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Context

The use of nuclear magnetic resonance spectroscopy in biological matrices started in the mid-1980s. However, it was in 1999
when the concept termed metabonomics was first coined and was formally defined by Jeremy K Nicholson and colleagues
as the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological
stimuli or genetic modification. A little bit later, in 2001, Oliver Fiehn defined the term metabolomics as a comprehensive and
quantitative analysis of all metabolites in a system. During this period of time, metabolomics slowly evolved into utilizing new
platforms such as gas/liquid chromatography coupled to mass spectometry. Currently, metabolomics has proven useful in a lot
of different purposes, from medical to environmental.
Nowadays metabolomics enables high throughput interrogation for low molecular mass organic endogenous metabolites of
large tissues and biofluids sample sets with limited a priori knowledge of the metabolites of interest. However, owing to
the enormous chemical diversity of the metabolites in addition to the wide range of physiochemical properties: dynamic
range concentrations, pH, polarities, etc, none of the analytical platforms mentioned above is yet able to cope with the full
metabolome coverage.
Two types of metabolomics approaches exist: targeted and untargeted metabolomics. The former, takes advantage of the
modern high-throughput mass spectometry technology to select those ions that are previously chosen, based on prior knowledge
or research interests; the latter, does not need foundations but tries to find a solution to the biological problem after statistical
analysis. The main benefit of untargeted metabolomics is that it can lead into discovering new metabolic pathways or new roles
for known molecules.
Any metabolomics experiment comprises several basic steps: (1) sample preparation, different biological matrices involve
different sample preparation protocols which also will depend on the analytical platform used; (2) instrumental analysis, consid-
ering that each analytical platform has its own drawbacks and advantages, a metabolomics experiment implies the use of more
than one platform, commonly nuclear magnetic resonance and a mass spectrometry; (3) data pre-processing and multivariate
data analysis, multivariate data analysis algorithms are the most common tools to analyze metabolomics-derived data, among
these algorithms principal component analysis (PCA), Partial Least Squares – Discriminant Analysis (PLS-DA), Orthogonal
Projections to Latent Structures (O-PLS) are the most used ones, plus a previous pre-processing step is necessary involving
peak alignment, peak picking, deconvolution and data dimensionality reduction; (4) metabolite identification, identification of
putative markers is the step requiring most effort in spite of some recent advances in metabolite library annotations.

Metabolomics encompasses a top-down approach consisting on comprehensive and simultaneous systematic profiling of
multiple metabolite levels and their systematic changes using high-throughput sample analysis with computer-assisted multi-
variate pattern-recognition techniques. Metabolomics has emerged as a complementary technology to other -omics disciplines,
in particular genomics, transcriptomics and proteomics, which are concerned with the measurements of DNA, mRNA, proteins
and their interactions. Unlike these disciplines metabolomics is in its early development stages and it is currently strongly
driven by technological developments. Metabolomics has its own specific preprocessing steps and is, along with proteomics,
the most close study of phenotype that allows quantification, commonly semiquatification, in omics sciences.

The paper, in which this work is based, is still being written. All the difficulties that have been overcome during the in-
ternship are described in Appendix A.2. The following text, except for some parts of Methods section, has been completely
written by me using LATEX. My role in the creation of this article was mainly data processing and writing scripts for data
interpretation, also, my knowledge on biochemistry helped in the understanding of biological problem and providing reasonable
mechanisms that could characterize it.
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Abstract
Diabetic retinopathy is the leading cause of visual loss in individuals under the age of 55. Most investigations
into the pathogenesis of diabetic retinopathy have been concentrated on the neural retina since this is where
clinical lesions are manifested. Recently, however, various abnormalities in the structural and secretory functions
of retinal pigment epithelium that are essential for neuroretina survival, have been found in diabetic retinopathy.
In this context, here we study the effect of hyperglycemic and hypoxic conditions on the metabolism of a human
retinal pigment epithelial cell line (ARPE-19) by integrating quantitative proteomics using tandem mass tagging
(TMT), untargeted metabolomics using MS and NMR, and 13C-glucose isotopic labeling for metabolic tracking.
We observed a remarkable metabolic diversification under our simulated in vitro hyperglycemic conditions of
diabetes, characterized increased flux through polyol pathways and inhibition of the Krebs cycle and oxidative
phosphorylation. Importantly, under low oxygen supply RPE cells seem to consume rapidly glycogen storages
and stimulate anaerobic glycolysis. Our results therefore pave the way to future scenarios involving new
therapeutic strategies addressed to modulating RPE metabolic impairment, with the aim of regulating structural
and secretory alterations of RPE. Finally, this study shows the importance of tackling biomedical problems by
integrating metabolomic and proteomics results.
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1. Introduction
Diabetes is a high prevalence condition, the number of people
affected is sorrowfully growing. The World Health Organi-
zation estimated that it could reach the 360 million mark by
2030 [1]. Being a chronic condition with a great variety of
complications, diabetic diseases are greatly studied all over
the world. The complications are caused by a deregulation of
the glucose uptake originated by the chronic hyperglycemia.
This occurs in cell types such as retinal epithelium, renal
glomerulus, and peripheral nerve cells [1].
There are four biochemical processes that are common in
affected cells in response to the surrounding glucose concen-
tration.

• The polyol pathway is based on a family of aldo-keto
reductase enzymes that can use as substrates a wide
variety of carbonyl compounds, i.e. sugars, and reduce
these by NADPH to their respective sugar alcohols,
known as polyols [2]. NADPH depletion has been hy-
pothesized to cause an increase of intracellular reactive
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oxygen species (ROS), since it is required for regenerat-
ing reduced glutathione (GSH), an important detoxifier
of ROS [2].

• Advanced glycation end products (AGEs) are formed
by a non-enzymatic reaction of glucose and other gly-
cating compounds derived from glucose. In diabetes,
AGEs are found in high amounts in the extracellular
matrix. Besides, intracellular production of AGE pre-
cursors can damage cells by three general mechanisms.
First, intracellular proteins modified by AGEs have al-
tered function. Second, AGE-modified extracellular
matrix components interact abnormally with other ma-
trix components and with matrix protein receptors that
are expressed on the surface of cells. Finally, plasma
proteins modified by AGE precursors bind to AGE re-
ceptors on cells such as macrophages, vascular endothe-
lial cells, and vascular smooth muscle cells, causing
inflammation or vascular damage [2].

• Protein kinases are a family of kinase enzymes that
modify other proteins by chemically adding phosphate
groups to them, known as phosphorylation. There are
at least 11 isoforms of Protein kinases C (PKCs) widely
distributed in mammalian tissues, they are able to phos-
phorylate various target proteins. The activity of the
classic isoforms is dependent on both calcium ions
(Ca2+) and phosphatidylserine (PS) and is greatly en-
hanced by diacylglycerol (DAG). Persistent and exces-
sive activation of several PKC isoforms operates as a
third common pathway mediating tissue injury induced
by diabetes-induced ROS [2].

• Hyperglycemia and insulin resistance-induced excess
fatty acid oxidation also appear to contribute to the
pathogenesis of diabetic complications by increasing
the flux of fructose 6-phophate into the hexosamine
pathway. In this pathway, fructose 6-phosphate is di-
verted from glycolysis to provide substrate for the rate-
limiting enzyme of this pathway, ending in formation
of UDP-N-Acetylglucosamine, which is used in pos-
translational modification on cytoplasmic and nuclear
proteins [2].

