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BACKGROUND 

This Project has been carried out within the Metabolomics Platform. The 

Metabolomics Platform is a joint research facility created in 2008 by URV (Universitat 

Rovira i Virgili) and CIBERDEM (Centro de Investigación Biomédica en Red de Diabetes 

y Enfermedades Metabólicas Asociadas). The main goal of the Metabolomics Platform 

is to offer metabolomic services to the biomedical and clinical research groups from 

CIBERDEM and URV. This project is part of an on going internal CIBERDEM project in 

colaboration with Dra. Lourdes Ibañez from Hospital Sant Joan de Déu (Barcelona).  

 

PRESENTATION 

I started my phD in Metabolomics Platform in 2009. In my thesis, I have 

participated in several metabolomics experiments involving different analytical 

platforms (NMR, LC-MS and GC-MS). The project here described have been the last 

work presented in my doctoral thesis. I have contributed intensively in this work, 

technically and scientifically.  

In this project, I have developed an untargeted metabolomic workflow from 

sample preparation, data processing for metabolite identification (including statistical 

analysis) to biological interpretation. I have been involved in all of this steps. The main 

goal of this project was to implement a multiplatform approach based NMR and LC/MS 

to provide new insights in disease in a cohort of young lean hyperinsulinaemic 

androgen excess patients (For more details see ARTICLE). 

Untargeted metabolomics have the aim to simultaneously measure as many 

metabolites as possible from biological samples without bias. This metabolomic 

approach is typically hypothesis generating and provides a global comparative 

overview of metabolites abundances between two or more sample groups (i.e., 

experimental conditions), for example, healthy vs. disease or, WT (wild type) vs. KO 

(knock-out). The main bottleneck of an untargeted approach is the identification of 

metabolites on the basis of MS and/or NMR peaks from exceedingly complex datasets. 

Despite this challenge, this approach has the potential to involve previously 

unrecognized metabolites in seemingly known human pathological conditions. For this 

reason, this project has been focused on an untargeted metabolomic approach.  
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MY CONTRIBUTION 

The aim of this project was to determine the underlying mechanism by which 

hyperinsulinemic androgen exces is associated with long-term health risks in 

adulthood such as anovulatory infertility and long-term health risks such as type 2 

diabetes, metabolic syndrome and possibly cardiovascular disease. In this project we 

have been used NMR and MS-based metabolomics to compare the lipoprotein profile 

and the serum metabolome of non-obese adolescents with HIAE, with those in age- 

and weight-matched control girls. 

I have contributed to the experimental design; NMR, LC-MS and MALDI-TOF MS 

sample preparation; LC-MS data adquisition;  NMR, LC-MS and MALDI-TOF MS data 

analysis; biological interpretation and integration of all results. Moreover, I have 

written the whole final manuscript, excluding NMR and MADLI-TOF MS technical 

methods which were written by other authors. The entire study was supervised by 

Oscar Yanes.  The final manuscript was supervised by Oscar Yanes and Lourdes Ibañez.  

 

UNTARGETED METABOLOMICS EXPERIMENT 

In general, in untargeted metabolomic studies, numerous factors must be carefully 

considered. These factors include: sample preparation, implementation of appropriate 

MS and NMR analytical tools for sample analysis, data analysis, and last but not least, 

biological interpretation. Hence, a well-defined workflow characterizes untargeted 

metabolomics. All of this sections have been performed in this project. Sample 

preparation have been described in detail in (ARTICLE: MATERIALS AND METHODS). 

However, I have considered to expand the data analysis of this project. Once, data has 

adquired for LC-MS the first step is to convert the raw data into a standard format such 

as mzData using ProteoWizard. Then, a package based on R (xcms) has been used for 

data processing. The XCMS package provide methods for peak picking, non-linear 

retention time alignment, visualization, and relative quantitation. XCMS is 

implemented as a package within the R programming environment. XCMS implements 

three main steps: 

1. Peak detection: the algorithm identifies peaks in each of the samples; 

2. Non-linear retention time alignment: matches peaks with similar retention times 

across multiple samples, and use the groups of matched peaks for time alignment; 
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3. Fill in any missing peaks: the peaks that have failed to be detected in step 1, are 

filled in properly from raw data. 

As a result, the output matrix of XCMS includes the intensity under the peak for all 

features detected, for every sample. In this process, thousands of so called metabolite 

features are routinely generated. A feature is defined as a peak corresponding to an 

individual ion with a unique mass-to-charge ratio and a unique retention time. It is 

worth emphasizing that one feature is not equivalent to one metabolite. Generally, 

more than one feature belongs to the same metabolite. In LC-MS data, isotopic 

distributions, potential adducts or in-source fragmentation generates more than one 

feature for the same metabolite. Next, the statistical analysis will reveal which features 

are significantly different between sample groups. Finally, the last step is metabolite 

identification.  

Identification of metabolites by LC-MS:  

To determine the identity of a feature of interest, the accurate mass of the 

compound is first searched in metabolite databases such as Metlin or the Human 

Metabolome Database (HMDB).  

In this project, more than 50000 features were obtained after xcms processing 

from samples analyzed by LC-MS using HILIC chromatography. All of this features were 

filtered following different criterias (see the script section) and after filtering for 

statistical analysis (Yuen-Welch’s test) and fold change, I obtained 250 features that 

were statistically significant between control and disease. This 250 features were 

searched in Metlin database and only 80 of the initial 250 features returned a hit in the 

database. However, a database match represents only a putative assignment that must 

be confirmed by comparing the retention time and MS/MS data of a model compound 

to that from the feature of interest in the research sample. Currently, MS/MS data for 

features selected from the profiling results are obtained from additional experiments 

and matching of MS/MS fragmentation patterns is performed manually by inspection. 

Then, after running samples again with the aim to perform the MS/MS fragmentation 

experiments only  11 metabolites were identified.  

SCRIPT  

XCMS package: 

library (xcms) 
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# Perform peak detection on data in centroid mode u sing centWave 
algorithm 
xset<-xcmsSet(method= "centWave" ,ppm=30,peakwidth= c(10,60)) 
# Match peaks across samples: place in to groups pe aks representing 
the same metabolite #across samples 
xset<-group(xset) 
# Make use of group information to identify and cor rect retention time 
missalignments from run #to run using Obi-warp 
xset2<-retcor(xset,method= "obiwarp" ,profStep=1) 
#Make a second pass of grouping algorithm to a more  accurate group 
definition 
xset2<-group(xset2, mzwid=0.025,minfrac=0.5,bw =5) 
#Finally fill in missing peaks 
xset3<-fillPeaks(xset2) 

 

DATA PROCESSING (Filtering data) 

###Intensity criteria  

The accuracy of a metabolite identi_cation depends on the detection of all, most, or informative 
fragment ions generated during the MS/MS experiments. Lower-intensity parent ions obtained 
in profling mode lead to poor MS/MS spectra quality hampering this way a proper identi_cation. 
Therefore, it is worth to perform MS/MS experiments for those parent ions presenting a 
minimum intensity threshold. This threshold depends on the experimental conditions. However, 
according to our experience, a reasonable threshold in our example would be 10000 counts. 
 

# Get intensities from xcmsSet object 
X1 <- groupval(xset3, value = "maxo" ) 
# Define experimental groups 
class  <- as.factor (xset3@phenoData$ class ) 
# Compute the mean intensities for each group 
meanintensities <- apply (X1, 1, function (x) tapply (x, class , mean)) 
# Getting index of those features with mean intensi ty above 10000 
counts in at least one of the #groups 
idx_intensity <- which ( apply (meanintensities, 2, function (x) any (x 
>10000)) == TRUE) 
 

###Handle analytical variation: 

Most common sources of analytical variation in LC-MS experiments are due to sample 
preparation and instrumental drifts caused by chromatographic columns and MS detectors. The 
ideal method to examine analytical variation is to analyze quality control (QC) samples, which 
will provide robust quality assurance of each detected mzRT feature. To this end, QC samples 
should be prepared by pooling aliquots of each individual sample entering the study and 
analyze them periodically through-out the sample work list. 
 
Being replicates of the same pooled samples QC samples are expected to not contain biological 
variation. Hence variation observed in QC samples reects analytical variation. the performance 
of the analytical platform can be calculated individually for each detected mzRT feature 
computing the variation of each mzRT feature around their mean in QC pooled samples (CVQC). 
 
This leads to an estimation of the analytical variation. Additionally, we can also calculate the 
variation of mzRT features around their mean in the samples entering the experiment (CVS). 
This variation would enclose both, analytical and biological variation. 
 
Consequently, those mzRT features where CVQC > CVS contain more analytical variation than 
other sources of variation and they should be conveniently removed from further analysis. This 
criteria helps to focus on mzRT features holding the lowest proportion of analytical variation 
 
# 1-. Define (CV) function 
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co.var <- function (x) (100 * sd (x)/ mean(x)) 
# 2-. Define QC and Sample samples classes 
cl1 <- rep ( c( "Sample" , "QC" ), times = c(38, 8)) 
# 3-. Compute CV for QC and Samples 
CV <- t ( apply (X1, 1, function (x) tapply (x, cl1, co.var))) 
# 4-. Determine the percenteage of features where C V(Samples)>CV(QC) 
idx_qc <- which (CV[, "Sample" ] > CV[, "QC" ]) 
 

###Combine both criteria  

 
Combine both QC and Intensity criteria, filter the original dataset accordingly and get rid out 
of QC samples. 
 
# Combine both intensity and QC criteria 
Ii <- colnames ( D)[idx_intensity] 
Iqc <- colnames ( D)[idx_qc] 
Ib <- intersect (Ii, Iqc) 
# Create a new dataset without QC samples and with mZRT features 
meeting both criteria 
D2 <- subset ( D, class  != "QC" , select  = Ib) 
 

###Statistical analysis  

 
Provided the limitation in the number of MS/MS con_rmation experiments, additional criteria to 
those described above are necessary to further reduce the number of initial mzRT features to 
an amenable number. In our pipeline once QC and intensity criteria has been applied, the 
resulting dataset is usually specified via hypothesis testing to select mzRT features showing 
statistical signifcance. 
 
# Yuen function 
 
library (PairedData) 
 
Yuen_sara<- function  (x,y) 
{ 
  resultyuen<- list (1: ncol (x)) 
  pvalue<- matrix ( nrow =ncol (x), ncol =1) 
  colnames (pvalue)<- "pvalue" 
  rownames (pvalue)<- colnames (x) 
 
  for  (i in  1: ncol (x)){ 
 
    resultyuen[[i]]<-yuen.t.test(x[,i],y[,i], tr=0. 2, paired= FALSE) 
    pvalue[i,1]<-resultyuen[[i]]$p.value 
 
  } 
  return (pvalue) 
} 
 
##Create two matrices 
 
CTR<-D2[1:14,] 
PCOS<-D2[15:26,] 
 
pvalue_ctr_pcos <- Yuen_sara(CTR,PCOS) 
 
 
#Create the fold change function 
fc.test<- function (D2,classvector){ 
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means<- apply (D2, 2, function (x) tapply (x, classvector, mean)) 
means <- t (means) 
case  <- means[, "case" ];control <- means[, "control" ] 
logFC <- log2 ( case /control) 
FC <- case /control; 
FC2 <- -control/ case 
FC[FC<1] <- FC2[FC<1] 
fc.res <- cbind (FC, logFC) 
return (fc.res) 
} 
 
# Create a new group factor that does not include Q C samples 
gr <- as.factor (xset3@phenoData$ class [xset3@phenoData$ class  != "QC" ]) 
 
#Calculate FC for "DISEASE-CTR" groups 
#Define control/case groups 
gr2 <- as.character (gr) 
gr2[gr2== "CTR" ] <- "control" 
gr2[gr2== "DISEASE" ] <- "case" 
#Calculate FC using fc.test function 
fc.res <- fc.test(D2,gr2) 
D3<- data.frame (pvalue_ctr_pcos, fc.res) 
 
#Find those mzRT features matching statistical and fold change 
criteria 
D3$threshold = as.factor ( abs (D3$FC) > 1.5 & D3$pvalue.ctr_pcos < 
0.01); 
 
#Calculate the number of features that match this c riteria 
table (D3$threshold)[ "TRUE" ] 
## TRUE 
## 250 
 
#Select those features 
idxD3red <- rownames (D3)[ which (D3$threshold == "TRUE" )] 
D3red <- D3[idxD3red,] 
 
 
#Putative identification 
 
Once initial xcmSet has been properly filtered, a good way to organize the resulting dataset is to 
rank significantly varied mZRT features according to their FC value. The final result would be a 
list of relevant features and their corresponding exact mass to query them to databases. From 
the initially filtered mZRT features, just those matching exact mass to database are retained for 
further MS/MS monitoring. It is important to collect all necessary information for these MS/MS 
spectra adcquisition. 
 
