD card (32GB) 9€
HDMI cable 9€
HC-SR04 Ultrasonic Distance Sensors 5€
Jumper wires, resistors, plates 8€
Frame and back support 90€
TOTAL 404 €

29

5. Results

The final results were very satisfying. The device can successfully recognise voice input and
hand input and it can connect to other devices such as smartphones and use them as a remote
control. It has 3 working apps and a simple developing environment to make it very simple to

create further apps for it.

Overall | would say | met most of the goals that were set at the beginning surpassing them in

some aspects.

5.1 Hardware

The hardware looks very good but the glass could be more reflective. In some conditions you

can see a bit of the interior of the device. See appendix 7.

30

Figure 12. Picture of the near-finalized Smart Mirror hardware.

5.2 Software

OS and Home app

The operating system’s Ul simply consists of the top status bar and the bottom microphone
icon.
The simple Home app works as intended, showing time and weather information and being able

to set reminders, timers and notes.

192.168.1.3

Welcome! Clap to begin

13:10

20°C, Mostly cloudy

Figure 13. Home App on the Smart Mirror

31

YouTube App

The YouTube app shows a loading indicator while downloading the initial part of the video. Then
it plays the video including sound, as expected. In this app you can perform a holding gesture

on one of the sensors to pause the video and resume it.

192682 T hakica - |y Buenything (T icsal Vi) Vil | L 19:33 | 192.188.2.7 Shakia -

Figure 14. YouTube App playing a video in response to the query “Shakira video” on the Smart Mirror

Image Search App

The image search app has a nice grid user interface where it places images gathered from
different sources. In this app you can use swipe gestures and holding gesture to navigate

through the gallery of pictures.

32

192.168.2.7

Figure 15. Image search App showing pictures in response to the query “Pictures of kittens”

Companion App

The companion app’s user interface was not finished on time but the functionality is working as
initially intended. You are able to connect to the Smart Mirror by entering it’s IP address and you

can send any query to it.

192.168.2.7
Connect |

Send a query
Send!

33

Figure 16. Companion App running on a smartphone

In the future | would like to extend the functionality of the app by adding features such as a store
to find and install Smart Mirror apps, pairing with the mirror using NFC or a QR code and finally,

being able to configure some of the Smart Mirror’s settings.

6. Conclusions

The main strengths of this project are that this is a new kind of smart device that people don’t
see every day and it looks very spectacular. The platform has a very simple API that makes it
very easy for developers to make apps. The voice recognition is very accurate thanks to
Google’s services. The smartphone integration works very well and it is something that hasn’t

been done with smart mirrors before.

Of course there are also weaknesses: the app ecosystem is currently very small, the glass could
be more reflective but it can be easily changed, the swipe gestures are sometimes unreliable
and finally | would have liked to have the hardware and software more decoupled because
currently the sensors and microphones are tied to the software and it can be difficult to make
the OS work with different hardware. However, this can also be solved given enough time by

making the software more modular.

There are many future possibilities for this project and hopefully it will be continued. For the
software, It would be interesting to create an installer for it or even bundle it as a Linux
distribution to be able to install it very easily on any Raspberry Pi device. It would also be good
to make some changes to make it truly multiplatform. The companion app needs a new Ul,
maybe an app repository and also the ability to easily change settings for the mirror. A
community around the OS and the hardware should be created so people can help each other
build and evolve these devices and create apps for them. Once polished, the software could be
made open-source. Finally, for the hardware part, the glass panel could be replaced for a more
reflective one and there’s a new, recently released Raspberry Pi 3 that could bring

improvements to the overall performance of the device.

34

7. Final Thoughts

This has been a very satisfying project to work on. It has been enriching and most importantly, |
had fun doing everything and for me this is very important because it motivated me to continue

developing it and to keep adding features.

Developing this project | have learned many fascinating things. | feel like this list would be
endless but | will try to explain some of the most important ones. Electron is a very interesting
project that is growing very fast and | think it will soon become the main tool for developing
desktop apps. Raspberry Pi is also incredible and | can’'t wait to see how the project evolves

and what new things the Raspberry Pi foundation will bring us.

Also, after three years of barely touching any electronics it has been thrilling to get the ultrasonic
sensors to work and communicate with a web application. | was also very impressed with how
web sockets work and how simple it is to implement them thanks to Socket.io. Finally I've
learned lots of basic things about how linux works but | still feel | have much to learn about it

and that’s a good thing.

As you can see the list of positive results is very long and | think | even left out lots of things but
in general my conclusion is that | really enjoyed this project and | hope that | can continue
building similar things and I'm very excited about what the future of the Maker community will

bring us.