All these mechanisms seem to result in the upregulation of a
sole process, mitochondrial overproduction of ROS [2]. In di-
abetic cells, which are continously surrounded by a high intra-
cellular glucose concentration, there is more glucose-derived
pyruvate being oxidized in the Kreb’s cycle or tricarboxylic
acid cycle (TCA cycle), increasing the flux of electron donors
(NADH and FADH2) into the electron transport chain. As
a result, the voltage gradient across the mitochondrial mem-
brane increases until a critical threshold is reached.
At this point, electron transfer inside complex III is blocked,
causing the electrons to back up to coenzyme Q, which do-
nates the electrons one at a time to molecular oxygen, thereby
generating superoxide ions, i.e. ROS.
In 2012, an epidemiologic study found that there were approx-
imately 93 million people suffering from diabetic retinopathy

(DR), 17 million with proliferative DR (the advanced phase
of DR), 21 million with diabetic macular edema (a condition
in which retina is damaged due to swelling), and 28 million
with vision-threatening diabetic retinopathy worldwide [3];
the overall prevalence was 34.6% for any DR. DR is a condi-
tion affecting the vascular epithelium of the retina, the retinal
pigment epithelium (RPE) is an especialized epithelium lying
in the interface between the neural retina and the choriocapil-
laris where it forms the outer blood-retinal barrier (BRB).
The main functions of the RPE are the following: transport of
nutrients, ions, and water, absorption of light and protection
against photooxidation, reisomerization of all-trans-retinal
into 11-cis-retinal (a crucial molecule for vision), phagocyto-
sis of shed photoreceptor membranes, and secretion of essen-
tial factors for the structural integrity of the retina [4].
The main consequence of DR is a decrease in retinal blood
circulation caused by a loss of vascularization in response to
the hyperglycemia stress. DR is characterized by pericyte loss
followed by increased vascular permeability and progressive
vascular occlusion due to high glucose concentration. Loss of
pericytes results in empty, balloon-like spaces on the wall of
the retinal capillary. Endothelial cells try to repair the dam-
aged vessel by proliferating on the inner vessel wall [5].
The inner BRB consists of the basement membrane and the
fusion of membranes between retinal endothelial cells forms
tight junctional complexes to help stop the outward flow of
circulating proteins. The BRB breakdown begins with the loss
of tight junctions between adjacent microvascular endothelial
cells. As barrier breakdown proceeds, the basement mem-
brane of the capillaries thickens and the capillaries become
rigid [6]. Therefore, the vascularization of retinal epithe-
lium drops, leaving the cells in hypoxic conditions. Glucose
metabolism also depends on the homeostasis of oxygen since
it is necessary for oxidation in glycolysis and electron trans-
port in the mitochondria, under oxygen-insufficient conditions,
fermentation is favored.
Metabolomics is the systematic study of the unique chemi-
cal fingerprints that specific cellular processes leave behind.
Metabolites are small molecules that are chemically trans-
formed during metabolism and, as such, they provide a func-
tional readout of cellular state. Unlike genes and proteins,
whose function is subject to epigenetic regulation and post-
translational modifications respectively, metabolites serve as
direct signatures of biochemical activity and they are there-
fore easier to correlate with phenotype. Given its sensitivity,
high-throughput and minimal sample requirements, untar-
geted metabolomics has wide applicability across a countless
biological questions. Despite its relatively recent emergence
as a global profiling technology, untargeted metabolomics
has already increased the understanding of comprehensive
cellular metabolism and been utilized to address a number of
biomedical issues [7].
Although untargeted metabolomics can be performed by us-
ing either nuclear magnetic resonance (NMR) [8] or mass-
spectometry (MS) [9] technologies, liquid chromatography
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coupled with mass spectometry (LC-MS) enables the detec-
tion of the most metabolites and has therefore been the tech-
nique of choice for global metabolite profiling efforts [7, 10].
Proteomics is the study of the protein content of a biological
sample, it provides biologists the ability to monitor global pro-
tein expression and quantitative data on the molecular basis
of cellular change [11]. Evolving from two-dimensional gel
electrophoresis, the current central platform for proteomics is
tandem mass spectrometry (MS/MS) but a number of other
technologies, resources, and expertise are required to per-
form meaningful experiments; including protein biochemistry,
genomics, and bioinformatics [12]. MS provides excellent
means for quantitative proteomics whereby the most common
and accurate quantitative approaches utilize stable isotopes.
The tandem mass tag (TMT) approach consists in pairs, or
more, of TMT-tagged peptides are chemically identical, like
the isotope tags used in other methods, but unlike other iso-
tope tags, the TMTs also have the same overall mass and
comigrate in chromatographic separations and, thus, will act
as more precise reciprocal internal standards, which leads to
more accurate quantification [13]. This brings advantages
for global analysis of protein samples, because this should
allow more proteins to be identified in a single analysis in
the same time as other techniques while using conventional
instrumentation [13].
The objective of this study was to determine metabolic changes
in retinal epithelium cells due to hyperglycemia or/and hy-
poxia in order to characterize diabetic retinopathy from a
metabolic insight. Furthermore, it was intended to integrate
both metabolomics and proteomic results for better under-
standing of the disease profile.

2. Methods
2.1 RPE Cell Culture
Materials
ARPE-19 is a spontaneously immortalized human RPE cell
line obtained from the American Type Culture Collection
(Manassas, VA). D-Glucose was from Sigma (Madrid, Spain.
Whitley H35 Hypoxystation from Nirco (Madrid, Spain).
LC/MS grade methanol (MeOH) and acetonitrile (ACN) and
analytical grade chloroform (CHCl3) were purchased from
SDS (Peypin, France). Water was produced in an in-house
Milli-Q purification system (Millipore, Molsheim, France).
Formic acid, ammonium fluoride, N-methyl-N-trimethylsilyltri-
fluoroacetamide, methoxamine hydrochloride and pyridine
were purchased from Sigma-Aldrich (Steinheim, Germany).
Myristic-d27 acid and succinic acid-2,2,3,3-d4 where from
Isotec Stable Isotopes (Miamisburg, U.S.A.). A set of 13
even saturated fatty acid methyl esthers (FAMEs) from C8:0
to C30:0 were acquired from Sigma-Aldrich, NuChekPrep
(Elysian, U.S.A.) and Molport (Riga, Latvia). Deuterated
water (D2O) and 5-mm NMR tubes were purchased from
Cortecnet (Viosins Le Bretonneux, France). DMEM/F-12
basal medium was purchased from Life Technologies. Se-
quencing grade modified trypsin V511A was purchased from

Promega and Lys-C 125-05061 from Wako.
The reagents for the quantitative proteomics experiments were:
the Complete Mini EDTA-free protease inhibitor and the
PhosSTOP phosphatase inhibitor cocktails were from Roche
(Almere, The Netherlands), the 6-plex TMT labeling kit was
from Pierce (Rockford, Ilinois), and all other reagents were
from Sigma (Steinheim, Germany).

Cell culturing conditions
Cells were cultured under standard conditions in DMEM/F12
(1:1 mixture of Dulbecco’s modified Eagle’s medium and
Ham’s F12), 10% fetal calf serum (FCS) and penicillin-strepto-
mycin. ARPE-19 cells from passage 20-23 were used and the
media was changed every 3 days. Cells grown in these con-
ditions constitute a monolayer that retains the functionality,
polarity and tight junction expression of the human RPE [14].
For our study, cells were seeded in Petri dishes (10 cm) at
0.4·104 cells/mL and maintained in culture for 21 days with
5.5 mM or 25 mM of D-Glucose at 37oC under 5% (v/v) CO2
in an incubator. During the last 24 hours cells were subjected
to serum deprivation (1% FCS). Serum deprived media were
prepared with 5.5 mM or 25 mM of D-Glucose, and cultured
in normoxic or hypoxic (1% O2) conditions. Each condition
was run in triplicate.

2.2 Quantitative Proteomics
Cell lysis and protein digestion
ARPE-19 cells were lysed in lysis buffer (50 mM ammonium
bicarbonate, 8 M urea, 1 tablet Complete Mini EDTA-free
protease inhibitor cocktail, 1 tablet PhosSTOP phosphatase
inhibitor cocktail). Lysis was performed by gentle sonication
on ice at 20% amplitude, with a 0.5 cycle in a Sonics Vibracell
(Bioblock Scientific, France). Cell debris were removed by
centrifugation at 20,000 g for 10 min at 4oC. Protein concen-
tration was determined by an RC-DC protein assay (Bio-Rad).
Proteins were reduced in 4 mM dithiothreitol (30 min at 56oC)
and alkylated in 8 mM iodoacetamide (30 min at room tem-
perature in the dark). LysC was added at an enzyme:protein
ratio of 1:75 (w/w) and incubated for 4 h at 37oC. Samples
were then diluted 4 times with 50 mM ammonium bicarbonate.
Trypsin was added at an enzyme:protein ratio of 1:100 (w/w)
and incubated overnight at 37oC. Acetic acid was added to
a final concentration of 10% and samples were immediately
frozen.