Retention time, exact mass, and group mean intensities are mandatory.Another important poind 
is to visually inspect these relevant mZRT features. Although XCMS have some functionalities 
to display diferential data, it does not allow an iterative environment to explore it. Functions in 
XCMS to visualize data require to go back to mzXML files. Therefore, we should always operate 
in the directory where mzXML data is located. At this point, vendor software might offer better 
capabilities for displaying purposes and more exibility to visually inspect main results. 
 

 

For NMR, raw data are typically processed by means of Fourier Transform (FT) and 

baseline removal. Baseline distortions affect not only the statistical analysis but also 

the quantification of metabolites. Multi integration of Regions of Interest (ROIs) is the 
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method used in this project. In this approach, the analysis is not directly based on 

peaks or spectal binned regions but on regions which are a priori known to contain 

compound resonances or ROIs. The area under ROIs representative of metabolites can 

be considered as a surrogate of the relative abundance of these metabolites in the the 

biological sample. The key issue here is to properly assign ROIs resonances to 

metabolite structures. This is not a trivial issue. NMR peak structure assignemnt in 

complex data matrices such as in cell cultures requires a skilled NMR specialist, 

acquisition of 2D NMR spectra and libraries of pure compounds to compare with. This 

assignment is actually the bottle neck in the whole NMR-based metabolic analysis. 

Noteworthy, it is eventually impossible to assign all resonances arising from complex 

matrices to chemical structures. Therefore, we will much probably end-up with some 

unknown resonances. Despite this daughting scenario, in this project, I have used a 

commercial software, AMIX, which incorporate libraries of pure standar compounds 

resulting in great help for the resonance assignment process.  

 

Analyzing Multi Integration Results 

# Yuen function 
 
library (PairedData) 
 
Yuen_sara<- function  (x,y) 
{ 
  resultyuen<- list (1: ncol (x)) 
  pvalue<- matrix ( nrow =ncol (x), ncol =1) 
  colnames (pvalue)<- "pvalue" 
  rownames (pvalue)<- colnames (x) 
 
  for  (i in  1: ncol (x)){ 
 
    resultyuen[[i]]<-yuen.t.test(x[,i],y[,i], tr=0. 2, paired= FALSE) 
    pvalue[i,1]<-resultyuen[[i]]$p.value 
 
  } 
  return (pvalue) 
} 
 
##Create two matrices 
 
data <- read.table ( "multiintegration.txt" , sep ="\t" , header =T) 
CTR<-data [1:14,] 
PCOS<-data [15:26,] 
 
##Apply the function 
 
pvalue_ctr_pcos <- Yuen_sara(CTR,PCOS) 
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Lipoprotein profile and biochemical parameters 

The technical issues of this parameters have been performed for other colleges which 

have contributed  in the elaboration of this article. However, the statistical analysis of 

all of them and the figures and tables in the paper related to this issues have been 

performed by me. Statistical analysis have been performed in R.  

SCRIPT 

data1 <- read.table ( "Bioquimica_ctr_pcos_pio.txt" , header =T, sep ="\t" ) 
data2<- read.table ( "Lipos_roger.txt" , header =T, sep ="\t" ) 
data  <- data1 [,2:13] 
rownames ( data ) <- data1[,1] 
lipos <- data2 [,2:13] 
rownames (lipos) <- data2[,1] 
rm(data1,data2) 
##divido la matriz 
CTR <- data [1:14,] 
PCOS <- data [15:26,] 
PIO <- data [27:32,] 
##LIPOS 
CTRL <- lipos[1:14,] 
PCOSL <- lipos[15:26,] 
PIOL <- lipos[27:32,] 
 
##yuen test 
Yuen_sara<- function  (x,y) 
{ 
  resultyuen<- list (1: ncol (x)) 
  pvalue<- matrix ( nrow =ncol (x), ncol =1) 
  colnames (pvalue)<- "pvalue" 
  rownames (pvalue)<- colnames (x) 
    for  (i in  1: ncol (x)){ 
        resultyuen[[i]]<-yuen.t.test(x[,i],y[,i], t r=0.2, 
paired= FALSE) 
    pvalue[i,1]<-resultyuen[[i]]$p.value 
      } 
  return (pvalue) 
} 
library (PairedData) 
pvalue_ctr_pcos <- Yuen_sara(CTR,PCOS) 
pvalue_ctr_pio <- Yuen_sara(CTR,PIO) 
pvalue_pcos_pio <- Yuen_sara(PCOS,PIO) 
pvalue_ctr_pcos_LIPOS <- Yuen_sara(CTRL,PCOSL) 
pvalue_ctr_LIPOS <- Yuen_sara(CTRL,PIOL) 
pvalue_pcos_LIPOS <- Yuen_sara(PCOSL,PIOL) 

 
Once, all data have been generated, biological interpretation have to be performed. 

The use of Cytoscape software for metabolic pathway analysis and searches in the 

literature were performed exhaustively by me.  

I found that 9 metabolites found in the untargeted metabolomic experiment belong to the same 
pathway, in concrete to the gamma glutamyl cycle. The gamma-glutamyl cycle plays a key role 
in the synthesis and degradation of GSH. Most metabolites are increased in hyperinsulinemic 
androgen excess women which I associated with an increased demand of GSH due to 
increased oxidative stress (which has been extensively described in the literature). However 



 11

methionine and methionine sulfoxide were not involved in this pathway. Interestingly, lower 
levels of methionine in serum samples of hyperinsulinemic androgen excess women were 
associated with greater levels of methionine sulfoxide in these patients, indicating increased 
oxidation of this aminoacid. By other hand, I found a paper publish in 2008 demonstrates that 
methionine oxidation in apo-AI impairs reverse cholesterol transport by LCAT. Specifically 
oxidation of Met-148 residue in apo-AI  changes the 3D structure of the protein imparing the 
activity of LCAT in HDL lipoproteins affecting the maturation of nascent HDL particles. In 
addition, I observe a very good correlation between large HDL and methionine sulfoxide levels. 
Increased concentration of methionine sulfuxide in serum of PCOS is associated with lower 
levels of large HDL particles.  Therfore, I hypothetized that women with hyperinsulinemia 
androgen excess present greater oxidation of methionine residues in apo-AI relative to healthy 
women, and the increased levels of free methionine sulfoxide in hyperinsulinemic androgen 
excess patients may result from the turnover and degradation of these apo-AI proteins. With the 
aim to verify this hypothesis I proposed to perform a quantitative analysis of oxidized 
methionine/methionine ratio in apo AI. After protein precipitation serum samples were separed 
by SDS electrophoresis, and ApoA1 gel bands were digested and measured by MALDI-TOF 
MS (See results in appendice). 
 

All plots performed in this project have been done by me. I have used ggplot2 library. 

Scripts code: 

 

FIGURE 1: 

 
####PASAR EL PLOT DE ROGER DE MATLAB A R#### 
 
setwd ( "C:/Documents and Settings/Sara/Escritorio/Ibañez_0 2/Final 
Data/Julio2014/Figures/LIPOS ROGER/R" ) 
 
methyl <- read.table ( "Total_metyl.txt" , header =TRUE, sep ="\t" ) 
 
library (ggplot2) 
 
cols <- c( "Experimental Spectra" ="black" , "Fitted Spectra" ="red" , 
"Background" ="grey" , "VLDL" ="#E69F00" , "Large LDL" = "#56B4E9" , "Small 
LDL" ="#009E73" , "Large HDL" ="#F0E442" , "Medium HDL" ="#0072B2" , "Small 
HDL"="#D55E00" ) 
 
m <- ggplot(methyl, aes(x=x.axis, y=Total.line)) + 
geom_line(aes(x=x.axis, y=Total.line, colour= "Experimental Spectra" ), 
size=1) + xlim (1,0.7) 
 
m <- m + geom_line(aes(x=x.axis, y=Total.subfractio ns, colour= "Fitted 
Spectra" ), size=1) 
 
m <- m + xlab ( "ppm" ) 
 
m <- m + theme(axis.title.x= element_text(color= "#999999" , 
face= "bold" ,size=16)) 
 
m <- m + ylab ( "Intensity" ) 
 
m <- m + theme(axis.title.y= element_text(color= "#999999" , 
face= "bold" ,size=16)) 
 
m <- m + geom_line(aes(x=x.axis, y=Background, colo ur= "Background" ), 
size=0.5 ) 
 
m <- m + geom_line(aes(x=x.axis, y=VLDL, colour= "VLDL" ), size=1) 
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m <- m + geom_line(aes(x=x.axis, y=large.LDL, colou r= "Large LDL" ), 
size=1) 
 
m <- m + geom_line(aes(x=x.axis, y=small.LDL, colou r= "Small LDL" ), 
size=1) 
 
m <- m + geom_line(aes(x=x.axis, y=large.HDL, colou r= "Large HDL" ), 
size=1) 
 
m <- m + geom_line(aes(x=x.axis, y=medium.HDL, colo ur= "Medium HDL" ), 
size=1) 
 
m <- m + geom_line(aes(x=x.axis, y=small.HDL, colou r= "Small HDL" ), 
size=1) 
 
m <- m + scale_colour_manual( values = c( "Experimental 
Spectra" ="black" , "Fitted Spectra" ="red" , "Background" ="grey" , 
"VLDL" ="#E69F00" , "Large LDL" = "#56B4E9" , "Small LDL" ="#009E73" , "Large 
HDL"="#F0E442" , "Medium HDL" ="#0072B2" , "Small HDL" ="#D55E00" ), 
breaks =c( "Experimental Spectra" , "Fitted Spectra" , "Background" , 
"VLDL" , "Large LDL" , "Small LDL" , "Large HDL" , "Medium HDL" , "Small 
HDL")) 
 
m <- m + ggtitle( "Lipoprotein Deconvolution" ) + theme(plot.title = 
element_text(size=18)) 
 
m 

 

FIGURE 2 and FIGURE 3: 

 
###PARA PINTAR LOS PLOTS INDIVIDUALES DE CADA VARIA BLES 
 
##tengo mi matriz data, quiero que sea un data.fram e y que incorpore 
#dos columnas, una con un factor que me defina las clases y otra 
#con un vector que me defina los grupos(para que me  pinte por colores) 
 
colores <- rep ( c( "CTR" , "PCOS", "PIOFLUMET" ), times= c(14,12,6)) 
class  <- as.factor (colores) 
data  <- as.data.frame ( data ) 
 
###defino un dataframe al que le añado las dos colu mnas con las 
variables 
##creadas 
 
pintar <- cbind ( class ,colores, data ) 
 
##quiero pintar para todos los metabolitos primero solo de CTR vs PCOS 
 
metabolites <- c( "Methionine" , "Methionine Sulfoxide" , "5-
oxoproline" , "Taurine" , "Glu-Cys" , "Glu-Glu" , "Glutamate" , "GSH" , 
"GSH/GSSG", "Glu-Taurine" , "Glycine" ) 
 
ctrvspcos <- pintar[1:26,] 
 
library (ggplot2) 
 
###Para los gráficos del gamma-glutamyl cycle 
 
ylabel <- rep ( c( "Intensity" , "Arbitrary Units" ), times= c(10,1)) 
metabolites <- colnames (pintar) 
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cont <- 1 
 
 
for  (i in  12:22) { 
 
  name<- paste (metabolites[i], ".svg" ) 
 
  pintar1 <- ctrvspcos[,1:2] 
  pintar1 <- cbind (pintar1, ctrvspcos[,i]) 
  #colnames(pintar1)[3] <- colnames(pintar)[i] 
  #metabolite <- colnames(pintar1)[3] 
 
  b <- ggplot(pintar1, aes(x= class , y = log10 (ctrvspcos[,i]), color = 
colores)) + geom_point(size = 4, position = positio n_jitter(w = 0.1)) 
 
  b <- b + geom_segment(x=0.75, 
y=mean( log10 (pintar1[1:14,3]),trim=0.2), xend=1.25, 
yend= mean( log10 (pintar1[1:14,3]),trim=0.2, colour= "black" ), size=1, 
colour= "black" ) 
 
  b <- b <- b + geom_segment(x=1.75, 
y=mean( log10 (pintar1[15:26,3]),trim=0.2), xend=2.25, 
yend= mean( log10 (pintar1[15:26,3]),trim=0.2, colour= "black" ), size=1, 
colour= "black" ) 
 
  #b <-  b + geom_segment(x=2.75, y=mean(pintar1[27:3 2,3],trim=0.2), 
xend=3.25, yend=mean(pintar1[27:32,3],trim=0.2, col our="black"), 
size=1, colour="black") 
 
  b <- b + ggtitle(label.title[i]) + theme(plot.tit le = 
element_text(size=18, face= "bold" )) 
 
  b <- b + theme(axis.title.x = element_blank()) + 
ylab ( paste ( "log10(" ,ylabel[cont], ")" )) 
 
  b <- b + theme(axis.text.x  = element_text(size=1 6)) + 
theme(axis.text.x= element_text(face= "bold" )) 
 
  b <- b + theme(axis.title.y  = element_text(size= 16)) + 
theme(axis.title.y= element_text(face= "bold" )) 
 
  b <- b + theme(legend.position= "none" ) 
 
  b <- b + coord_fixed(ratio=3/0.75) 
 
  b 
  ggsave( name, dpi=300) 
  cont <- cont+1 
} 

 