35

References

Internet of Things Global Standards Initiative. I/TU. Retrieved 26 April 2016.

http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx

Maker Culture (chapter in Innovating Pedagogy 2013) (PDF). The Open University. Retrieved 20 April 2016.

http://www.open.ac.uk/people/my-profile

How Can | Get Started with Home Automation? (2013) Retrieved 20 April 2016.

http://lifehacker.com/how-can-i-get-started-with-home-automation-510246491

Magic Mirror (2014) Retrieved 20 April 2016. https://www.raspberrypi.org/blog/magic-mirror/

GitHub/MichMich/MagicMirror (2016) Retrieved 20 April 2016. https://github.com/MichMich/MagicMirror

GitHub/HannahMitt/HomeMirror (2016) Retrieved 20 April 2016. https://github.com/HannahMitt/HomeMirror
Smart Mirror Retrieved 20 April 2016. http://smart-mirror.io/

Medium (2016) Retrieved 24 February 2016.

(https://medium.com/@maxbraun/my-bathroom-mirror-is-smarter-than-yours-94b21c667 1ba#.q4932hjfc

PANL Retrieved 20 April 2016. http://getpanl.com/

Twitter Product Hunt Retrieved 20 April 2016 https://twitter.com/ProductHunt/status/729893082112483328

Loy, J (1999) Two-Way Mirrors. Archived from the original on March 13, 2005. Retrieved 8th May 2016

36

http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
http://www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
http://www.open.ac.uk/personalpages/mike.sharples/Reports/Innovating_Pedagogy_report_2013.pdf
http://www.open.ac.uk/people/my-profile
http://lifehacker.com/how-can-i-get-started-with-home-automation-510246491
http://lifehacker.com/how-can-i-get-started-with-home-automation-510246491
https://www.raspberrypi.org/blog/magic-mirror/
https://github.com/MichMich/MagicMirror
https://github.com/HannahMitt/HomeMirror
http://smart-mirror.io/
https://medium.com/@maxbraun/my-bathroom-mirror-is-smarter-than-yours-94b21c6671ba#.q4932hjfc
http://getpanl.com/
https://twitter.com/ProductHunt/status/729893082112483328
https://web.archive.org/web/20050313084618/http://cu.imt.net/~jimloy/physics/mirror0.htm
http://cu.imt.net/~jimloy/physics/mirror0.htm

Appendices

Appendix 1. Wooden back support

37

Appendix 2. Wooden front frame.

38

Appendix 3. Ultrasonic sensor with the soldered plate

39

Appendix 4. Testing the ultrasonic sensors on a breadboard.

40

Appendix 5. Soldering the resistors for the sensors

41

Appendix 6. Fully assembled device (only the glass panel missing)

42

Appendix 7. Fully assembled and working device.

43

Appendix 8. Python script

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BOARD)

TRIG = 7

ECHO = 12
TRIG2 = 35
ECHO2 = 38

MIN_DISTANCE = 15
TARGET_HOLD_COUNT = 8

GPIO.setup(TRIG,GPIO.OUT)
GPIO.output(TRIG,0)

GPIO.setup(ECHO,GPIO.IN)

GPIO.setup(TRIG2,GPIO0.OUT)
GPIO.output(TRIG2,0)

GPIO.setup(ECHO2,GPIO.IN)
time.sleep(0.1)

prevSensorL = False
prevSensorR = False
holdCountL = ©
holdCountR = ©
lastInteractionTime = @

print ("Starting gesture recognition")

try:
here you put your main loop or block of code
while True:
#print "Starting measurement”
GPIO.output(TRIG,1)
time.sleep(0.00001)
GPIO.output(TRIG,0)

while GPIO.input(ECHO) == @:
pass
start = time.time()

while GPIO.input(ECHO) == 1:
pass

stop = time.time()

GPIO.output(TRIG2,1)

time.sleep(0.00001)

GPIO.output(TRIG2,0)

while GPIO.input(ECHO2) == @:

44

pass
start2 = time.time()

while GPIO.input(ECHO2) == 1:
pass
stop2 = time.time()

interaction = False

distance = (stop - start) * 17000
distance2 = (stop2 - start2) * 17000

sensorR = distance < MIN_DISTANCE
sensorL = distance2 < MIN_DISTANCE

#if prevSensorL and sensorR:
#print "Swipe right"

#if prevSensorR and sensorL:
#print "Swipe left"

if prevSensorL and sensorL:
holdCountL = holdCountL + 1
if holdCountL < TARGET_HOLD_COUNT:
print ("e")

if prevSensorR and sensorR:
holdCountR = holdCountR + 1
if holdCountR < TARGET_HOLD_COUNT:
print ("1")

if holdCountL >= TARGET_HOLD_COUNT:
holdCountL = ©
print ("10")

if holdCountR >= TARGET_HOLD_COUNT:
holdCountR = ©
print ("11")

interaction = sensorL or sensorR

prevSensorL = sensorL
prevSensorR = sensorR

if interaction:

lastInteractionTime = time.time()
elif time.time() - lastInteractionTime > 1:

#print "Resetting”

prevSensorL = False

prevSensorR = False

holdCountL = @

holdCountR = @

lastInteractionTime = time.time()

time.sleep(0.1)

except KeyboardInterrupt:
here you put any code you want to run before the program
exits when you press CTRL+C

45

print ("exiting")

except:
this catches ALL other exceptions including errors.
You won't get any error messages for debugging
so only use it once your code is working
print ("Other error or exception occurred!")
finally:

GPIO.cleanup() # this ensures a clean exit

46