TMT labeling
100 µg of each sample were desalted and concentrated using
C18 solid phase extraction (Sep-Pak Vac C18 cartridge 1
cm3/200 mg, Waters), dried in vacuum and reconstituted in
120 µL of 200 mM triethylammonium bicarbonate (Sigma).
Labeling was performed with the 6-plex labeling kit according
to the manufacturer’s protocol. Briefly, each labeling was
carried out for 1 h at room temperature and quenched with
8 µL of 5% hydroxylamine. The four channels were mixed,
dried in vacuum and resuspended in 10% formic acid.
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Strong cation exchange fractionation
Peptides were fractionated by strong cation exchange (SCX)
using a Zorbax BioSCX-Series II column (0.8 mm x 50 mm,
3.5 µm), as described in [15]. Solvent A consisted of 0.05%
formic acid in 20% acetonitrile, solvent B of 0.05% formic
acid, 0.5 M NaCl in 20% acetonitrile. The gradient was 0 to
2% B in 0.01 min; 2 to 3% B in 8 min; 3 to 8% B in 6 min;
8 to 20% B in 14 min; 20 to 40% B in 10 min; 40 to 90% B
in 10 min; 90%B for 6 min; 90 to 0% B in 6 min. Fractions
were collected once a minute and each dried in vacuum and
stored at -20oC.

Mass spectrometry
SCX fractions were analyzed on an Orbitrap Q-Exactive
(Thermo Fisher Scientific) connected to an UHPLC Proxeon
Easy-nLC 1000 (Thermo Scientific). Peptides were trapped
on a double-fritted trap column (Dr. Maisch Reprosil C18, 3
µm, 2 cm x 100 µm) and separated on an analytical column
(Agilent Zorbax SB-C18, 1.8 µm, 40 cm x 75 µm), as de-
scribed previously [16]. Solvent A consisted of 0.1 M acetic
acid, solvent B of 0.1 M acetic acid in 80% acetonitrile. Sam-
ples were loaded at a pressure of 800 bar with 100% solvent
A. Peptides were separated by a 110 min gradient from 10%
to 40% solvent B at a flow rate of 150 nL/min. Full scan MS
spectra were acquired in the Orbitrap (350-1500 m/z, reso-
lution 35000, AGC target 3e6, maximum injection time 250
ms). The 20 most intense precursors were selected for HCD
fragmentation (isolation window 1.2 Da, resolution 17500,
AGC target 5e4, maximum injection time 120 ms, first m/z
100, NCE 33%, dynamic exclusion 60 s).

2.3 Untargeted Metabolomics
Metabolites extraction method
The culture medium was removed from cells and the dishes
were placed on top of dry ice [17]. Cells were scrapped
immediately and metabolites extracted into the extraction
solvent by adding 2 mL of a cold mixture of chloroform
and methanol (2:1 v/v). The resulting suspension was bath-
sonicated for 3 minutes, and 2 mL of cold water was added.
Then, 1 mL of chloroform/methanol (2:1 v/v) was added to the
samples and bath-sonicated for 3 minutes. Cell lysates were
centrifuged (5000 x g, 15 min at 4oC) and the aqueous phase
was carefully transferred into a new tube. The sample was
frozen, lyophilized and stored at -80oC until further analysis.

NMR analysis
The hydrophilic extracts were reconstituted in 600 µL of D2O
containing 0.67 mM trisilylpropionic acid (TSP). Samples
were then vortexed, and centrifuged for 15 min at 6000 x
g and 4oC. Finally, redissolved samples were placed into 5
mm NMR tubes. 1H and 13C NMR spectra were recorded at
300oK on an Avance III 600 spectrometer (Bruker, Germany)
operating at a proton frequency of 600.20 MHz using a 5 mm
CPTCI triple resonance (1H, 12C, 31P) gradient cryoprobe.
One-dimensional 1H pulse experiments were carried out us-
ing the nuclear Overhauser effect spectroscopy (NOESY)

presaturation sequence to suppress the residual water peak.
The acquired spectral width was 12 kHz (20 ppm), and a to-
tal of 256 transients were collected into 64 k data points for
each 1H spectrum. 13C-NMR spectroscopy was performed
under approximately fully relaxed conditions (repetition time
8 seconds) and broadband proton decoupling. A total of 1024
scans and 64000 data points with a spectral width of 36 KHz
(240 ppm) were acquired for each 13C spectrum. Exponen-
tial line broadening of 0.3 Hz was applied before Fourier
transformation and frequency domain spectra were phased
and baseline-corrected using TopSpin software (version 2.1,
Bruker).

LC/MS analyses
Fractions of 100 µL of each redissolved sample in deuter-
ated water were placed into HPLC vials after NMR analysis
with no need for solvent exchange as previously reported
[18]. LC/MS analyses were performed using an UHPLC sys-
tem (1290 series, Agilent Technologies) coupled to a 6550
ESI-QTOF MS (Agilent Technologies) operated in positive
(ESI+) or negative (ESI-) electrospray ionization mode. Vials
containing extracted metabolites were kept at -20oC prior to
LC/MS analysis. When the instrument was operated in pos-
itive ionization mode, metabolites were separated using an
Acquity UPLC (HSS T3) C18 reverse phase (RP) column (2.1
x 150 mm, 1.8 µm) and the solvent system was A1 = 0.1%
formic acid in water and B1 = 0.1% formic acid in acetoni-
trile. When the instrument was operated in negative ionization
mode, metabolites were separated using an Acquity UPLC
(BEH) C18 RP column (2.1 x 150 mm, 1.7 µm) and the sol-
vent system was A2 = 1 mM ammonium fluoride in water
and B2 = acetonitrile, as previously reported [10]. The linear
gradient elution started at 100% A (time 0-2 min) and finished
at 100% B (10-15 min). The injection volume was 5 µL. ESI
conditions: gas temperature, 150oC; drying gas, 13 L·min-1;
nebulizer, 35 psig; fragmentor, 400 V; and skimmer, 65 V. The
instrument was set to acquire over the m/z range 100–1500
in full-scan mode with an acquisition rate of 4 spectra/sec.
MS/MS was performed in targeted mode, and the instrument
was set to acquire over the m/z range 50–1000, with a default
isolation width (the width half-maximum of the quadrupole
mass bandpass used during MS/MS precursor isolation) of 4
m/z. The collision energy was fixed at 20 V.

GC/MS analyses
Redissolved samples in deuterated water were lyophilized,
dissolved in 50 µL of methoxyamine hydrochloride in pyri-
dine (30 mg/mL) and incubated with agitation during 1 hour
at 65oC. Trimethylsililation was done by adding 30 µl of N-
methyl-N-trimethylsilyltrifluoroacetamide previously spiked
with the FAMEs mix as internal standard. The samples were
then shacked for 10 min and kept for 1 hour at room temper-
ature. Derivatised samples were analysed in a 7890A Series
gas chromatograph coupled to a 7200 GCqTOF MS (Agilent
Technologies, Santa Clara, U.S.A.). Chromatographic column
was a J& W Scientific HP5-MS (30 m x 0.25 mm i.d., 0.25
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µm film) (Agilent Technologies). A volume of 1 µL of sample
was automatically injected into a split/splitless inlet, which
was kept at a temperature of 250oC. Helium was used as a
carrier gas, at a flow rate of 1 mL/min in constant flow mode.
The oven program was set at an initial temperature of 70oC
for 1 min, then increased to 325oC at a rate of 10oC/min and
held at 325oC for 9.5 min. Ionization was done by electronic
impact, with an electron energy of 70 eV and an emission
intensity of 35 µA. Source temperature was of 230oC. Mass
spectra were recorded after a solvent delay of 6 minutes, after
which the analyzer acquired in full-scan MS mode at a rate of
5 scan/sec, acquiring a mass range of 35-700 m/z.