FIGURE 4: 

 
####plots de proteomica 
 
setwd ( "X:/YANES LAB/USUARIS 
(YanesLab)/Sara/Plataforma/Usuaris/Ibañez_02/Final 
Data/Julio2014/Figures/Proteomica_Lipos" ) 
 
pintar <- DATA[1:18,] 
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colores <- rep ( c( "CTR" , "HIAE" , "PIOFLUMET" ), times= c(8,10,5)) 
class  <- as.factor (colores) 
col  <- rep ( c( "#F8766D" , "#619CFF" , "#00BA38" ), times= c(8,10,5)) 
 
pintar <- cbind ( class ,colores, col , DATA) 
 
ctrvspcos <- pintar[1:18,] 
 
library (ggplot2) 
 
###para el gráfico de la Met-148 
 
name<- paste ( "Met-148" , ".svg" ) 
 
pintar1 <- ctrvspcos[,1:4] 
pintar1 <- pintar1[,-3] 
 
b <- ggplot(pintar1, aes(x= class , y = ctrvspcos[,4], color = colores)) 
+ geom_point(size =4, position = position_jitter(w = 0.1), 
colour=col1) 
 
b <- b + geom_segment(x=0.75, y= mean(pintar1[1:8,3],trim=0.2), 
xend=1.25, yend= mean(pintar1[1:8,3],trim=0.2), colour= "black" , size=1, 
colour= "black" ) 
 
b <- b <- b + geom_segment(x=1.75, y= mean(pintar1[9:18,3],trim=0.2), 
xend=2.25, yend= mean(pintar1[9:18,3],trim=0.2), colour= "black" ,size=1, 
colour= "black" ) 
 
#b <-  b + geom_segment(x=2.75, y=mean(pintar1[27:3 2,3],trim=0.2), 
xend=3.25, yend=mean(pintar1[27:32,3],trim=0.2, col our="black"), 
size=1, colour="black") 
 
b <- b + ggtitle( "MetOx-148/Met-148" ) + theme(plot.title = 
element_text(size=18)) 
 
b <- b + theme(axis.title.x = element_blank()) + ylab ( "Ratio MetOx-
148/Met-148 in ApoAI" ) 
 
b <- b + theme(axis.text.x  = element_text(size=16,  color= "#999999" )) 
+ theme(axis.text.x= element_text(face= "bold" )) 
 
b <- b + theme(axis.title.y  = element_text(size=16 )) + 
theme(axis.title.y= element_text(color= "#999999" , face= "bold" )) 
 
b <- b + theme(legend.position= "none" ) 
 
b <- b + coord_fixed(ratio=2/2) 
 
b 
ggsave( name, dpi=300) 
 
 
###ahora vamos a hacer scatter plot de metox vs met h sufloxide in 
serum 
###creamos el dataframe 
 
pintar1 <- pintar[, c(4,6)] 
ctrvspcos <- pintar1[1:18,] 
 
###modelo lineal 
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source ( "C:/ScriptsR/Functions R/pbcor.r" ) 
source ( "C:/ScriptsR/Functions R/pbos.r" ) 
library ( MASS) 
 
model <- pbcor(ctrvspcos[,2],ctrvspcos[,1], beta =0.2) 
robust <- rlm (Ratio.Met.148~Methionine.Sulfoxide, data =ctrvspcos) 
 
p <- ggplot(ctrvspcos, aes(x=Methionine.Sulfoxide, y=Ratio.Met.148, 
color=colores[1:18])) + geom_point(shape=19, size=4 , colour= col [1:18]) 
 
p <- p + geom_abline(intercept = robust[[1]][1], sl ope = 
robust[[1]][2], colour= "black" , size=1) 
 
p <- p + ylab ( "Ratio MetOx-148/Met-148 in ApoAI" ) + theme(axis.title.y  
= element_text(size=16)) + theme(axis.title.y= 
element_text(color= "#999999" , face= "bold" )) 
 
p <- p + xlab ( "Methionine Sulfoxide in Serum \n (Intensity Value) " ) + 
theme(axis.title.x  = element_text(size=16)) + them e(axis.title.x= 
element_text(color= "#999999" , face= "bold" )) 
 
p <- p +  theme(axis.text.x= element_text( "Intensity Value" )) 
 
p 
 
name <- paste ( "correlation_metox_metsulfo" , ".svg" ) 
ggsave( name, dpi=300) 
 
 
###ahora vamos a hacer scatter plot de large HDL vs  meth sufloxide in 
serum 
###creamos el dataframe 
 
pintar1 <- cbind (pintar[,2],pintar[,6], pintar[,19]) 
colnames (pintar1) <- c( "colores" , "Methionine.Sulfoxide" , "Large.HDL" ) 
ctrvspcos <- pintar1[1:18,] 
ctrvspcos <- as.data.frame (ctrvspcos) 
ctrvspcos[,1] <- rep ( c( "CTR" , "HIAE" ), times= c(8,10)) 
ctrvspcos[,1] <- as.factor (ctrvspcos[,1]) 
 
 
###modelo lineal 
 
source ( "C:/ScriptsR/Functions R/pbcor.r" ) 
source ( "C:/ScriptsR/Functions R/pbos.r" ) 
 
library ( MASS) 
library (ggplot2) 
 
model <- pbcor(ctrvspcos[,2],ctrvspcos[,3], beta =0.2) 
robust <- rlm (Large.HDL~Methionine.Sulfoxide, data =ctrvspcos) 
 
p <- ggplot(ctrvspcos, aes(x=Methionine.Sulfoxide, y=Large.HDL, 
color=colores)) + geom_point(shape=19, size=4,colou r= col [1:18]) 
 
p <- p + geom_abline(intercept = robust[[1]][1], sl ope = 
robust[[1]][2], colour= "black" , size=1) 
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p <- p + ylab ( "Large HDL \n (% Relative area)" ) + theme(axis.title.y  
= element_text(size=16)) + theme(axis.title.y= 
element_text(color= "#999999" , face= "bold" )) 
 
p <- p + xlab ( "Methionine Sulfoxide in Serum \n (Intensity Value) " ) + 
theme(axis.title.x  = element_text(size=16)) + them e(axis.title.x= 
element_text(color= "#999999" , face= "bold" )) 
 
p 
 
name <- paste ( "correlation_large_hdl_metsulfo" , ".svg" ) 
ggsave( name, dpi=300) 

 

FIGURE 5: 

 
###Plots del tratamiento 
 
setwd ( "X:/YANES LAB/USUARIS 
(YanesLab)/Sara/Plataforma/Usuaris/Ibañez_02/Final 
Data/Julio2014/Figures/Treatment" ) 
 
###funcion para saber los codigos de los colores po r default de ggplot 
 
ggplotColours <- function (n=6, h=c(0, 360) +15){ 
  if  (( diff ( h)%%360) < 1) h[2] <- h[2] - 360/n 
  hcl( h = ( seq ( h[1], h[2], length  = n)), c  = 100, l = 65) 
} 
 
codigos <- ggplotColours(n=3) 
 
 
###voy a pintar la ratio de MetOx 
library (ggplot2) 
 
pintar1 <- pintar[,1:3] 
col  <- rep ( c( "#F8766D" , "#619CFF" , "#00BA38" ), times= c(8,10,5)) 
pintar1 <- cbind (pintar1, col ) 
 
b <- ggplot(pintar1, aes(x= class , y = pintar1[,3], color = colores)) + 
geom_point(size = 4, position = position_jitter(w =  0.1), colour= col ) 
 
b <- b + geom_segment(x=0.75, y= mean(pintar1[1:8,3],trim=0.2), 
xend=1.25, yend= mean(pintar1[1:8,3],trim=0.2, colour= "black" ), size=1, 
colour= "black" ) 
 
b <- b <- b + geom_segment(x=1.75, y= mean(pintar1[9:18,3],trim=0.2), 
xend=2.25, yend= mean(pintar1[9:18,3],trim=0.2, colour= "black" ), 
size=1, colour= "black" ) 
 
b <-  b + geom_segment(x=2.75, y= mean(pintar1[19:23,3],trim=0.2), 
xend=3.25, yend= mean(pintar1[19:23,3],trim=0.2, colour= "black" ), 
size=1, colour= "black" ) 
 
b <- b + ggtitle( "MetOx-148/Met-148" ) + theme(plot.title = 
element_text(size=18)) 
 
b <- b + theme(axis.title.x = element_blank()) + ylab ( "Ratio MetOx-
148/Met-148 in ApoAI" ) 
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b <- b + theme(axis.text.x  = element_text(size=16,  color= "#999999" )) 
+ theme(axis.text.x= element_text(face= "bold" )) 
 
b <- b + theme(axis.title.y  = element_text(size=16 )) + 
theme(axis.title.y= element_text(color= "#999999" , face= "bold" )) 
 
b <- b + theme(legend.position= "none" ) 
 
b <- b + coord_fixed(ratio=2/2) 
 
b 
 
ggsave( paste ( "MetOx" , ".svg" ), dpi=300) 
 
###hago el pca 
 
pca <- prcomp (DATA, scale =TRUE) 
class  <- pintar1$ class 
scores <- data.frame (pca$x[, 1:2], class , col ) 
 
 
r <- ggplot( data  = scores, aes(x = PC1, y = PC2, colour = colores))  + 
geom_point(size =6, colour= col ) 
 
r <- r + geom_hline(aes(yintercept = 0), linetype= "dashed" ) + 
geom_vline(aes(yintercept = 0), linetype= "dashed" ) 
 
r <- r + xlab ( "PC1 (46.5%)" ) + ylab ( "PC2 (14.8%)" ) 
 
r <- r + theme(axis.title.x  = element_text(size=16 , color= "#999999" )) 
+ theme(axis.title.x= element_text(face= "bold" )) 
 
r <- r + theme(axis.title.y  = element_text(size=16 )) + 
theme(axis.title.y= element_text(color= "#999999" , face= "bold" )) 
 
r 
 
ggsave( paste ( "PCA" , ".svg" ), dpi=300) 
 
###LOADIGNS DEL PCA 
 
load  <- pca$rotation[,1] 
loadings  <- cbind ( colnames (DATA), load ) 
loadings  <- as.data.frame ( loadings ) 
loadings  <- cbind ( loadings , load ) 
loadings  <- loadings [-2] 
 
 
loadings  <- loadings [-1] 
 
ylabel <- c( "Ratio Met-148" , "Methionine" , "Methionine Sulfoxide" , "5-
oxoproline" , "Taurine" , 
            "Glu-Cys" , "Glu-Glu" , "Glutamate" , "GSH" , "GSH/GSSG", "Glu-
Taurine" , "Glycine" , 
            "VLDL" , "Large LDL" , "Small LDL" , "Large HDL" , "Medium HDL" , 
"Small HDL" ) 
 
loadings  <- cbind (ylabel, loadings ) 
colnames ( loadings ) <- c( "metabolites" , "PC1" ) 
metab <- loadings $metabolites 
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l <- ggplot( loadings , aes(x=metabolites, y=PC1)) + 
geom_bar( data =subset ( loadings , PC1>=0),stat= "identity" ) + 
  geom_bar( data =subset ( loadings , PC1<0),stat= "identity" ) 
 
l <- l + coord_flip() 
 
l <- l + scale_x_discrete(limits=metab) 
 
l <- l + theme(axis.title.y = element_blank()) 
 
l 
 
ggsave( paste ( "loadings" , ".svg" ), dpi=300) 
 
###para pintar methionine y methionine sulfoxide 
###tengo q cargar el dataset que esta en la carpeta  de gamma 
glutamyl... 
 
colores <- rep ( c( "CTR" , "HIAE" , "PIOFLUMET" ), times= c(14,12,6)) 
class  <- as.factor (colores) 
col  <- rep ( c( "#F8766D" , "#619CFF" , "#00BA38" ), times= c(14,12,6)) 
 
pintar <- cbind ( class ,colores, col , data ) 
library (ggplot2) 
 
pintar1 <- pintar[,1:2] 
pintar1 <- cbind (pintar1,pintar[,13]) ###Methionine 
colnames (pintar1[4]) <- "Methionine" 
 
