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Abstract: In this work, we propose a copula-based method to generate synthetic
gene expression data that account for marginal and joint probability distributions
features captured from real data. Our method allows us to implant significant
genes in the synthetic dataset in a controlled manner, giving the possibility of
testing new detection algorithms under more realistic environments.
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1 Introduction

Detection of differentially expressed genes in microarray experiments has
been subject of great effort in the bioinformatics community. Optimal de-
tection methods allow to reduce the amount of both, pathological and con-
trol experiments and, in consequence, time and costs [Dupuy A. and Simon
R. M., 2007]. However, most of the developed algorithms have been tested
with synthetic data using simple generative models and assuming incorrect
hypothesis about variable statistics and their dependence. The proposed
method captures the statistical structure of real datasets allowing us to
generate new random samples drawn from a copula-based random genera-
tor.

2 Materials and Methods

The proposed method is shown in figure 1. Briefly, we fit real microar-
ray data to a t-copula [Nelsen R. B., 1999] and then we generate random
gene expression data sharing marginal and high-order dependence with the
original data.
Firstly, original gene expressions dataset (Fig. 1.a) are mapped into a
unitary hypercube by means of a monotonically increasing function, i.e.
the inverse cumulative distribution function of the marginal distributions.
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An approximated Maximum Likelihood (ML) method is used for fitting
this transformed data to a t-copula. Once the copula parameters are ob-
tained, random samples are generated according to this copula structure
(Fig. 1.b). This new dataset, which have uniform marginal distributions,
is then mapped to a N (0, 1) marginal Gaussian distributions (Fig. 1.c). It
is important to remark that monotonically increasing transformations do
not alter high-order dependence measures like Kendall-τ or Spearman-ρ.
At this point, significantly expressed genes are introduced in a controlled
manner into the data (Fig. 1.d). By means of the inverse transformations
used before, we then back-transform the data to the original space, obtain-
ing a synthetic dataset which preserve the same marginal distributions and
high-order variable dependence as the real one (Fig. 1.e-f).

3 Results

When added to the synthetic data, significant genes were recovered by the
step-down minP adjusted p-values method [Westfall P. H. and Young S.
S., 1993] in all the cases. However, its important to ensure that the al-
gorithm is able to minimize the number of false positive (FP) cases. To
prove the robustness of the method against FP generation, we compare
the results of our method versus synthetic data generated by multivariable
gaussian random process with the same covariance matrices of the original
data [Carmona-Saez P. et al, 2006]. We ran 30 experiments for both types
of synthetic data with no significant genes added, meaning that the signif-
icance test should recover (almost) zero genes differentially expressed be-
tween pathological and control groups. Due to the sparseness of significant
genes in microarray experiments (less than 1%, under and over-expressed
genes) the copula captures the distribution of normally expressed genes. In
that sense, our synthetic microarray data produces much less FP genes that
the ones generated with a multivariable gaussian process having the same
covariance matrix (1.5± 0.23 vs 24.76± 1.04, p < 0.0001, mean± s.e.m.)

4 Conclusions

In this paper, we propose a new copula-based method for synthetic mi-
croarray data generation that allows us to control the number of under
and over-expressed genes, preserving the original statistical structure of
real data. To our knowledge, this is the first work that overcomes the prob-
lem of building synthetic data using simple generative models. Experimen-
tal results show the robustness of the method and its usefulness helping
researchers to develop new and more powerful algorithms for gene filtering
and clustering.
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FIGURE 1. Proposed method to generate synthetic data preserving the same
marginal distributions and high-order variable dependences of the real data.
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