2.4 Data Analysis
Proteomics Data analysis
Raw data was analyzed with MaxQuant(version 1.3.0.5) [19].
MS/MS peak lists were generated and searched with An-
dromeda against the Swissprot human database. Trypsin/P
was chosen as an enzyme, with a maximum of 2 missed
cleavages. Methionine oxidation was set as variable modifica-
tion. Cysteine carbamidomethylation as fixed modifications,
TMT6plex (Lys) and TMT6plex (N-term) as the reporter ion
quantification method. The database search was performed
with a precursor tolerance of 6 ppm for the main search (20
ppm for the first search) and a fragment mass tolerance of
0.05 Da. Match between run was enabled with a time window
of 2 min. Peptide and protein FDR were set at 1%, and pep-
tide score threshold at 60. The quantification and statistical
processing was performed in Perseus (version 1.3.8.1) [20].
Proteins were grouped and reporter ion intensities were calcu-
lated for each of the TMT channels. Ratios were calculated
and normalized on median. A significance B test was per-
formed to determine significantly regulated proteins, where
truncation was performed using p-values, with a threshold
value of 0.05. A gene ontology (GO) [21] enrichment analysis
of the resulting proteins was performed using on AmiGO [22].

NMR data analysis
1H and 13C NMR spectra were referenced to the chemical
shift of TSP signal at 0.0 ppm. References of pure compounds
from the metabolic profiling AMIX spectra database (Bruker),
HMDB [23] and Chenomx databases were used for metabo-
lite identification. In addition, we assigned metabolites by
1H–1H homonuclear correlation (COSY and TOCSY) and
1H–13C heteronuclear (HSQC) 2D NMR experiments, and by
correlation with pure compounds run in-house. After base-
line correction, specific NMR regions identified in the spectra
were integrated using the AMIX 3.9 software package. Data
processing, data analysis, and statistical calculations were
performed in R 3.1.

LC/MS and GC/MS data analysis
LC/MS (ESI+ and ESI- mode) and GC/MS data were pro-
cessed using the XCMS R package [24] to detect and align
features. A feature is defined as a molecular entity with a
unique m/z and a specific retention time (mzRT). XCMS anal-

ysis of these data provided a matrix containing the retention
time, m/z value, and integrated peak area of each feature
for every ARPE-19 sample. GC/MS data was normalized to
the internal standard hexacosanoic (one of the FAMEs with
the lowest coeficient of variance (CV)) was also performed.
Quality control samples (QCs) consisting of pooled ARPE-19
samples from each four conditions were used in LC/MS and
GC/MS analyses. QCs were injected at the beginning and
periodically every 5 samples. Furthermore, samples entering
the study were entirely randomized to reduce systematic error
associated with instrumental drift. QCs were always projected
in a PCA model together with the samples under study to
verify that technical issues do not mask biological informa-
tion. The performance of the analytical platform for each
detected mzRT feature in ARPE-19 samples was assessed by
calculating the relative standard deviation of these features on
pooled samples (CVQC) according to Vinaixa et al. [9].
ARPE-19 samples were compared using the integrated peak
area of each feature via a paired t-test and assigning a fold
value to indicate the level of differential regulation due hy-
poxic and/or hyperglycemic conditions. Differentially regu-
lated metabolites that were statistically significant after false
discovery rate adjustment (p<0.05) between physiological-
like and any of the pathological-like conditions detected by
LC/MS were characterized by MS/MS. Differentially regu-
lated metabolites (p<0.05) between detected by GC/MS were
identified using the NIST and Fiehn mass spectral libraries. In
addition, the retention time of pure standards were confirmed.
Data pre-processing, data analysis, and statistical calculations
were performed in R 3.1.

2.5 Data integration
Enzymatic proteins

In order to maximize the benefit from the quantitative pro-
teomics results from a metabolic point of view, those pro-
teins that have a known enzymatic function were filtered and
thus could be mapped to Kyoto Encyclopedia of Genes and
Genomes (KEGG) identifiers [25]. To do so, a complete list
of the Reviewed Uniprot entries was obtained and using a
Python 2.7 in-house script (see Appendix A.4), the European
Bioinformatics Institute (EBI) Gene Expression Atlas API
was interrogated to retrieve those Uniprot accession codes
with an associated enzymatic function.

Pathway mapping

Pathwview R package [26] allows mapping color scale levels
of expression of both metabolites and proteins in a KEGG
pathway map. The resulting significant differentially ex-
pressed metabolites were mapped manually into KEGG com-
pounds identifiers, which together with proteins, were used as
the mapping input. A hypergeometric test was used to assess
which pathways were significantly enriched.
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(a) Heatmap for fold changes of 3260 proteins (b) Heatmap for fold changes of the 47 significant enzymes
Figure 3.1. Heatmaps from proteomics results sorted using N25 as reference

3. Results and Discussion
In this research, four sample models were designed: Normo-
glycemic (5.5 mM Glucose) and normoxic (5% O2) (N5),
resembling healthy status; high-glucose (25 mM Glucose)
and normoxic (N25), hyperglycemia or early diabetes stage;
normal-glucose and hypoxic (1% O2) (H5), used to check
hypoxia effects on ARPE-19 cells; finally, high-glucose and
hypoxia (H25), simulating a proliferative DR condition.

3.1 Proteomics
Proteomics procedure was able to detect and identify a total
of 5419 different proteins, of which 3260 were detected in
all four sample conditions. After the significance B test, 233
proteins returned as signficant (FDR adjusted p-value<0.05)
which were then categorized in up- and down-expressed for
each comparison versus N5 condition using a log2 value trans-
formation. Generally, the heatmap of the 3260 proteins shows
that hyperglycemic conditions have a noticeable similarity
in both upregulated and downregulated elements (see Figure
3.1). This was reinforced when filtering by enzymatic func-
tion, those significant proteins with an enzymatic function
were 47, they also proved that H25 and N25 have a compara-
ble enzymatic expression profile and mainly downregulated
(green), rather than in H5 where the fold changes indicate that
the differences in protein levels in comparison to N5 are much
lower.
Using AmiGO tool, a gene ontology term enrichment was
performed for each comparison versus N5. H5 returned the
lowest number of differentially expressed proteins, as a conse-
quence, the ontologies returned were few and poorly informa-
tive, which could be due to the fact that ARPE-19 cells are an
immortalized cell-line that could not be thoroughly affected
by hypoxia itself, or solely, but uncertainly, hypoxia does
not cause important effects on protein expression. Yet, both
hyperglycemic (N25 and H25) conditions have an increase

of expression in proteins associated with cell development
(GO:0048731) and physiological (GO:0032501) processes.
As a response to the high glucose levels, there could be an in-
crease in cell adhesion (GO:0005576) and activation of vesicle
motion (GO:0031982), possibly to prevent the cell membrane
from disrupting by the osmotic pressure. Generally, both
high-glucose conditions suffered a decrease in mithocondrial
protein expression which would cause a disruption of mitho-
condrial oxidative metabolism, probably driven by ROS toxi-
city. Interestingly, H25 had some specific metabolic effects,
underrepresenting ontologies such as Acyl-CoA metabolism
(GO:0006637), a process related to lipid metabolism.
Briefly, from a protein-level, in high-glucose conditions, inde-
pendently of oxygen levels, ARPE-19 cells seem to respond
by reducing cellular respiration capability and mitochondrial
processes.

3.2 Metabolomics
Due to the wide range of chemical properties of cell metabo-
lites, usage of different platforms is required if a good untar-
geted metabolomics coverage is desired. Here, three different
devices were used; liquid chromatography coupled to electro-
spray ionization quadrupole time-of-flight mass spectrometry
(LC ESI-qTOF/MS) in positive and negative ionization mode,
gas chromatography coupled to electron ionization (GC-EI-
qTOF/MS), and NMR [10].
The objective in the untargeted metabolomics method was
relatively quantifying either features in GC/MS and LC/MS
following the identification of those which are significantly
different between the glucose and oxygen concentration con-
ditions. Alternatively, in NMR, the areas of the identified
spectral regions are used as input for statistical testing.
Given that LC/MS-based untargeted metabolomics returns a
great amount of features, in order reduce the multidimension-
ality, a Principal Component Analysis (PCA) was performed.
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Figure 3.2. PCA plots obtained from negative phase LC-MS results after XCMS pre-processing