###pinto 
 
b <- ggplot(pintar1, aes(x= class , y = log10 (pintar1[,3]), color = 
colores)) + geom_point(size = 4, position = positio n_jitter(w = 0.1), 
colour= col ) 
 
b <- b + geom_segment(x=0.75, y= mean( log10 (pintar1[1:14,3]),trim=0.2), 
xend=1.25, yend= mean( log10 (pintar1[1:14,3]),trim=0.2, colour= "black" ), 
size=1, colour= "black" ) 
 
b <- b <- b + geom_segment(x=1.75, 
y=mean( log10 (pintar1[15:26,3]),trim=0.2), xend=2.25, 
yend= mean( log10 (pintar1[15:26,3]),trim=0.2, colour= "black" ), size=1, 
colour= "black" ) 
 
b <-  b + geom_segment(x=2.75, 
y=mean( log10 (pintar1[27:32,3]),trim=0.2), xend=3.25, 
yend= mean( log10 (pintar1[27:32,3]),trim=0.2, colour= "black" ), size=1, 
colour= "black" ) 
 
b <- b + ggtitle( "Methionine" ) + theme(plot.title = 
element_text(size=18)) 
 
b <- b + theme(axis.title.x = element_blank()) + 
ylab ( "log10(Intensity)" ) 
 
b <- b + theme(axis.text.x  = element_text(size=16,  color= "#999999" )) 
+ theme(axis.text.x= element_text(face= "bold" )) 
 
b <- b + theme(axis.title.y  = element_text(size=16 )) + 
theme(axis.title.y= element_text(color= "#999999" , face= "bold" )) 
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b <- b + theme(legend.position= "none" ) 
 
b <- b + coord_fixed(ratio=2/1.5) 
 
b 
 
ggsave( paste ( "Methionine" , ".svg" ), dpi=300) 
 
###Methionine sulfoxide 
pintar1 <- pintar[,1:2] 
pintar1 <- cbind (pintar1,pintar[,14]) ###Methionine Sulfoxide 
colnames (pintar1[3]) <- "Methionine.Sulfoxide" 
 
###pinto 
 
b <- ggplot(pintar1, aes(x= class , y = log10 (pintar1[,3]), color = 
colores)) + geom_point(size = 4, position = positio n_jitter(w = 0.1), 
colour= col ) 
 
b <- b + geom_segment(x=0.75, y= mean( log10 (pintar1[1:14,3]),trim=0.2), 
xend=1.25, yend= mean( log10 (pintar1[1:14,3]),trim=0.2, colour= "black" ), 
size=1, colour= "black" ) 
 
b <- b <- b + geom_segment(x=1.75, 
y=mean( log10 (pintar1[15:26,3]),trim=0.2), xend=2.25, 
yend= mean( log10 (pintar1[15:26,3]),trim=0.2, colour= "black" ), size=1, 
colour= "black" ) 
 
b <-  b + geom_segment(x=2.75, 
y=mean( log10 (pintar1[27:32,3]),trim=0.2), xend=3.25, 
yend= mean( log10 (pintar1[27:32,3]),trim=0.2, colour= "black" ), size=1, 
colour= "black" ) 
 
b <- b + ggtitle( "Methionine Sulfoxide" ) + theme(plot.title = 
element_text(size=18)) 
 
b <- b + theme(axis.title.x = element_blank()) + 
ylab ( "log10(Intensity)" ) 
 
b <- b + theme(axis.text.x  = element_text(size=16,  color= "#999999" )) 
+ theme(axis.text.x= element_text(face= "bold" )) 
 
b <- b + theme(axis.title.y  = element_text(size=16 )) + 
theme(axis.title.y= element_text(color= "#999999" , face= "bold" )) 
 
b <- b + theme(legend.position= "none" ) 
 
b <- b + coord_fixed(ratio=2/1.5) 
 
b 
 
ggsave( paste ( "MethionineSulfoxide" , ".svg" ), dpi=300) 
 
 
###large HDL 
 
pintar1 <- pintar[,1:2] 
pintar1 <- cbind (pintar1,pintar[,10]) ###Large HDL 
colnames (pintar1[3]) <- "Large.HDL" 
###pinto 
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b <- ggplot(pintar1, aes(x= class , y = pintar1[,3], color = colores)) + 
geom_point(size = 4, position = position_jitter(w =  0.1), colour= col ) 
 
b <- b + geom_segment(x=0.75, y= mean(pintar1[1:14,3],trim=0.2), 
xend=1.25, yend= mean(pintar1[1:14,3],trim=0.2, colour= "black" ), 
size=1, colour= "black" ) 
 
b <- b <- b + geom_segment(x=1.75, y= mean(pintar1[15:26,3],trim=0.2), 
xend=2.25, yend= mean(pintar1[15:26,3],trim=0.2, colour= "black" ), 
size=1, colour= "black" ) 
 
b <-  b + geom_segment(x=2.75, y= mean(pintar1[27:32,3],trim=0.2), 
xend=3.25, yend= mean(pintar1[27:32,3],trim=0.2, colour= "black" ), 
size=1, colour= "black" ) 
 
b <- b + ggtitle( "Large HDL" ) + theme(plot.title = 
element_text(size=18)) 
 
b <- b + theme(axis.title.x = element_blank()) + ylab ( "% Relative 
Area" ) 
 
b <- b + theme(axis.text.x  = element_text(size=16,  color= "#999999" )) 
+ theme(axis.text.x= element_text(face= "bold" )) 
 
b <- b + theme(axis.title.y  = element_text(size=16 )) + 
theme(axis.title.y= element_text(color= "#999999" , face= "bold" )) 
 
b <- b + theme(legend.position= "none" ) 
 
 
b 
 
ggsave( paste ( "largeHDL" , ".svg" ), dpi=300) 
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ABSTRACT 

Hyperinsulinaemic androgen excess (HIAE) is the phenotypic core for polycystic 

ovary syndrome (PCOS). HIAE in prepubertal and pubertal girls usually precedes a 

broader PCOS phenotype in adulthood that is associated with anovulatory infertility 

and long-term health risks such as type 2 diabetes (T2D), metabolic syndrome and 

possibly cardiovascular disease (CVD). With the aim of determining the underlying 

mechanism by which HIAE is associated with these long-term health risks in adulthood, 

here we use NMR and MS-based metabolomics to compare the lipoprotein profile and 

the serum metabolome of non-obese adolescents with HIAE, with those in age- and 

weight-matched control girls. We demonstrate that elevated levels of methionine 

sulfoxide in HIAE serum are strongly correlated with the degree of oxidation of 

methionine residues in apolipoprotein-A1. As a result, there is an impaired maturation 

of HDL reflected in a decline of large HDL particles in girls with HIAE. Remarkably, these 

metabolic disturbances were partially restored after 18 months of treatment with a 

combination of insulin sensitizers plus an anti-androgen (pioglitazone, metformin and 

flutamide). We postulate that hyperandrogenism and hyperinsulinemia are responsible 

for the oxidative damage in lipoproteins. Taken together, these metabolite changes 

might also constitute biomarkers of pre-diabetes and metabolic syndrome. 

 

INTRODUCTION 

Polycystic ovary syndrome (PCOS) is an evolving concept that, depending on the 

diagnostic criteria applied and population studied, affects 8-21% of women of 

reproductive age worldwide (Azziz et al., 2004; Franks, 1995; March et al., 2010). The 

phenotypic core of PCOS as we know it today, however, consists of women with 

hyperinsulinemic androgen excess (HIAE) (Barbieri RL et al., 1988; Chang RJ et al., 

1983; Dunaif, 1997; Ibanez et al., 2014). HIAE is a hallmark present in both obese and 

non-obese adolescent girls that continues into adult women with a PCOS-like 

phenotype (Apter D et al., 1995; Lewy VD et al., 2001). The mechanism by which HIAE 

is manifested at the early stages of a broader PCOS phenotype is currently under 

debate (Corbett S and Morin-Papunen L, 2013; de Zegher F and Ibáñez L, 2009; 

Tsilchorozidou et al., 2004). The “prenatal androgen excess” hypothesis (de Zegher F 

and Ibáñez L, 2009; Tsilchorozidou et al., 2004) appears to have been refuted in favour 
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of the “adipose tissue hypertrophy” hypothesis (de Zegher F et al., 2009; Ibanez et al., 

2014). The latter represents a mismatch between early adipogenesis and later fat 

mass, which establishes an individual setpoint determined by a wide range of 

environmental and genetic factors beyond which further lipid storage is rapidly 

accompanied by lipotoxicity and metabolic complications, including insulin resistance 

and androgen excess (Tsilchorozidou et al., 2004). Irrespective of whether 

hyperandrogenism results from the hyperinsulinaemia of insulin resistance, or vice 

versa, HIAE in prepubertal and pubertal girls precedes a broader PCOS phenotype in 

adulthood that is associated with anovulatory infertility and long-term health risks 

such as metabolic syndrome, type 2 diabetes, (Gambineri A et al., 2012) and possibly 

cardiovascular disease (Fauser BC, 2012; Talbott EO et al., 2000).  

Consequently, adolescence becomes a key period for the study of early biomarkers 

of long-term health risks, as well as for identifying symptomatic girls who might benefit 

from early therapeutic interventions, thereby decreasing subsequent metabolic 

abnormalities related to HIAE (Ibanez et al., 2014). In this regard, a low-dose 

combination of pioglitazone (an insulin-sensitizer), flutamide (an androgen-receptor 

blocker) and metformin (an insulin-sensitizer) has been found to normalize the 

endocrine-metabolic profile of adolescent girls with HIAE, as judged by markers of 

insulin sensitivity, visceral adiposity, arterial health, low-grade inflammation and 

menstrual regularity (Ibanez et al., 2011; Ibanez et al., 2010). This combination of 

insulin sensitizers plus an anti-androgen demonstrates the potential of therapeutic 

approaches based on a good knowledge of the pathological process of HIAE, in 

contrast to symptom-directed treatments –for example, with oral contraceptives- that 

seek at improving the clinical signs  (hirsutism and/or acne) and at inducing regular 

cycles yet persistently anovulatory (Dronavalli and Ehrmann, 2007; Kobaly et al., 2014; 

Legro RS, 2013).  

In this context, here we aimed at identifying as yet undefined metabolic alterations 

implicated in the early stages of the PCOS phenotype that may facilitate early 

intervention and thus potentially prevent later metabolic complications. 

To achieve this goal, we used mass spectrometry (MS) and nuclear magnetic 

resonance (NMR)-based metabolomics. Metabolomics enables the characterization of 

metabolites, the chemical entities that are transformed during metabolism and 
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provide a functional readout of cellular biochemistry (Patti et al., 2012b). Global 

metabolite profiling studies are revealing new discoveries linking cellular pathways to 

biological mechanism, shaping our understanding of cell biology, physiology and 

medicine (Panopoulos et al., 2012; Patti et al., 2012a; Tomita and Kami, 2012). 

In the present study we used serum samples of young and non-obese adolescents 

with HIAE, and age-, weight- and ethnicity-matched healthy controls. The results 

revealed that markers for the long-term health risks of HIAE, such as a type 2 diabetes 

and cardiovascular disease may be already detected early in adolescence with 

oxidative stress markers impacting HDL functionality through oxidation of 

apolipoprotein A1. We also demonstrate that a low-dose combination of PioFluMet 

during 18 months partially restores the levels of oxidative markers to the levels found 

in healthy girls. 

 

MATERIALS AND METHODS 

Study population. The study population consisted of 12 young, non-obese 

adolescents (age, 16.3±0.4 yr; BMI, 22.8±0.5 Kg/m
2
) diagnosed with HIAE and 14 age-, 

weight- and ethnicity-matched healthy controls. Adolescents with HIAE were recruited 

at the Endocrinology Unit of the Sant Joan de Déu-Barcelona Children’s Hospital, 

Barcelona (Spain), among those randomized into a clinical study comparing the effects 

of low-dose combination of PioFluMet with those of a frequently prescribed oral 

contraceptive [cyproteroneacetate 2 mg + 35 mcg ethynilestradiol for for 21 of 28 d, 

and placebo for 7 of 28 d] (Ibáñez L et al., 2013). The girls were chosen among those 

having enough serum sample left to allow for the required assessments. Controls were 

recruited among age-matched student mates with no clinical signs of androgen excess 

and normal menstrual cycles. 

Inclusion criteria were: 1) hyperinsulinemia, defined as fasting-insulinemia above 

15 U/ml and/or hyperinsulinemia on a standard 2-h oral glucose tolerance test, 

defined as peak insulin levels >150 U/mL and/or mean serum insulin >84 µU/mL; and 

2) the presence of both clinical and biochemical androgen excess, as defined by the 

following: hirsutism score above 8 (Ferriman-Gallwey), amenorrhea (no menses for 3 

months) or oligomenorrhea (menstrual cycles longer than 45 d); and high circulating 
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levels of and/or total testosterone (in the follicular phase (days 3–7) or after 2 months 

of amenorrhea. 

Exclusion criteria were: evidence of anemia, thyroid dysfunction, bleeding disorder, 

Cushing syndrome, or hyperprolactinemia; glucose intolerance; diabetes mellitus; late-

onset adrenal hyperplasia; abnormal electrolytes; abnormal screening of liver or 

kidney function; use of medication affecting gonadal or adrenal function, or 

carbohydrate or lipid metabolism. Pregnancy risk was a particular exclusion criterion 

that was not only taken into account when the study began, but was also maintained 

throughout the study in the PioFluMet subgroup. 

Ethics. This clinical study was registered as ISRCTN12871246 and conducted in Sant 

Joan de Déu University Hospital (Barcelona, Spain), after approval by the Institutional 

Review Board of Sant Joan de Déu University Hospital, and after written informed 

consent by each patient. 

Global metabolomics profiling. Untargeted metabolomic analyses on serum 

samples of HIAE and control girls were performed using two analytical platforms: 
1
H-

NMR and LC-ESI-QTOF; each serum sample was split into two aliquots and run in 

parallel using the two analytical platforms. For the NMR measurement 250 μL of serum 

were mixed with 250 μL of phosphate buffer (0.75 mM Na2HPO4 adjusted at pH 7.4, 

and 20% D2O to provide the field frequency lock). The final solution was transferred to 

a 5 mm NMR tube and kept refrigerated at 4ºC in the autosampler until the analysis. 

1
H-NMR spectra were recorded at 310 K on a Bruker Avance III 600 spectrometer 

operating at a proton frequency of 600.20 MHz using a 5 mm CPTCI triple resonance 

(
1
H, 

13
C, 

31
P). Three different 

1
H-NMR pulse experiments were performed for each 

sample: 1) Nuclear Overhauser Effect Spectroscopy (NOESY)-presaturation sequence to 

suppress the residual water peak; and 2) Carr-Purcell-Meiboom-Gill sequence (CPMG, 

spin-spin T2 relaxation filter) with a total time filter of 410 ms to attenuate the signals 

of serum macro-molecules to a residual level; 20 ppm spectral width and a total of 64 

transients collected into 64 k data points. 

The second aliquot was used for LC-MS analysis. 30 μL of serum sample was mixed 

with 120 μL of cold ACN/H2O (1:1) with 1% meta-phosphoric acid (MPA) and 0.1% 

formic acid (previously filtered). Samples were vortexed vigorously for 30 seconds and 

stored at –20ºC for 2 hours to enable protein precipitation. Subsequently, samples 
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were centrifuged 15 minutes at 4ºC and 15000 rpm and the supernetant was 

transferred to a LC-MS vial. Samples were injected in a UHPLC system (1290 Agilent) 

coupled to a quadrupole time of flight (QTOF) mass spectrometer (6550 Agilent 

Technologies) operated in positive electrospray ionization (ESI+) mode. Metabolites 

were separated using either C18-RP (ACQUITY UPLC HSS T3 1.8 μL, Waters) or HILIC 

(ACQUITY UPLC BEH 1.7 μL, Waters) chromatography at a flow rate of 0.4 mL/min. The 

solvent system in C18-RP was A= 0.1% formic in water, and B= 0.1% formic in 

acetonitrile. The linear gradient elution started at 100% A (time 0–3 min) and finished 

at 100% B (20–21 min). The solvent system in HILIC was A= 50mM NH4OcA in water, 

and B= ACN. The linear gradient elution started at 95% B (time 0–2 min) and finished at 

55% B (6 min). The injection volume was 2 μL. ESI conditions were gas temperature, 

225 °C; drying gas, 13 L min
–1

; nebulizer, 20 psig; fragmentor, 125 V; and skimmer, 65 

V. The instrument was set to acquire over the m/z range 80–1200 with an acquisition 

rate of 4 spectra/s. Quality control samples (QC) consisting of pooled serum samples of 

all patients were used. QC samples were injected before the first study sample and 

then periodically after five-study samples. Furthermore, real samples were randomized 

to reduce systematic error associated with instrumental drift. MS/MS was performed 

in targeted mode, and the instrument was set to acquire over the m/z range 50–1000, 

with a default iso width (the width half-maximum of the quadrupole mass bandpass 

used during MS/MS precursor isolation) of 4 m/z. The collision energy was fixed at 20 

V. 

Targeted metabolomics: Relevant metabolites were measured again using an 

UHPLC system (1290 Agilent) coupled to a triple quadrupole (QqQ) MS (6490 Agilent 

Technologies) operated in multiple reaction monitoring (MRM) and positive 

electrospray ionization (ESI+) mode.  MRM transitions were: methionine (150→ 56, 

61), methionine sulfoxide (166→ 56, 74), Taurine (126→ 41, 85), glutamate (148→56, 

84), cysteine-glycine (179→ 59, 116), glutathione (308→ 76, 162), glutathione oxidized 

(613→ 355, 484), glutamate-glutamate (277→ 84, 130), glutamate-cysteine (251→ 84, 

122), 5-oxoproline (130→ 56, 84). 

Characterization of lipoprotein classes:  
1
H NMR spectra were recorded at 310 K 

on a Bruker Avance III 600 spectrometer operating at a proton frequency of 600.20 

MHz (14.1 T). We used the double stimulated echo (DSTE) pulse program with bipolar 
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gradient pulses and a gradient pulse strength of 25% of the maximum strength of 53.5 

Gauss cm
-1

 in order to completely attenuate signals from low molecular weight 

metabolites. The relaxation delay was 2 s, the free induction decays (FIDs) were 

collected into 64K complex data points and 32 scans were acquired on each sample. 

The methyl signal was line-shape fitted using eight 1D Lorentzian functions using a 

modification of a previously reported protocol (Mallol et al., 2013). According to the 

NMR-derived lipoprotein sizes previously described, functions 2 to 8 were associated 

with 1 VLDL, 2 LDL, and 4 HDL lipoprotein subclasses, respectively. For simplification, 

functions 7 to 8 were grouped to obtain the small HDL subclass. 

Data analysis and statistical methods. The acquired CPMG NMR spectra were 

phased, baseline corrected and referenced to the chemical shift of the α-glucose 

anomeric proton doublet at 5.23 ppm. Pure compound references in BBioref AMIX 

(Bruker), HMDB and Chenomx databases were used for metabolite identification. After 

baseline correction, intensities of each 1H-NMR regions identified in the CPMG 1D-

NMR spectra were integrated for each sample entering the study using the AMIX 3.8 

software package (Bruker, GmBH). 

LC-MS (RP-C18 and HILIC ESI+ mode) data were processed using the XCMS software 

(Smith et al., 2006) (version 1.38.0) to detect and align features. A feature is defined as 

a molecular entity with a unique m/z and a specific retention time. XCMS analysis of 

these data provided a matrix containing the retention time, m/z value, and integrated 

peak area of each feature for every serum sample. The tab-separated text files 

containing LC-MS data were imported into R software where QC samples were used to 

filter analytical variation as previously reported (Vinaixa et al., 2012). Then univariate 

statistical analysis was performed using robust statistics (Yuen-Welch’s t-test). 

Differentially regulated metabolites (fold>1.5) that passed our statistical criteria (p-

value<0.01) were characterized by LC-qTOF MS/MS and identified using Metlin 

database or pure standards purchased on our lab.  

SDS-PAGE and trypsin digestion of apolipoprotein A1. Protein precipitation was 

carried out adding 10% of pure trichloroacetic acid (TCA) to 10 μL of serum. Samples 

were vortexed vigorously and incubated on ice for 1 hour. Samples were then 

centrifuged at 4ºC and 14.000 rpm for 15 minutes and the supernatants were 

discarded. 800 μL of cold acetone (-20ºC) were added to the pellet and proteins were 
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suspended and incubated overnight (-20ºC). Samples were centrifuged and the 

supernatant discarded again. This step was repeated and the pellet was air-dried. 

Pellet was resuspended with 100 μL of urea (7M), thiourea (2M) and CHAPS (4%) 

buffer. 10 μL of this solution were added to 30 μL of Laemmli Buffer (4x). 40 μL of such 

solution was applied to a home-made 12% acrylamide/bis-acrylamide SDS-PAGE gel. 

Proteins were Coomassie stained. The band of interest corresponding to Apo-A1 

(MW: 28,1 kDa) was manually excised from 1D SDS-PAGE gels, destained and washed 

with 25 mM AmBic for 15 min followed by a wash with acetonitrile for 15 min. These 

washes were twice repeated and samples were finally dehydrated with 100% 

acetonitrile and dried in a Speed-Vack concentrator. Apo-A1 was cysteine 

carbamidomethylated by placing the dried gel at 56 ºC for 1 h in a reducing solution 

containing 10 mM DTT and 50mM ammonium bicarbonate. Alkylation of the cysteines 

was achieved by incubation of the gel for 30 min in the dark with 55 mM 

iodoacetamide in 25 mM ammonium bicarbonate buffer. Gel pieces were alternately 

washed with 25 mM AmBic and 25 mM AmBic with acetonitrile, and finally dehydrated 

with 100% acetonitrile and dried under vacuum. Gel pieces were incubated with 12.5 

ng/µl sequencing grade trypsin (Roche Molecular Biochemicals) in 25 mM AmBic 

overnight at 37°C. After digestion, the supernatants were separated. Peptides were 

extracted from the gel pieces into 50% ACN, 0.1% trifluoroacetic acid. For each 

extraction, samples were incubated for 10 min in an orbital shaker. All extracts were 

pooled and the volume reduced using a vacuum concentrator. In order to obtain a 

suitable sample for mass spectrometry analysis the pellet was resuspended in 25μL of 

0.1% TFA/water, desalted and concentrated using C18 ZipTips (Millipore). Tryptic 

peptides were sequentially eluted with 5 μL of 70% acetonitrile with 0.1% TFA in 

water. 

MALDI-TOF MS analysis of Apo-A1. Samples were spotted on the MALDI plate 

following the dried-droplet method. Briefly, 1 μl of the reconstituted in-gel digest 

sample was spotted on a BigAnchorChip target plate (BrukerDaltonics), followed by 

1 μl of matrix (10 mg/ml α-cyano-4-hydroxycinnamic acid matrix (BrukerDaltonics) in 

50% ACN, 0.1% trifluoroacetic). Sample and matrix mixture was dried at room 

temperature. Mass spectra were obtained on an UltrafleXtreme (BrukerDaltonics, 

Bremen, Germany) matrix-assisted laser desorption ionization–tandem time of flight 
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(MALDI-TOF/TOF) mass spectrometer. Mass spectra were recorded in positive 

ionization reflectron mode in the mass range of 700–3500 Da. Operating conditions 

were as follows: ion source 1 = 25.00 kV, ion source 2 = 24.40 kV, lens 

voltage = 8.50 kV, reflector voltage = 26.45 kV, optimized pulsed ion extraction 

time = 130 ns, matrix suppression = 500 Da. 1500 single-shot spectra were 

accumulated by recording 50-shot spectra at 10 random positions using fixed laser 

attenuation. Mass spectra were externally calibrated using a standard peptide mixture 

(Bruker); calibration was considered good when a value below 1 ppm was obtained. 

Peptide mass fingerprinting of Apo-A1 and quantization of the ratio MetOx-

148/Met-148. ProteinScape software (Bruker) supported by the Mascot search engine 

(Matrix Science) was used with the following parameters: SWISS-PROT non-redundant 

database filtered by homo sapiens taxonomy, two missed cleavage permission, 50-ppm 

measurement tolerance.  

Carbamidomethylation of cysteines was set as a fixed modification and methionine 

oxidation was set as a variable modification. Positive identifications were accepted 

with a Mascot score higher than that corresponding to a P value of 0.05. The 

quantification of the ratio MetOx-148/Met-148 was performed using the intensity of 

the peptide K.LSPLGEEMS.D (Flex Analysis, Bruker).  

 

RESULTS 

Endocrine and metabolic alterations associated with HIAE in young, non-obese 

girls. 

Endocrine and metabolic parameters were compared between a group of 12 

young, non-obese girls with HIAE and 14 age-, weight- and ethnicity-matched healthy 

controls. Table 1 shows mean values and the standard error of the mean for each 

variable. As expected by definition, endocrine alterations in adolescent girls with HIAE 

relative to healthy controls included increased significant (p≤0.05) serum levels of 

insulin, testosterone, dehydroepiandrosterone sulfate (DHEAS) and leptin. On the 

other hand, metabolic values such as the fasting glucose to insulin ratio, total 

cholesterol were increased in HIAE girls and HDL-cholesterol was decreased in HIAE 

girls. Levels of superoxide dismutase (SOD), a key antioxidant enzyme protecting the 

cells, were also decreased in PCOS. Two-hour glucose levels on an oral glucose 
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tolerance test (oGTT), triglycerides and LDL-cholesterol levels did not show differences 

from healthy control adolescents.     

Thus, hyperinsulinemia with normal fasting glucose levels in HIAE girls may reflect 

insulin resistance, as suggested by the increased ratio of glucose to insulin. However, 

we could disclose no evidences of impaired glucose tolerance, hyperglycemia or 

hypertriglyceridemia at this early age. 

 

Table 1. Physiological and biochemical parameters.  