PCA involves a mathematical procedure that transforms a
number of possibly correlated variables into a smaller number
of uncorrelated variables called principal components. The
first principal component accounts for as much of the variabil-
ity in the data as possible, and each succeeding component
accounts for the remaining variability and so on. In our case,
the proportion of variance explained by the first two compo-
nents did not return any specific cluster of sample conditions,
meaning that the difference between groups was not explained
by the maximum variance, possibly due to the limited number
of replicates or instrumental variability (Figure 3.2). On the
other hand, using the third component of the PCA, having
64.11% of variation accumulated, it was possible to distin-
guish between the two levels of glucose concentration (Figure
3.2).
In total, 18 metabolites and 10 different lipid families were
confidently identified (see Table A.1.1). Lactate and acetate,
both anaerobic metabolism indicators, were significantly in-
creased in H5 but not in H25, this may indicate that this
metabolic strategy may be regulated not only based on oxygen
but also on the glucose supply. Succinate was also signifi-
cantly increased in H5, it has been theorized to be an end
product of anaerobic metabolism of glutamate and aspartate
[27], this event correlates with the former anaerobic indica-
tors.
In general, the aminoacids detected had the same pattern of
abundance ratios among the conditions, they were found sig-
nificantly increased in H5. An increase in intracellular amino
acids under hypoxia may be attributed to several possibilities;
an increase in amino acid uptake and/or a decrease in protein
synthesis, a phenomenon which is considered to be part of
the metabolic adaptation to hypoxia, where ATP-consuming

reactions like protein synthesis, are dramatically decreased;
another possibility, which is not mutually exclusive, is that dur-
ing hypoxia cells undergo protein catabolism in order to pro-
vide the cells with metabolic support and increase autophagy
was observed under hypoxic conditions [28]. Succinate levels,
also a product of aminoacid degration, support the latter.
Glycogen, the glucose storage form in animals, was, increased
in N25, but not in H25. In both hypoxic conditions, the glyco-
gen levels had a tendency to decrease, possibly in order to
increase glucose mobilization into anaerobic metabolism. Be-
sides, pyridoxal and pyridoxine, two forms of vitamin B6,
were increased in H5. They origin pyridoxal-phosphate (PLP)
which is a key cofactor for glycogen phosphorylase that cat-
alyzes the rate-limiting step in glycogenolysis [29].
A high variety of features were found to be differentially
abundant and positively identified in the lipid fraction in both
high-glucose samples. In N25, glycerides, except for mono-
glycerides, lysophospholipids and phospholipids were upreg-
ulated. In addition, these effects were enhanced by hypoxia in
H25 comparison (see Table A.1).
Polyol pathway which is known to be increased in cells af-
fected by DR produces sorbitol. This metabolite was found to
be significantly increased in N25 condition, which resembles
early diabetic phase. The increase in intracellular osmolal-
ity, due to shunting of glucose into the polyol pathway and
the consequent sorbitol accumulation, may lead to compen-
satory depletion of the endoneurial osmolytes taurine and myo-
inositol in order to maintain osmotic balance [30], though, in
our results only taurine seems to follow this regulation since
myo-inositol is significantly increased in H5. Furthermore,
nicotinate D-ribonucleoside, which is a central intermediate
in nicotinamide metabolism that is closely related to redox

9



power pool, was significantly increased in N25, possibly to
generate cofactors NADH and NADPH and compensate for
their consumption in the polyol pathway.

3.3 Integration
Using Pathview package both the significant proteins and
metabolites were mapped for each comparison. In the case of
metabolites, the compound identities (KEGGID) were manu-
ally obtained from the database. Alternatively, Uniprot acces-
sions are automatically annotated by the Pathview package.
Those comparisons in which they, protein or metabolites, were
not significant were transformed into 0, as a way to indicate
that the log2 ratio it is not meaningful. Afterwards, each
KEGG pathway enriched according to the hypergeometric
statistic was manually interpreted. A total of 35 pathways re-
turned as significantly enriched, containing pathways such as:
Glycolysis / Gluconeogenesis, Citrate cycle (TCA cycle)3.3,
Glutathione metabolism, . . . (see Table A.1.2)

4. Conclusions

In the present study we have examined the effect of high glu-
cose concentration with or without hypoxia in human RPE
cells in culture by integrating differential protein expression
and quantitative analysis of metabolite pools by untargeted
metabolomics using MS and NMR. This unique approach
allowed to connect metabolic processes and provide an im-
proved understanding of the mechanisms regulating metabolic
functions in RPE cells due to pathological hyperglycemic
and/or hypoxic conditions. Interestingly, metabolomics and
proteomics results paralleled with each other in all conditions,
confirming that teaming proteomics and metabolomics is a
great strategy for studying any biological problem.
In this research, the most changes were caused by high-
glucose levels, though the expected metabolic changes in
H5 were observed: increased lactate and acetate production,
typical from hypoxia adaptation; also, increased aminoacid
production maybe caused by protein catabolism in order to
fill the central carbon pools to fulfill the cell needs; and some
clues indicating that glycogen is degrated in this physiological
condition.
Moreover, nicotinate D-ribonucleoside was found higher in
N25 which would indicate a favorable metabolic flux from glu-
cose into the pentose phosphate pathway and into nicotinate
and nicotinamide pathways, possibly to generate NADH and
NADPH cofactors and compensate for their consumption in
the polyol pathway (confirmed by increased sorbitol produc-
tion in N25) and to prevent the early stages of glycolysis from
saturating. The consumption of NADPH by aldose reductase,
the first and rate-limiting enzyme in the polyol pathway, re-
sults in less cofactor being available for glutathione reductase,
which is critical for the maintenance of the intracellular pool
of reduced glutathione, thus, ROS could affect the mitochon-
dria (see Figure 4.1).
Additionally, more evident changes were perceived in high-
glucose conditions, which resemble better the DR cell status.
Mitochondria are the central metabolism machinery in any
eukaryotic cell. In this work, there were both protein and
metabolic proofs that high-glucose, with or without hypoxia,
decreases mitochondria protein concentration. For instance,
GO enrichment analysis using AmiGO tool found that pro-
cesses and cellular components linked to this organelle were
decreased in N25 and H25; besides, metabolomics demon-
strated lower levels of TCA metabolites and lipid families,
except monoglycerides.
RPE constitutes the outer BRB and is essential for neuroretina
survival, and consequently, for visual function. Osmotic pres-
sure becomes dangerous for cell survival in high-glucose con-
ditions, GO enrichment processes found vesicle, actin fila-
ments and extracellular regions upregulated in both N25 and
H25, possibly to avoid membrane destruction. This theory
is supported by the decreased taurine metabolite, which is
known to be a compensatory mechanism.
Omics integration is a focused topic in systems biology re-
search. In our study, Pathview was a simple and direct ap-
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Figure 3.3. Example result of Pathview result using significant enzymatic proteins and identified metabolites as input for TCA
Cycle KEGG Pathway. Top right shows a legend for values. Each metabolite (circles) and protein (rectangles) is divided in the
number of comparisons; from left to right: N25, H5, H25.

proach to accomplish our needs of incorporating proteomics
and metabolomics quantitative data for easier understand-
ing and facilitate interpretation. Even though some protein
were incorrectly mapped since the tool uses the enzymatic
code instead the protein specificity, this happened in lyso-
somal alpha-glucosidase which according to the enzymatic
activity is correctly mapped but not when considering that
alpha-glucosidases, commonly found in plants and bacteria,
are only found in animal lysosomes where they play a role for
glucose-chain breakdown. Consequently, omics integration
requires deep understanding of biochemistry or molecular
biology, in order to avoid misinterpretation.
All things considered, hyperglycemia seems to be the primary
root of DR pathology, rather the subsequent loss of vascular-
ization, leading into the production of ROS that have been
identified as cell damage and inflammation inducers that may
as well cause the aged macular edema.
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Figure 4.1. Summary of the described processes ocurring on ARPE-19 cells on each condition. H5 promotes anaerobic
metabolism and possibly induces proteolysis; both high-glucose conditions, suffer ROS stress (higher in H25) and try to release
pression from glycolisis pathway by activating the pentose phosphate pathway (PPP), yet, only N25 is able to mantain glycogen
levels and activate polyol pathway (PolP) to even reduce the glycolisis products influx into the mitochondria.
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1. Appendix