 CTR        PCOS p-value 

Age (yr) 17.2 ± 0.4 16.3 ± 0.4 0.15 

BW SDS  0.3 ± 0.1 -0.2 ± 0.4 0.58 

Wt (kg) 58.8 ± 1.8 58.2 ± 1.2 0.92 

Ht (cm) 163.9 ± 1.3 160.0 ± 1.5 0.06 

BMI (Kg/m
2
) 21.8 ± 0.6 22.8 ± 0.5 0.23 

BMI SDS 0.2 ± 0.2 0.5 ± 0.2 0.16 

WBC (cell/mm3) 7.3 ± 0.3 7.8 ± 0.5 0.26 

Neutrophils (x1000/mm3) 4.1 ± 0.3 4.4 ± 0.5 0.63 

Lymphocytes (x1000/mm3) 2.2 ± 0.1 2.5 ± 0.22 0.41 

N/L (ratio) 1.9 ± 0.2 2.0 ± 0.4 0.51 

AST (μL/L) 16.6 ± 0.7 16.8 ± 1.6 0.59 

ALT (μL/L) 13.6 ± 1.0 13.2 ± 1.1 0.83 

oGTT (mg/dL) 89.1 ± 1.5 85.4 ± 2.0 0.14 

Insulin (µU/mL) 3.5 ± 0.6 10.3 ± 1.6 0.01 

G/I ratio 32.8 ±3.6 11.2 ± 1.9 0.0004 

Total Cholesterol 143.9 ± 5.9 145.9 ± 6.8 0.75 

HDL-cholesterol 52.6 ± 2.3 51.9 ± 3.3 0.77 

LDL-cholesterol 80.5 ± 5.4 78.7 ± 4.5 0.88 

Triglycerides 53.4 ± 3.6 76.8 ± 16.5 0.57 

Testosterone (ng/dL) 32 ± 2.4 64.2 ± 10.2 0.05 

DHEAS (μg/dL) 222.1 ± 27.8 280.8 ± 31.5 0.03 

Leptin (ng/mL) 13.9 ± 2.3 20.9 ± 2.7 0.05 

usCRP (mg/L) 0.7 ± 0.2 1.1 ± 0.2 0.14 

SOD (U/mL) 6.1 ± 0.3 5.4 ± 0.2 0.03 

Data are represented as mean±standard error of the mean (SEM). P-values are calculated from 

a robust Yuen-Welch’s t-test. BW SDS: Birth weight standard desviation, Wt: weight, Ht: height, 

BMI: body mass index, BMI SDS: body mass index standard desviation, WBC: white blood cells, 

N/L: Neutrophils/Lymphocytes, AST: aspartate transaminase, ALT: alanine aminotransferase, 

oGTT: oral glucose tolerance test, G/I ratio: Glucose/insuline ratio, DHEAS: 

dehydroepiandrosterone sulfate, usCRP: ultrasensitive-C-Reactive Protein, SOD: superoxid 

dismutase. 
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Alteration of the VLDL, LDL and HDL serum profile in non-obese adolescents with 

HIAE  

Dyslipidemia is a characteristic lipid abnormality in PCOS and it is an important risk 

factor linked to metabolic syndrome, T2D and CVD. Here we studied the lipoprotein 

profile of adolescent girls with HIAE beyond standard measurement of cholesterol 

content of lipoproteins, by using an advanced lipoprotein analysis based on nuclear 

magnetic resonance (NMR) spectroscopy (Mallol et al., 2013). 
1
H-NMR allowed us to 

characterize the size and relative abundance of lipoprotein particles in serum. Briefly, 

depending on the size of the lipoprotein particle, the methyl moieties of the lipids in 

lipoproteins resonate at slightly different frequencies, the smaller particles resonating 

at lower frequencies (Figure 1a). Our NMR-derived lipoprotein subclasses were defined 

as VLDL, large LDL, small LDL, large HDL, medium HDL, and small HDL. 

Relative levels of VLDL, small LDL and large LDL were significantly increased in HIAE 

relative to control girls. In contrast, the relative abundance of large, medium and small 

HDL subclasses were decreased in HIAE, with the greatest decline though associated 

with large HDL (Figure 1b). Table 2 shows the differences in serum lipoproteins 

between adolescent girls with HIAE and healthy controls. Thus, the NMR-based 

characterization of lipoprotein subclasses revealed a dyslipidemic profile in girls with 

HIAE, which is similar to the one observed in the metabolic syndrome and its 

associated pathologies; T2D and CVD (Dokras, 2013).  

 

Figure 1. Lipoprotein profile measured by NMR spectroscopy. (A) Bipolar LED pulse sequence 
1
H NMR 

spectra of a HIAE serum showing the fitting of the methyl band using the seven Lorentzian functions 

derived from our previously described methodology (B) Row-wise normalized areas showed as 

mean±sem. VLDL: very low-density lipoprotein, lLDL: large low-density lipoprotein, sLDL: small low-
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density lipoprotein, lHDL: large high-density lipoprotein, mHDL: medium high-density lipoprotein, sHDL: 

small high-density lipoprotein 

 

Table 2. NMR lipoprotein profile in serum samples.  

 % variation p-value 

VLDL 50 0.012 

Large LDL 20 0.0264 

Small LDL 31 0.0245 

Large HDL -63 0.00001 

Medium HDL -52 0.0058 

Small HDL -20 0.02 

Percentage of variation of each lipoprotein subclass in HIAE with respect to control girls, and p-

values (Yuen-Welch’s t-test). 

 

 

Metabolomics reveals altered glutathione biosynthesis via the γ-glutamyl cycle, 

and elevated levels of methione sulfoxide in HIAE.   

The relative abundance of serum metabolites in girls with HIAE and healthy 

controls were compared using an untargeted metabolomic approach based on reverse 

phase (RP)-C18 and HILIC chromatography coupled to electrospray ionization 

quadrupole time-of-flight mass spectrometry (LC ESI-QTOF-MS) in positive ionization 

mode in combination with 
1
H-NMR metabolite profiling (Supplementary Table 1). Our 

MS-based platform enabled us to observe greater than 38.000 metabolite features 

defined as molecular entities with a unique mass/charge and retention time value, 

after the analytical variability had been corrected. Only the integrated areas of those 

metabolite features above 5,000 spectral counts in at least one of the two groups were 

considered for quantification (see the Methods section for further details). We next 

structurally identified metabolites based on accurate mass and MS/MS data that 

differed between HIAE and healthy controls. We identified 7 and 7 metabolites using 

RP-C18 and HILIC, respectively, that showed a greater than 50% of variation with a p-

value < 0.01 (Yuen-Welch’s t-test) (Supplementary Table 2). We found that levels of γ-

glutamyl dipeptides were higher in serum of adolescent girls with HIAE compared to 

healthy controls. γ-glutamyl dipeptides are involved in the γ-glutamyl cycle that 

transports amino acids into cells and plays a key role for the synthesis and degradation 

of glutathione, which is a key reducing agent that protects from oxidative damage. 

Furthermore, the NMR analysis revealed lower levels of glycine in serum samples of 
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HIAE girls. Glycine can be added to the C-terminal of γ-glutamylcysteine (Glu-Cys) via 

the enzyme glutathione synthetase to produce reduced glutathione. Finally, lower 

levels of methionine in serum samples of HIAE were associated with greater levels of 

methionine sulfoxide in these patients, indicating increased oxidation of this 

aminoacid. 

To confirm that the biosynthesis of glutathione via the γ-glutamyl cycle was really 

altered in girls with HIAE, we quantified reduced glutathione and the ratio of reduced 

to oxidized glutathione (GSH/GSSG) using triple-quadrupole mass spectrometry (QqQ 

MS) and multiple reaction monitoring (MRM). At the same time, we requantified most 

significant metabolites described in Supplementary Table 1 using pure standards 

(when commercially available), and quantified the additional γ-glutamyl dipeptide Glu-

Cys not detected by our untargeted metabolomic approach (Table 3).  

Table 3.Targeted metabolomics. 

 % variation p-value 

Methionine -344 0.00005 

Methionine Sulfoxide 40 0.0018 

5-oxoproline 39 0.005 

Taurine 28 0.015 

Glu-Cys 37 0.0002 

Glu-Glu 35 0.027 

Glutamate 33 0.004 

GSH 34 0.036 

GSH/GSSG 29 0.023 

Glu-Taurine* 73 0.0000003 

Glu-Gly* 98 0.00015 

Glycine -20 0.031 

Percentage of variation and p-values (Yuen-Welch’s t-test) of metabolites. Negative and 

positive values indicate lower and higher levels, respectively, in girls with HIAE relative to 

healthy controls. Glu: glutamate, cys: cysteine, GSH: glutathione, Gly: glycine, GSH/GSSG: 

glutathione/oxidated glutathione. *Glu-taurine and *Glu-Gly could not be quantified by LC-

QqQ in MRM mode due to the lack of pure standards and reported values are from LC-qTOF 

MS. Gly’s value is from NMR. 

 

Glutamyl dipeptides (Glu-Glu, Glu-Tau, Glu-Cys and Glu-Gly), amino acids 

(glutamate, 5-oxoproline and taurine), GSH and the GSH/GSSG ratio were significantly 

elevated in HIAE. Therefore, the targeted analysis validated our untargeted 

metabolomic results and proved the activation of the γ-glutamyl cycle in HIAE to 

synthesize reducing agents in the form of GSH (Figure 2). 



 35

 

Figure 2. Identified and quantified metabolites involved in the γ-glutamyl cycle. The scatter plots show 

the relative abundance (i.e., intensity) of individual metabolites in controls and HIAE samples and 

trimmed mean (control in red and HIAE in blue). 

 

Moreover, the trend that we observed between methionine and methionine 

sulfoxide (MetOx) was confirmed, that is, a drop in methione levels (Figure 3A) comes 

with a significant increase in MetOx (Figure 3B) in adolescent girls with HIAE.   
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Figure 3.Targeted analysis of methionine and methionine sulfoxide. The scatter plots show the relative 

abundance of methionine (A) and methionine sulfoxide (B) in controls and HIAE samples and trimmed 

mean (control in red and HIAE in blue).   

 

Methionine residues in proteins can be readily oxidized by reactive oxygen species 

to MetOx (Stadtman et al., 2003). In the context of our study, oxidation of methione 

residues in apolipoprotein A1 (Apo-A1) has been associated with impaired reverse 

cholesterol transport by HDL, and consequently, impaired maturation of HDL particles 

(Shao et al., 2008). This could partly explain the lower percentage of HDL particles, and 

more specifically, of large HDL particles in girls with HIAE relative to healthy controls 

(Figure 1). Since Apo-A1 is the major protein component of HDL and one of the most 

abundant proteins in human serum (Fisher et al., 2012), we hypothesized that girls 

with HIAE show greater oxidation of methionine residues in Apo-A1 relative to healthy 

girls. 

 

Quantitative analysis of the MetOx/Met ratio in Apo-A1 by MALDI-TOF MS 

To test the hypothesis that girls with HIAE suffer from increased oxidation of 

methionine residues in Apo-A1, we measured the ratio of MetOx/Met in Apo-A1 using 

SDS-PAGE and MALDI-TOF MS. In particular, we focused on a single methionine 

residue of Apo-A1, Met-148, the oxidation of which has been associated with loss of 

LCAT activity, a critical early step in reverse cholesterol transport (Sorci-Thomas and 

Thomas, 2002). 
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Briefly, we separated serum proteins of 10 non-obese adolescent girls with HIAE 

and 6 healthy controls using 1D SDS-PAGE, and the bands of interest corresponding to 

the molecular weight of Apo-A1 (28.1 kDa) were manually excised from the gel 

electrophoresis. After in-gel digestion with trypsin, peptides were recovered for 

MALDI-TOF MS analysis (see the Methods sections for details). Apo-A1 sequence 

coverage was 61% on average and MetOx-148/Met-148 was calculated from the ratio 

of peak intensity of peptides m/z 1047.51 (sequence K.LSPLGEEMR.D) and m/z 1411.67 

of Apo-A1. We recognize that MetOx could partly be generated during sample 

preparation and analysis as an artifact. However, since we measured the ratio MetOx-

148/Met-148 of Apo-A1 separately for each sample, this should not alter the relative 

differences between HIAE and control group. 

The ratio MetOx-148/Met-148 in Apo-A1 was significantly increased in girls with 

HIAE compared with healthy controls (Figure 4a). Furthermore, we found a positive 

and statistically significant correlation between the ratio MetOx-148/Met-148 in Apo-

A1 and free methionine sulfoxide in serum (Figure 4b). 

 

Figure 4. Apo-AI measurement. (A) Ratio of MetOx-148/Met-148 in apo-AI calculated from the intensity 

of the peptide K.LSPLGEEMR.D in Apo-A1. (B) Statistically significant correlation (p=6.95E-05 and r=0.8) 

between free methionine sulfoxide in serum and the oxidation state of apo-AI on the basis of the ratio 

of MetOx-148/Met-148 by MALDI-TOF MS. Control in red and HIAE in blue.    