A.1 Supplementary Material
A.1.1 Supplementary Table

Table A.1. Table of identified metabolites in both extracted fractions

KEGGID METABOLITE NAME LOG2(N25.FC) LOG2(H5.FC) LOG2(H25.FC)
C00018 Pyridoxal phosphate 0.07 1.22 0.69
C00025 Glutamate 0.01 1.60 -0.14
C00033 Acetate 0.23 0.88 -0.67
C00041 Alanine -0.23 0.97 -0.90
C00042 Succinate 0.12 1.36 -0.11
C00079 Phenylalanine -0.54 0.90 -0.33
C00082 Tyrosine -0.33 1.52 -0.15
C00123 Leucine -0.19 0.91 -0.85
C00137 myo-Inositol -0.01 2.00 -3.21
C00157 Phosphatidylcholine -1.87 * -2.73
C00165 Diacylglycerol -1.27 * -2.01
C00182 Glycogen 3.02 -1.17 -9.41
C00183 Valine -0.18 0.95 -0.79
C00186 Lactate 0.37 1.44 -0.05
C00245 Taurine -0.84 0.66 -1.49
C00314 Pyridoxine 0.55 2.50 1.25
C00350 Phosphatidylethanolamine * * -3.41
C00407 Isoleucine -0.21 1.10 -0.60
C00422 Triacylglycerol 0.58 * -2.03
C00681 Lysophosphatidic acid -0.69 * -2.49
C00794 Sorbitol 1.74 0.15 0.07
C01885 1-Acylglycerol 1.43 * 4.82
C04230 1-Acyl-sn-glycero-3-phosphocholine -2.11 * -2.70
C05841 Nicotinate.d.ribonucleoside 1.95 -1.18 -0.85
C05973 2-Acyl-sn-glycero-3-phosphoethanolamine * * -1.88
C05974 2-Acyl-sn-glycero-3-phosphoserine -0.90 * -1.91
C02737 Phosphatidylserine -1.61 * -4.07
C00550 Sphingomyelin 2.10 * *

Bold values returned significant after t-test. (*) indicates that the values could not be obtained because the metabolite was not
detected in the given condition, this especially happened in the organic extraction phase which contains lipids that are more
difficult to identify in LC/MS.
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A.1.2 Supplementary Table 2

Table A.2. Table of identified metabolites and fold changes (FC) in both extracted fractions

KEGG PATHWAY NAME HYPERGEOMETRIC TEST P-VALUE

Glycolysis / Gluconeogenesis 7.6e-4

Citrate cycle (TCA cycle) 4.1e-15

Fructose and mannose metabolism 0.02
Galactose metabolism 0.02
Fatty acid elongation 3.1e-9

Fatty acid degradation 1.1e-23

Synthesis and degradation of ketone bodies 7.7e-4

Ubiquinone and other terpenoid-quinone biosynthesis 0.02
Purine metabolism 5.3e-5

Pyrimidine metabolism 3.4e-10

Alanine, aspartate and glutamate metabolism 8.8e-3

Cysteine and methionine metabolism 2.3e-5

Valine, leucine and isoleucine degradation 7.1e-17

Valine, leucine and isoleucine biosynthesis 9.5e-3

Lysine degradation 0.01
Phenylalanine metabolism 0.04
Phenylalanine, tyrosine and tryptophan biosynthesis 7.0e-5

beta-Alanine metabolism 0.04
Taurine and hypotaurine metabolism 7.2e-5

Selenocompound metabolism 0.01
Cyanoamino acid metabolism 0.01
Glutathione metabolism 3.6e-3

Starch and sucrose metabolism 1.7e-3

Amino sugar and nucleotide sugar metabolism 0.04
Glycerolipid metabolism 0.01
Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 0.04
Glycerophospholipid metabolism 1.8e-7

Pyruvate metabolism 4.7e-6

Glyoxylate and dicarboxylate metabolism 1.2e-7

Propanoate metabolism 1.4e-10

Butanoate metabolism 1.2e-3

Nicotinate and nicotinamide metabolism 3.9e-4

Sulfur metabolism 2.1e-3

Aminoacyl-tRNA biosynthesis 2.6e-6
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A.1.3 Script example for pre-identification data analysis
library(xcms)
library(reshape2)
library(ggplot2)
library(outliers)
library(gridExtra)
library(mvoutlier)
lf <- list.files(pattern=’[.]mzXML’, recursive = T) # Get files
xset<-xcmsSet(files=lf,method="centWave",ppm=15,peakwidth=c(5,20),noise=1000)
xset<-group(xset)
xset2<-retcor(xset,method="obiwarp",profStep=0.1)
xset2<-group(xset2, mzwid=0.015,minfrac=0.5,bw =5)
xset3<-fillPeaks(xset2)
nsamples <- table(sampclass(xset3))

X1 <- groupval(xset3, value = "maxo")
classv <- xset3@phenoData$class
classv <- as.factor(gsub("CELL_Glc1._","",classv))

meanintensities <- apply(X1, 1, function(x) tapply(x, classv,mean))

M2 <- t(apply(meanintensities,1,sort,decreasing=T))
M2 <- melt(t(log10(M2)))
names(M2) <- c("Features","Group","Intensity")

ggplot(data=M2,aes(x=Features, y=Intensity, colour=Group))+
geom_line()

idx_intensity <- which(apply(meanintensities, 2, function(x) any(x > 10ˆ3.5)) == TRUE)
(length(idx_intensity)/ncol(meanintensities)) * 100

cvcl <- rep(c("Sample", "QC"), times = c(2*3*4, 5))
CV <- t(apply(X1, 1, function(y) tapply(y, cvcl, function(x) (100 * (sd(x)/mean(x))) ) ))
idx_cv <- which(CV[, "Sample"] > CV[, "QC"])
(length(idx_cv)/nrow(X1)) * 100

Ib <- intersect(idx_intensity, idx_cv)
(length(Ib)/nrow(X1))*100

D <- data.frame(t(X1))
colnames(D) <- as.character(1:ncol(D))

D <- D[,Ib]

D <- D[grep("_Glc13_",rownames(D),invert=T),]

Dnorm <- apply(D, 2, function(x) (x/max(x)) )

pca <- prcomp(Dnorm, scale = F)

library(car)
scatter3d(x=pca$x[,"PC1"],y=pca$x[,"PC2"],z=pca$x[,"PC3"],xlab="PC1",ylab="PC2",zlab="PC3",

point.col=rep(1:5,times=unname(nsamples)),grid.lines=3)

summary(pca)$importance[, 1:4]

classv <- as.factor(c(rep("H5",times=3),rep("N5",times=3),rep("H25",times=3),rep("N25",times=3),
rep("QC",times=5)))

scores <- data.frame(pca$x[, c("PC1", "PC2")], classv)

g1 <- ggplot(data = scores, aes(x = PC1, y = PC2, colour = classv)) +
geom_point(alpha = I(0.7), size = 10) +
geom_vline(xintercept = 0) + geom_hline(yintercept = 0)+
ylab(paste("PC2"," (",round((summary(pca)$importance[2, 2]*100),digits=2),"%)",sep=""))+
xlab(paste("PC1"," (",round((summary(pca)$importance[2, 1]*100),digits=2),"%)",sep=""))+
theme(legend.title=element_blank(),legend.text = element_text(size = 16),

axis.title = element_text(face="bold",size=16),
axis.title.y = element_text(face="bold",size=16))
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scores <- data.frame(pca$x[, c("PC2", "PC3")], classv)
g2 <- ggplot(data = scores, aes(x = PC2, y = PC3, colour = classv)) +

geom_point(alpha = I(0.7), size = 10) +
geom_vline(xintercept = 0) + geom_hline(yintercept = 0)+
ylab(paste("PC3"," (",round((summary(pca)$importance[2, 3]*100),digits=2),"%)",sep=""))+
xlab(paste("PC2"," (",round((summary(pca)$importance[2, 2]*100),digits=2),"%)",sep=""))+
theme(legend.title=element_blank(),legend.text = element_text(size = 16),

axis.title.x = element_text(face="bold",size=16),axis.title.y = element_text(face="bold",size=16))

grid.arrange(g1,g2,ncol=2)

lier <- outlier(Dnorm, opposite = FALSE, logical = TRUE)
lier[lier == TRUE] <- 1; lier[lier == FALSE] <- 0
sort(rowSums(lier),decreasing=T)