 

 

Therefore, levels of methionine sulfoxide in serum are directly linked to the degree 

of oxidation of the Met-148 residue in Apo-A1, which could reflect turnover and 

proteolytic degradation of Apo-A1 proteins. 
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 Finally, there is also a negative correlation between the number of large (i.e., 

mature) HDL particles and methionine sulfoxide in serum (Figure 5), which reinforces 

our hypothesis that levels of methionine sulfoxide in serum reflect HDL oxidation, and 

indirectly, impaired maturation of HDL particles. 

 

Figure 5. Correlation results. Statistically significant negative correlation (p=1.13E-03 and r=-0.7) 

between free levels of methionine sulfoxide in serum and the percentage of large HDL particles. Control 

in red and HIAE in blue.   

 

Metabolic changes after 18 months of PioFluMet polytherapy in non-obese girls 

with HIAE  

Ibañez and colleagues demonstrated that a low-dose combination of PioFluMet 

proved to be more beneficial than oral contraceptives in regulating endocrine-

metabolic parameters, decreasing inflammation and visceral fat, and in improving 

markers of cardiovascular health (Ibanez et al., 2007).  

Here, we also measured the novel metabolic markers described above in girls with 

HIAE, after 18 months of PioFluMet polytherapy. Specifically, metabolites involved in 

the biosynthesis of GSH via the γ-glutamyl cycle, the size and relative abundance of 

lipoprotein particles, and the degree of oxidation of Apo-A1 by means of the MetOx-

148/Met-148 ratio were monitored using NMR and MS in the serum of 6 patients after 

18 months of PioFluMet treatment.   

The abundance of individual markers was scaled to unit variance and projected 

using an unsupervised principal component analysis (PCA) (Figure 6A). The scores plot 

reveals two clusters along PC1 (~47% of the variance) corresponding to adolescent girls 
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with HIAE on the one hand, and healthy controls and HIAE girls treated with PioFluMet 

on the other. This distribution indicates that the metabolic state of non-obese girls 

with HIAE after 18 months of PioFluMet treatment more closely resemble the state of 

healthy girls, suggesting an overall improvement of the metabolic conditions of HIAE. 

To interpret the pattern displayed in the scores plot, Figure 6B shows a loading bar 

plot of the PCA using each individual metabolic marker measured. The relative 

abundance of large HDL particles and levels of free methionine in serum are the two 

largest contributing variables to positive values in PC1. After the treatment with 

PioFluMet, the levels of methionine and large HDL particles recovered to the levels 

found in healthy girls (Figure 6c and 6d). Similarly, the levels of methionine sulfoxide 

and the oxidation of Apo-A1 in the Met-148 residue decreased after the treatment, 

reaching similar levels seen in healthy girls (Figure 6e and 6f).   
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Figure 6. Metabolic changes after 18 months of PioFluMet polytherapy. (A) PC1/PC2 scatter scores plot 

and (B) PC1 loading bar plot of PCA showing all the metabolites measured in HIAE patients after the 

treatment. (C) Relative intensity of free methionine in serum. (D) Percentage of large HDL particles in 

serum (E) Relative intensity of free methionine sulfoxide in serum. (F) Ratio of MetOx-148/Met-148 in 

apo-AI calculated from the intensity of the pepide K.LSPLGEEMR.D. 

 

DISCUSSION  

A better insight into hyperinsulinemic androgen excess (HIAE) in non-obese 

adolescents with a mild PCOS phenotype may contribute to the elucidation of early 

origins of PCOS and the causes of its association with an increased incidence of pre-

diabetic states (Apridonidze et al., 2005) and possibly cardiovascular events (Sukalich 

and Guzick, 2003). Ultimately, novel insights should sharpen the perspective of early 
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PCOS prevention (Ibanez et al., 2014). 

The PCOS phenotype has been associated with an imbalance between pro-oxidant 

and anti-oxidant mechanisms (Blair SA et al., 2013; Macut D et al., 2013), however, the 

underlying causes of this association remains unclear (Murri M et al., 2013). In our 

study the pro-oxidant events in adolescent girls with HIAE include low levels of the 

enzyme SOD, in accordance to previous studies (Seleem et al., 2014), increased 

oxidation of methionine residues in Apo-AI and accumulation of the oxidative marker 

methionine sulfoxide in HIAE serum. Interestingly, girls with HIAE appear to activate a 

compensatory and anti-oxidant mechanism that aims to regulate their redox status by 

synthesizing glutathione (GSH) through the γ-glutamyl cycle (Zhang et al., 2005). This is 

reflected in greater levels of the anti-oxidant GSH and the GSH/GSSG ratio in HIAE. 

Redox imbalances have been also described in atherosclerotic diseases (Stocker and 

Keaney, 2005), diabetes (Martitim et al., 2003; Sundaram et al., 1996) and metabolic 

syndrome (Roberts and Sindhu, 2009). 

Oxidative modifications are considered an initial step in lipoprotein conversion into 

more atherogenic particles (Kaysen and Eiserich, 2004; Shao et al., 2008), particularly 

in LDL particles (Jialal and Devaraj, 1996). In contrast, HDL cholesterol is generally 

associated with lower risk of cardiovascular disease (Valkenburg et al., 2008), 

metabolic syndrome and type 2 diabetes (von Eckardstein A and Widmann C, 2014). 

Concretely, HDL cholesterol is generally associated with atheroprotective properties, 

which include mediation of reverse cholesterol transport (Rosenson et al., 2013). The 

functional status of HDL is closely linked to its primary protein component, Apo-AI, an 

abundant apolipoprotein whose plasma concentrations are inversely correlated with 

the incidence of coronary artery disease (Borja et al., 2013). Notwithstanding, when 

Rajkhowa et al. measured the concentration of apo-AI in HDL particles in control and 

PCOS women, no change in the content of apoA-I was observed (Rajkhowa et al., 

1997).  

Alternatively, oxidation of methionine residues in apo-AI has been shown to impair 

reverse cholesterol transport by HDL (Shao et al., 2008). Specifically, the oxidation of 

Met-148 in apo-AI impairs apo-AI’s ability to activate lecithin cholesterol 

acyltransferase (LCAT) (Shao et al., 2008). LCAT is the enzyme responsible for 

transforming nascent HDL into spherical HDL particles containing a central 
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hydrophobic core of cholesteryl esters and an outer layer composed of apo-AI and 

phospholipids. Our NMR lipoprotein study shows lower percentage of large (i.e., 

mature) HDL particles in HIAE relative to control girls. This circumstance, together with 

the increased oxidation of Met-148 residues in apo-AI of HIAE girls suggests impaired 

HDL function and, consequently, reduced ability to form mature HDL particles. 

 It has recently been shown that hyperandrogenemia and glucose ingestion induce 

oxidative stress and that women with androgen excess fail to suppress the release of 

inflamation markers after glucose ingestion (González F et al., 2012; González F et al., 

2006; González et al., 2014). In the current period of caloric abundance and chronically 

positive energy balance for most adolescents (Corbett SJ et al., 2009), we postulate 

that hyperandrogenism in combination with excessive carbohydrate intake in a likely 

scenario of adipose tissue hypertrophy, may cause oxidative stress and oxidation of 

lipoprotein particles, resulting ultimately in impaired lipoprotein function and 

dyslipidemia. In our view, therefore, HIAE leads to alterations in lipoprotein 

metabolism, and both events precede other metabolic complications associated with 

the increased risk for metabolic syndrome (Anderson et al., 2014; Sharpless, 2003) and 

diabetes, including hypertriglyceridemia, impaired fasting glycemia and impaired 

glucose tolerance (Figure 7). 

 

Figure 7. Schematic representation of the underlying pathway by which HIAE is associated with 

long-term health risks, namely metabolic syndrome, diabetes and possibly, cardiovascular disease. 
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It is also tempting to speculate that the triad of methionine sulfoxide in serum, 

concentration of HDL subclasses (i.e., small, medium, large) and the ratio of 

methionine oxidation in apo-AI may represent novel biomarkers of pre-diabetes and 

metabolic syndrome. Further work is needed to study this combination of biomarkers 

in the general population.  

Finally, early treatment with low-dose PioFluMet proves again its efficacy on 

androgen excess and hyperinsulinemia (Ibáñez L et al., 2013), while improving the 

lipoprotein profile and most oxidative stress markers of non-obese adolescents with 

HIAE previously unknown. These observations extend further the benefits of therapies 

leading to a more physiological condition in adolescents with HIAE, questioning the 

rationale for applying symptom-directed therapies that might potentially impact on 

later co-morbidities (Beaber et al., 2014). 

 

REFERENCES 

Anderson, S.G., Dunn, W.B., Banerjee, M., Brown, M., Broadhurst, D.I., Goodacre, R., 

Cooper, G.J.S., Kell, D.B. and mail, J.K.C. (2014) Evidence That Multiple Defects 

in Lipid Regulation Occur before Hyperglycemia during the Prodrome of Type-2 

Diabetes PLoS ONE, 9, e103217. 

Apridonidze, T., Essah, P.A., Iuorno, M.J. and Nestler, J.E. (2005) Prevalence and 

Characteristics of the Metabolic Syndrome in Women with Polycystic Ovary 

Syndrome. The Journal of Clinical Endocrinology & Metabolism, 90, 1929-1935. 

Apter D, Bützow T, Laughlin GA and SS, Y. (1995) Metabolic features of polycystic ovary 

syndrome are found in adolescent girls with hyperandrogenism. . Journal of 

Clinical Endocrinology & Metabolism, 80, 2966-2973. 

Azziz, R., Woods, K.S., Reyna, R., Key, T.J., Knochenhauer, E.S. and Yildiz, B.O. (2004) 

The Prevalence and Features of the Polycystic Ovary Syndrome in an 

Unselected Population. The Journal of Clinical Endocrinology & Metabolism, 89, 

2745-2749. 

Barbieri RL, Smith S and KJ, R. (1988) The role of hyperinsulinemia in the pathogenesis 

of ovarian hyperandrogenism. Fertility and Sterility, 50, 197–212. 

Beaber, E.F., Buist, D.S.M., Barlow, W.E., Malone, K.E., Reed, S.D. and Li, C.I. (2014) 

Recent Oral Contraceptive Use by Formulation and Breast Cancer Risk among 

Women 20 to 49 Years of Age. Cancer Research, 74, 4078–4089. 

Blair SA, Kyaw-Tun T, Young IS, Phelan NA, Gibney J and J., M. (2013) Oxidative stress 

and inflammation in lean and obese subjects with polycystic ovary syndrome. 

The Journal of reproductive medicine, 58, 107-114. 

Borja, M.S., Zhao, L., Hammerson, B., Tang, C., Yang, R., Carson, N., Fernando, G., Liu, 

X., Budamagunta, M.S., Genest, J., Shearer, G.C., Duclos, F. and Oda, M.N. 

(2013) HDL-apoA-I Exchange: Rapid Detection and Association with 

Atherosclerosis. PLoS ONE, 8, e71541. 



 44

Corbett S and Morin-Papunen L. (2013) The Polycystic Ovary Syndrome and recent 

human evolution. Molecular and cellular endocrinology. Molecular and Cellular 

Endocrinology, 373, 39-50. 

Corbett SJ, McMichael AJ and Prentice AM. (2009) Type 2 diabetes, cardiovascular 

disease, and the evolutionary paradox of the polycystic ovary syndrome: a 

fertility first hypothesis. . American journal of human biology : the official 

journal of the Human Biology Council, 21, 587-598. 

Chang RJ, Nakamura RM, Judd HL and SA, K. (1983) Insulin resistance in nonobese 

patients with polycystic ovarian disease. Journal of Clinical Endocrinology & 

Metabolism, 57, 356–359. 

de Zegher F and Ibáñez L. (2009) Early Origins of polycystic ovary syndrome: 

hypotheses may change without notice. Journal of Clinical Endocrinology & 

Metabolism, 94, 3682-3685. 

de Zegher F, Lopez-Bermejo A and L, I. (2009) Adipose tissue expandability and the 

early origins of PCOS. . Trends in endocrinology and metabolism: TEM, 20, 418-

423. 

Dokras, A. (2013) Cardiovascular disease risk in women with PCOS. Steroids, 78, 773-

776. 

Dronavalli, S. and Ehrmann, D.A. (2007) Pharmacologic therapy of polycystic ovary 

syndrome. Clinical Obstetrics and Gynecology, 50, 244-254. 

Dunaif, A. (1997) Insulin resistance and the polycystic ovary syndrome: Mechanism and 

implications for pathogenesis. Endocrine Reviews, 18, 774-800. 

Fauser BC, T.B., Rebar RW, Legro RS, Balen AH, Lobo R, Carmina E, Chang J, Yildiz BO, 

Laven JS, Boivin J, Petraglia F, Wijeyeratne CN, Norman RJ, Dunaif A, Franks S, 

Wild RA, Dumesic D, Barnhart K,. (2012) Consensus on women's health aspects 

of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 

3rd PCOS Consensus Workshop Group. Fertility and Sterility, 97, 28-38.e25. 