D2 <- D[grep("QC",rownames(D),invert=T),]
classv2 <- as.factor(as.character(classv)[grep("QC",as.character(classv),invert=T)])

pvalues <- apply(D2,2,function (x){
sapply(levels(classv2)[-2],function(y){

a <- try(t.test(x[which(classv2==y)],
x[which(classv2==levels(classv2)[2])],var.equal=F)$p.value)

if(is(a,"try--error")){a <- 1}
return(a)

})
})

pvalues <- as.data.frame(t(pvalues))

fc.test <- sapply(levels(classv2)[-2],function(y){
apply(D2,2,function (x){

case <- mean(x[which(classv2==y)])
control <- mean(x[which(classv2==levels(classv2)[2])])
FC <- case/control;
FC2 <- -control/case
FC[FC<1] <- FC2[FC<1]
return(FC)

})
})

fc.test <- as.data.frame(fc.test)

positions <- sapply(1:nrow(fc.test),function(x){
a <- c(any(pvalues [x,]<0.05),any(abs(fc.test[x,])>1.5))
a <- all(a ==TRUE)

})

D3 <- D2[,which(positions==TRUE)]

featureinfo <- xset3@groups[as.numeric(colnames(D3)),c("mzmed","rtmed")]
rownames(featureinfo) <- colnames(D3)

A.1.4 Script for Pathview usage
pathway.enrichment.plot <- function(metabolite.data=NULL,gen.data=NULL) {
I <- nrow(metabolite.data); if(is.null(I)) {I<- 0}
I2 <- nrow(gen.data);if(is.null(I2)) {I2<- 0}
library(pathview)
library(KEGGREST)
data(korg)
organism <- "homo sapiens"
matches <- unlist(sapply(1:ncol(korg), function(i) {

agrep(organism, korg[, i])
}))
kegg.code <- korg[matches, 1, drop = F]
pathways <- keggList("pathway", kegg.code)
pathways <- pathways[1:91]

#Llegim el total de compounds a humÃ que hi ha a la KEGG per a enrichment
if(!(exists("totalcmp.humans"))) {

t <- read.table("http://rest.kegg.jp/link/cpd/hsa")
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totalcmp.humans <- length(unique(t[,"V2"]))
}

if(!(exists("totalgene.humans"))) {
t2 <- read.table("http://rest.kegg.jp/list/hsa", sep="\t")
totalgene.humans <- length(unique(grep("EC:",t2[,2])))}

map <- gsub("path:", "", names(pathways)) # remove ’path:’
p.enrichment <- NULL
pen <- NULL
map.name <- NULL
for (i in 1:length(map)) {

map2 <- map[i]

pv.out <- try(pathview(cpd.data = metabolite.data, gene.data = gen.data,
gene.idtype = "UNIPROT",

pathway.id = map2, species = kegg.code,
out.suffix = "enriched", keys.align = "y",
key.pos = "topright", kegg.native = T, match.data = T,
same.layer = T,
multi.state= T))

if(is(pv.out,"try-error") | (!is.list(pv.out))) {
file.remove(list.files(pattern=map2))

}else{
tp <- grep("height",colnames(pv.out$plot.data.cpd))
tp2 <- grep("height",colnames(pv.out$plot.data.gene))
c <- sum(!is.na(pv.out$plot.data.cpd[,tp+1]))
c2 <- length(unique(pv.out$plot.data.cpd$kegg.names))
g <- sum(!is.na(pv.out$plot.data.gene[,tp2+1]))
g2 <- length(unique(pv.out$plot.data.gene$kegg.names))

file.remove(paste(map2,"png",sep="."))
file.remove(paste(map2,"xml",sep="."))

##Per a compunds
if(c==0 & g==0){

file.remove(list.files(pattern=map2))
next

}
if(is.null(c2)){c2 <- 1e20}
if (is.null(g2)){g2 <- 1e20}
p.enrichmentcp <- phyper(c-1, c2,

totalcmp.humans, I, lower.tail = F)
p.enrichmentg <- phyper(g-1, g2,

totalgene.humans, I2, lower.tail = F)

p.total <- p.enrichmentcp* p.enrichmentg

if (p.total<0.05) {
pen<-c(pen,p.total)
map.name <- c(map.name,unname(pathways[i]))

}else{file.remove(list.files(pattern=map2))
}

}
}
enrichemnt.pval <- data.frame(pen)
rownames(enrichemnt.pval) <- map.name
return(enrichemnt.pval)

}
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A.2 My internship
During my internship in Yanes Lab, I was required to accomplish different objectives on which this work is based. In April, the
NMR and GC-MS data were already analyzed, but the LC-MS were carried out during that month.

SUMMARY: Firstly, I was asked to reproduce the untargeted metabolomics workflow from preprocessing to statistics that they
had already performed (see Appendix A.1.3). Since identification requires experience and mastery of chemistry skills, that I
performed assisted by my colleagues. In parallel, I was asked to develop a script in R language using mzR package to facilitate
them the task of feature identification, into metabolites, from the MS/MS results (see Appendix A.3). Finally, I was required to
replicate the proteomics analysis, using R, which was performed in an external lab. Plus, I also created a Python 2.7 script to
access an API in order to assess which Uniprot entries belong to enzymatic proteins (see Appendix A.4), which was necessary
for using Pathview.

The metabolomics data analysis is based in the workflow we learned in Metabolomics course. It started by transform-
ing the raw output files of LC-MS equipment into .mzXML files, which can be read by XCMS function, which first analyses the
peaks obtained and transforms them into data that R can work with. XCMS is capable of aligning different samples by creating
bins of peaks and then groups peaks together across samples by creating a master peak list and assigning corresponding peaks
from all samples, these groups define thousands of features (mzRT), an m/z charge in a given retention time. This grouping
across all samples allows for statistical and value comparison between samples.
In order to avoid noise values, mean intensities were calculated for each sample group (N5, N25, etc.), and were used to filter
all those below the mid value of the transition in the sigmoid formed by the mean values. In order to filter out those features
that had did not vary highly between sample groups a log2 fold change was calculated, any sample not above log2(1.5) was
leaved out. Metabolomics studies normally apply t-test or ANOVA statistical analysis, in this case, a t-test was used since it
was intended to always compare against a control condition (N5).
Before further testing, a PCA approach was used to simplify the complex matrix of features, the first two components did
not show any clustering or separation of samples, which was unexpected, and thus I decided to use the third component (see
Figure 3.2). Based on this lack of variance explained, possibly due to the limited number of replicates, and the low number of
features surpassing a threshold of 0.05, a multiple comparisons correction was not applied (Actually, if applied, 0 features had a
corrected p-value below 0.05). Appendix A.1.3, shows the essentials of the R script for the analysis mentioned above, this was
performed twice, once for each type of ionization, negative and positive, since they can detect different ion types but the file
structure is identical.
Using metabolomics databases, such as METLIN or HMDB, the resulting significant features were explored for putative
metabolite identity based on m/z mass searches. Then, using MS/MS experiments, they were identified by analyzing, manually,
the fragmentation pattern obtained for each feature and by comparing the given pattern to the result from a standard solution of
the given molecule. Once the metabolite identiy was confirmed, the KEGG ID code was manually annotated.
Proteomics methodology and data pre-processing was performed by PhD Shabaz Mohammed team in Oxford. The TMT
proteomics approach is semiquantitative and thus, the output for each replicate given was a log2fold change versus the control
condition.
A significance B-test were the statistics applied to assess significancy, this test was recommended by the proteomics experts,
the tests consists in comparing the values for each protein versus all the values of the same condition, meaning that those
protein counts that are out of the total distribution of values are significantly changing; each comparison is performed like a
Welch’s test. Since no R package is available for gene ontology enrichment using Uniprot accession identifiers as input, it was
performed on AmiGO online tool.
A Yanes Lab team member, PhD Maria Vinaixa, found out about the Pathview package, that allowed to map both metabolite
and enzymatic data from the KEGG Pathways Database. It was suggested to test this package with that data, but firstly, we
were interested in knowing which significant proteins had an enzymatic activity associated. To do so, I came up with the script
shown in Appendix A.4, which I partly borrowed from Programming and database management for Bioinformatics course.
After the mapping was correctly performed, we started with the data interpretation, which was based on biochemistry knowl-
edge and bibliographic research using PubMed. One of the conclusions in which I mostly participated was the one referring
mitochondrial disruption.
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A.3 MS/MS spectrum simplifying script
As mentioned above (Section 3), metabolomics bottleneck is feature identification using MS/MS experiments. To do so, the
researcher sets the fragmentation system to fragment the desired features according to the resulting mzRT from statistics. Then,
the resulting fragments pattern is analyzed using knowledge and databases, the problem is that, normally, the software used
to visualize the pattern is slow and it becomes a tiring job. Thus, I was asked to create an R script to get a resulting clean
fragmentation pattern from the mzXML files (the same file type used in XCMS) by outputting a pdf file for each MS/MS
mzXML input file; indicating the mass (the mz of the feature) followed by the plot of the improved fragmentation pattern. An
example of the output is shown in Figure A.1.