Fisher, E., Feig, J., Hewing, B., Hazen, S. and Smith, J. (2012) High-Density Lipoprotein 

Function, Dysfunction, and Reverse Cholesterol Transport. Arteriosclerosis, 

Thrombosis, and Vascular Biology, 32, 2813-2820. 

Franks, S. (1995) Polycystic Ovary Syndrome. New England Journal of Medicine, 333, 

853-861. 

Gambineri A, Patton L, Altieri P, Pagotto U, Pizzi C, Manzoli L and R., P. (2012) 

Polycystic ovary syndrome is a risk factor for type 2 diabetes: results from a 

long-term prospective study. Diabetes, 61, 2369-2374. 

González F, Nair KS, Daniels JK, Basal E, Schimke JM and HE., B. (2012) 

Hyperandrogenism sensitizes leukocytes to hyperglycemia to promote 

oxidative stress in lean reproductive-age women. Journal of Endocrinology 

Metabolism, 97, 2836-2843. 

González F, Rote NS, Minium J and JP., K. (2006) Reactive oxygen species-induced 

oxidative stress in the development of insulin resistance and hyperandrogenism 

in polycystic ovary syndrome. Journal of Clinical Endocrinology & Metabolism, 

91, 226-240. 

González, F., Sia, C.L., Shepard, M.K., Rote, N.S. and Minium, J. (2014) The altered 

mononuclear cell-derived cytokine response to glucose ingestion is not 

regulated by excess adiposity in polycystic ovary syndrome. Journal of Clinical 

Endocrinology & Metabolism, epub, 2014-2046. 



 45

Ibanez, L., Diaz, M., Sebastiani, G., Sanchez-Infantes, D., Salvador, C., Lopez-Bermejo, 

A. and de Zegher, F. (2011) Treatment of Androgen Excess in Adolescent Girls: 

Ethinylestradiol-Cyproteroneacetate Versus Low-Dose Pioglitazone-Flutamide-

Metformin. Journal of Clinical Endocrinology & Metabolism, 96, 3361-3366. 

Ibanez, L., Lopez-Bermejo, A., del Rio, L., Enriquez, G., Valls, C. and de Zegher, F. (2007) 

Combined low-dose pioglitazone, flutamide, and metformin for women with 

androgen excess. Journal of Clinical Endocrinology & Metabolism, 92, 1710-

1714. 

Ibanez, L., Lopez-Bermejo, A., Diaz, M., Enriquez, G., Del Rio, L. and De Zegher, F. 

(2010) Low-dose pioglitazone, flutamide, metformin plus an estro-progestagen 

for non-obese young women with polycystic ovary syndrome: increasing 

efficacy and persistent safety over 30 months. Gynecological Endocrinology, 26, 

869-873. 

Ibanez, L., Ong, K.K., Lopez-Bermejo, A., Dunger, D.B. and de Zegher, F. (2014) 

Hyperinsulinaemic androgen excess in adolescent girls. Nat Rev Endocrinol, 

p499 doi:10.1038/nrendo.2014.58. 

Ibáñez L, Díaz M, Sebastiani G, Marcos MV, López-Bermejo A and de Zegher F. (2013) 

Oral contraception vs insulin sensitization for 18 months in nonobese 

adolescents with androgen excess: posttreatment differences in C-reactive 

protein, intima-media thickness, visceral adiposity, insulin sensitivity, and 

menstrual regularity. The Journal of clinical endocrinology and metabolism. , 98, 

E902-907. 

Jialal, I. and Devaraj, S. (1996) The role of oxidized low density lipoprotein in 

atherogenesis. Journal of Nutrition, 126, 1053S-1057S. 

Kaysen, G. and Eiserich, J. (2004) The role of oxidative stress-altered lipoprotein 

structure and function and microinflammation on cardiovascular risk in patients 

with minor renal dysfunction. Journal American Society Nephrology, 15, 538-

548. 

Kobaly, K., Vellanki, P., Sisk, R.K., Armstrong, L., Lee, J.Y., Lee, J., Hayes, M.G., Urbanek, 

M., Legro, R.S. and Dunaif, A. (2014) Parent-of-Origin Effects on Glucose 

Homeostasis in Polycystic Ovary Syndrome. The Journal of Clinical 

Endocrinology & Metabolism, 0, jc.2013-4338. 

Legro RS, A.S., Ehrmann DA, Hoeger KM, Murad MH, Pasquali R, Welt CK; Endocrine 

Society,. (2013) Diagnosis and treatment of polycystic ovary syndrome: an 

Endocrine Society clinical practice guideline. Journal of Clinical Endocrinology & 

Metabolism, 98, 4565-4592. 

Lewy VD, Danadian K, Witchel SF and S., A. (2001) Early metabolic abnormalities in 

adolescent girls with polycystic ovarian syndrome. The Journal of pediatrics, 

138, 38-44. 

Macut D, Bjekić-Macut J and A., S.-R. (2013) Dyslipidemia and oxidative stress in PCOS. 

Frontiers of hormone research. , 40, 51-63. 

Mallol, R., Rodriguez, M.A., Brezmes, J., Masana, L. and Correig, X. (2013) Human 

serum/plasma lipoprotein analysis by NMR: Application to the study of diabetic 

dyslipidemia. Progress in Nuclear Magnetic Resonance Spectroscopy, 70, 1-24. 

March, W.A., Moore, V.M., Willson, K.J., Phillips, D.I.W., Norman, R.J. and Davie, M.J. 

(2010) The prevalence of polycystic ovary syndrome in a community sample 



 46

assessed under contrasting diagnostic criteria. Human Reproduction, 25, 544-

551. 

Martitim, A., Sanders, R. and Watkins, J. (2003) Diabetes, oxidative stress, and 

antioxidants: a review. Journal of Biochemical Molecular Toxicology, 17, 24-38. 

Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M and HF, E.-M. (2013) 

Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a 

systematic review and meta-analysis. . Human reproduction update, 19, 268-

288. 

Panopoulos, A.D., Yanes, O., Ruiz, S., Kida, Y.S., Diep, D., Tautenhahn, R., Herrerias, A., 

Batchelder, E.M., Plongthongkum, N., Lutz, M., Berggren, W.T., Zhang, K., 

Evans, R.M., Siuzdak, G. and Belmonte, J.C.I. (2012) The metabolome of 

induced pluripotent stem cells reveals metabolic changes occurring in somatic 

cell reprogramming. Cell Research, 22, 168-177. 

Patti, G.J., Yanes, O., Shriver, L.P., Courade, J.-P., Tautenhahn, R., Manchester, M. and 

Siuzdak, G. (2012a) Metabolomics implicates altered sphingolipids in chronic 

pain of neuropathic origin. Nature Chemical Biology, 8, 232-234. 

Patti, G.J., Yanes, O. and Siuzdak, G. (2012b) Metabolomics: the apogee of the omics 

trilogy. Nature Reviews Molecular Cell Biology, 13, 263-269. 

Rajkhowa, M., Neary, R., Kumpatla, P., Game, F., Jones, P., Obhrai, M. and Clayton, R. 

(1997) Altered Composition of High Density Lipoproteins in Women with the 

Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 

82, 3389-3394. 

Roberts, C. and Sindhu, K. (2009) Oxidative stress and metabolic syndrome. Life Sci., 

84, 705-712. 

Rosenson, R.S., Jr, H.B.B., Ansell, B., Barter, P., Chapman, M.J., Heinecke, J.W., 

Kontush, A., Tall, A.R. and Webb, N.R. (2013) Translation of High-Density 

Lipoprotein Function Into Clinical Practice 

Current Prospects and Future Challenges. Circulation, 128, 1256-1267. 

Seleem, A.K., Refaeey, A.A.E., Shaalan, D., Sherbiny, Y. and Badawy, A. (2014) 

Superoxide dismutase in polycystic ovary syndrome patients undergoing 

intracytoplasmic sperm injection. Journal of Assisted Reproduction and 

Genetics, 31, 499-504. 

Shao, B., Cavigiolio, G., Brot, N., Oda, M. and Heinecke, J. (2008) Methionine oxidation 

impairs reverse cholesterol transport by apoprotein A-1. PNAS, 105, 12224-

12229. 

Sharpless, J.L. (2003) Polycystic Ovary Syndrome and the Metabolic Syndrome. Clinical 

Diabetes, 21, 154-161. 

Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. and Siuzdak, G. (2006) XCMS: 

Processing mass spectrometry data for metabolite profiling using Nonlinear 

peak alignment, matching, and identification. Analytical Chemistry, 78, 779-

787. 

Sorci-Thomas, M. and Thomas, M. (2002) The effects of altered apolipoprotein A-I 

structure on plasma HDL concentration. Trends in Cardiovascular Medicine, 12, 

121-128. 

Stadtman, E.R., Moskovitz, J. and Levine, R.L. (2003) Oxidation of methionine residues 

of proteins: Biological consequences. Antioxidants & Redox Signaling, 5, 577-

582. 



 47

Stocker, R. and Keaney, J. (2005) New insights on oxidative stress in the artery wall. 

Journal Thromb Haemost. , 3, 1825-1834. 

Sukalich, S. and Guzick, D. (2003) Cardiovascular health in women with polycystic ovary 

syndrome. Seminars in Reproductive Medicine, 21, 309-315. 

Sundaram, R., Bhaskar, A., Vijayalingam, S., Viswanathan, M., Moahn, R. and 

Shanmugasundaram, K. (1996) Antioxidant status and lipid peroxidation in type 

II diabetes mellitus with and without complications. Clin Sci, 90, 255-260. 

Talbott EO, Guzick DS, Sutton-Tyrrell K, McHugh-Pemu KP, Zborowski JV, Remsberg KE 

and Kuller LH. (2000) Evidence for association between polycystic ovary 

syndrome and premature carotid atherosclerosis in middle-aged women. . 

Arteriosclerosis, thrombosis, and vascular biology, 20, 2414-2421. 

Tomita, M. and Kami, K. (2012) Systems Biology, Metabolomics, and Cancer 

Metabolism. Science, 336, 990-991. 

Tsilchorozidou, T., Overton, C. and Conway, G. (2004) The pathophysiology of 

polycystic ovary syndrome. Clinical Endocrinology 60, 1-17. 

Valkenburg, O., Steegers-Theunissen, R., Smedts, H., Dallinga-Thie, G., Fauser, B., 

Westerveld, E. and Laven, J. (2008) A more atherogenic serum lipoprotein 

profile is present in women with polycystic ovary syndrome: a case-control 

study. Journal Clinical Endocrinology Metabolism, 93, 470-476. 

Vinaixa, M., Samino, S., Saez, I., Duran, J., Guinovart, J. and Yanes, O. (2012) A 

Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted 

Metabolomics-Derived Data. Metabolites, 2, 775-795. 

von Eckardstein A and Widmann C. (2014) High-density lipoprotein, beta cells, and 

diabetes. Cardiovascular Research, 103, 385-394. 

Zhang, H., Forman, H. and Choi, J. (2005) γ-Glutamyl Transpeptidase in Glutathione 

Biosynthesis. Methods in Enzimology, 401, 468-483. 
 
 



 48

SUPPLEMENTARY MATERIAL 
 

 % variation p-value 

Lactate 25 0.0092 

Acetoacetate -20 0.1493 

Acetates -10 0.2945 

Alanine -3 0.6404 

Valine 11 0.0792 

Isoleucine+Valine -1 0.9184 

Leucine+Isoleucine -23 0.1711 

Glucose -9 0.0656 

Tyrosine -19 0.1009 

Hystidine -19 0.1951 

Glutamine -56 0.0004 

Free Glycerol -64 0.043 

Lysine -47 0.0530 

Glutamate 16 0.0717 

Creatine 3 0.4382 

Citrate -239 0.0187 

Glycine -20 0.031 

Supplementary Table 1. Metabolites identified by NMR. P-values were obtained from a Yuen-Welch’s t-

test. 

 

 

 % variation p-value UPLC Column 

Taurine 48 5.2E-03 HILIC 

Glutamate 94 4E-03 HILIC 

Methionine Sulfoxide 297 2.4E-05 HILIC 

Choline 57 1.9E-03 HILIC 

Methionine -99 1E-04 HILIC 

5-oxoproline 76 2.8E-03 HILIC 

Glutamine -31 1.5E-04 RP-C18 

Glu-Gly 98 1.5E-04 RP-C18 

Glu-Glu 82 3.1E-03 RP-C18 

Val-Glu 122 7.9E-04 RP-C18 

Glu-Taurine 250 3E-07 RP-C18 

PC (16:1) 667/428 3.7E-05 HILIC & RP-C18 

PC (10:2) 700 5E-04 RP-C18 

Supplementary Table 2. Metabolites identified by RP-C18 and HILIC that showed a greater than 50% of 

variation with a p-value < 0.01 (Yuen-Welch’s t-test) 

 

 

 

 

 
  