### Options
table <- F # If the user needs the table with mz and RI to be added to the pdf
ppmthreshold <- 10 # ppm distance between mz to be joined

#### Base Functions ####
RelativeTransform <- function(x){ #Transform to Relative intensity

maxvalue <- max(x[,2])
for (i in 1:nrow(x)){

x[i,2] <- 1000*(x[i,2]/maxvalue)
}
return(x)

}

#

FilterMSMS <- function(x,prec,factor){ #Filter values lower than precursor and only higher than factor
y<- x[intersect(which(x[,1]<prec),

which(x[,2]>factor)),]
return(y)

}

#

TestMSMS1 <- function(y,filename,precursor_vector){ #Check and inform if any precursor did
not provide fragmentation spectra

vector <- unlist(sapply(y,nrow))
if(any(vector==0)){

positions <- match(0,vector)
msg <- print(paste("In",filename,"the following precursors did not fragment (No fragments
lower than precursor mass available):\n"

,precursor_vector[positions],".Please, check your MS/MS settings."))
write(msg, file = "Report.txt",append = T, sep = " ")

}else{
positions <- -(1:length(precursor_vector))

}
return(positions/-1)

}

#### Simplify MSMS mzXML peaks ####

library(mzR)
lf <- list.files(pattern=".mzXML")

suppressWarnings(
for (x in 1:length(lf)){ # first counter: iterate over files
filename <- lf[x]
aa <- openMSfile(filename)

h <- header(aa)
msms <- h[h$msLevel==2,]
precursors <- unique(msms$precursorMZ)

out1 <- lapply(precursors,function(z){ # iterate over precursors list to get the scans

q <- quantile(msms[msms$precursorMZ==z,"precursorIntensity"])["75%"]
peak <- peaks(aa, scans=as.numeric(rownames(msms[(msms$precursorMZ==z&msms$precursorIntensity>q),])))

if (!is.list(peak)){ # If there is only a scan passing the q threshold (is NOT list)
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peak <- RelativeTransform(peak)
peak <- FilterMSMS(peak,z,50)

if(is.vector(peak)){ # If only one peak passes
p <- t(peak)
p <- as.data.frame(p)

}else{
p <- as.data.frame(peak)

}

}else{ # If there is more than one (is list)
peak <- sapply(peak,RelativeTransform)
peak <- sapply(peak,function(x) FilterMSMS(x,z,50))

# If a precursor loses all signals due to filtering:
check_sums <- unlist(lapply(peak,sum))
if (any(check_sums==0)){

peak <- peak[-(which(check_sums==0))]
}

if (all(check_sums==0)){
p <- matrix(c(0,0),nrow = 1,ncol=2)

}else{
if (is.matrix(peak)){ # If only one peak passes the FilterMSMS (does not need to average)

p <- t(peak)
}else{

p <- do.call("rbind",peak) # To do the averages, get all the scans together
}
if (!(nrow(p)==1)){ p <- as.data.frame(p[sort(p[,1],index.return=T)$ix,])} # and sort
them if there is more than 1

}
}

m <- nrow(p)
p2 <- data.frame("mz"=NA,"RI"=NA)

for (i in 1:m){
a <- which((p[,1]< (p[i,1]+ppmthreshold*(z/1e6)) & (p[,1] > (p[i,1]-ppmthreshold*(z/1e6)))))
if (length(a)>1){

m1 <- mean(p[a,1])
m2 <- sum(p[a,2])
p2[i,]<- c(m1,m2)
p[a,] <- c(NA,NA)

}else{
p2[i,]<- p[i,]
p[i,] <- c(NA,NA)

}
}

p2 <- p2[!is.na(p2[,1]),]
if (!(nrow(p2)==1)){

p2 <- RelativeTransform(p2)
p2 <- FilterMSMS(p2,z,10)

}

return(p2)
}

)

#### Check if any does not have peaks
missings <- TestMSMS1(out1,filename,precursors)
out1 <- out1[missings]
precursors <- precursors[missings]

#### PDF Plots with or without table ####
library(gridExtra)
if (table){ pdfname <- "_Table.pdf"}else{pdfname <- ".pdf"}
pdf(file=paste("Report_",ppmthreshold,"ppm_",strsplit(filename,".mzXML"),pdfname,sep=""))
for (i in 1:length(out1)){ # iterate over averaged scans
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lbls <- out1[[i]]
if (table){
if (nrow(lbls)>20){

while (nrow(lbls)>20){
plot.new()
title(paste("Precursor mass =",round(precursors[i],digits=4)),col.main= "gray50",cex.main=2)
grid.table(round(lbls[1:20,],digits=5),show.rownames = F,

gpar.coretext=gpar(col = "black", cex = 0.8))
lbls <-lbls[-(1:20),]
}

plot.new()
title(paste("Precursor mass =",round(precursors[i],digits=4)),col.main= "gray50",cex.main=2)
grid.table(round(lbls,digits=5),show.rownames = F, gpar.coretext=gpar(col = "black", cex = 0.8))
lbls <- out1[[i]]

}else{
plot.new()
title(paste("Precursor mass =",round(precursors[i],digits=4)),col.main= "gray50",cex.main=2)
grid.table(round(lbls,digits=5),show.rownames = F, gpar.coretext=gpar(col = "black", cex = 0.8))

}
}
lbls[lbls$RI<100,] <- NA
plot(out1[[i]],type="h",xlab="m/z",ylab="Relative Intensity (to 1000)",xaxt="n")
title(main=paste("Precursor mass =",round(precursors[i],digits=4)),col.main= "gray50",cex.main=2)
axis(side=1,at=seq(1,ceiling(precursors[i]),10))
text(x=out1[[i]]$mz-0.6,y=out1[[i]]$RI,

labels = as.character(round(lbls$mz,digits=4)),srt=90,cex =0.8)
Sys.sleep(0.1)

}
dev.off()

}
)

Figure A.1. Example output of a MS/MS spectrum after being simplified
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A.4 Accessing EBI Gene Expression Atlas to get enzymes
The objective of this script was to provide a filter Uniprot accession numbers to check wether they have a known enzymatic
function, and thus an enzymatic code (EC number). To do so Expression Atlas API was recursively accessed using as input the
full list of Uniprot reviewed proteins (downloaded from Uniprot.org) and then searching its entry for an EC code, and if existed
saving it.

import re, json, requests

p = re.compile(’[0-9]{1}\.[0-9]{1,2}\.[0-9]{1,2}\.[0-9]{1,3}’, re.IGNORECASE)

def makeRequest(ac):
_POSTHEADERS = {’Content-type’: ’application/json’, ’Accept’: ’text/plain’}
base_url=’http://www-test.ebi.ac.uk:80/gxa/api/deprecated?geneUniprot=’+ac+’&format=json’
r = requests.post(base_url,headers = _POSTHEADERS, timeout=9999999999999.99)
a = r.json()
return a

with open("uniprotreviewedlist") as file:
for line in file:

line = line.strip()
a=makeRequest(line)
if len(a[’results’])>0:

b=a[’results’][0][’gene’]
if ’ensfamily_descriptions’ in b:

name=a[’results’][0][’gene’][’name’]
description=a[’results’][0][’gene’][’ensfamily_descriptions’][0]
print line
if " EC_" in description:

c=p.search(description)
if c is not None:

d=c.group()
if len(d)>0:

print "added"
with open("enzymes_from_uniprotr.txt", "a") as myfile:

myfile.write(line+’\t’+name+’\t’+d+’\n’)
myfile.close()
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